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Abstract

We present a framework for finding collision points between objects represented by signed distance fields. Particles are used to
sample the region where intersections can occur. The distance field representation is used to project the particles onto the surface
of the intersection of both objects. From there information, such as collision normals and intersection depth can be extracted.
This allows for handling various types of objects in a unified way. Due to the particle approach, the algorithm is well suited to

the GPU.
CCS Concepts

» Computing methodologies — Collision detection; Mesh geometry models;

1. Introduction

Collision detection is a widely needed and discussed field of re-
search. Various methods exist for different kinds of objects and
scenarios, ranging from simulations to gaming. A natural compan-
ion to the question of collision detection is distance. A distance field
is a function fp : R" — R that returns the closest distance to a given
object O:

fo(x) = min||x -] m

For a closed object, it is possible to define an inside and outside. Let
00 be the surface enclosing the object O, then the signed distance
field (SDF) s can be defined as

—dyy(x), ifxeo
S0 (X) _ aV( ) (2)
dyy (x), else
In the following, we will leave out the subscript, if it is clear or
irrelevant what object the distance function refers to. Due to the
definition 1 the gradient is always normalized.

IVs|| =1 ©)

Using this property as the definition of a distance field yields the
well-known Eikonal equation. Being able to test for any given point
how far away from an object it is and whether it is inside, provides
a powerful tool to find collisions between objects.

2. Related Work

Distance fields have a wide variety of representations and appli-
cations. Hart [Har96] introduced them in the context of computer
graphics with constructive solid geometry operations and the sphere
tracing algorithm for efficient rendering.
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A common way to store distance fields is a grid of sampled
data. While this has advantages, such as ease of use and hardware-
accelerated lookup in GPU applications, it requires a large amount
of storage to represent high-resolution features.

Frisken et al. [FPRJ0O0] store the distance field in an octree data
structure. Subdivisions of a node are made based on different criteria,
such as the reconstruction error at certain positions. Smooth regions
can then be stored with less resolution thus saving storage. Bastos
and Celes [BC08] extended this data structure to efficiently work on
the GPU.

Aside from storing samples, the distance function itself can be
approximated with different basis functions. Carr et al. [CBC*01]
project an object’s SDF onto radial basis functions, which also
closes holes in the data. Koschier et al. [KDB16] use a hierarchical
structure, but instead fit polynomials per cell.

Distance fields have been used in many collision detection algo-
rithms. Fuhrmann et al. [FSGO03] use distance fields to test particles
modeling deformable objects for intersections with another body.
Xu and Barbi¢ [XB14] used signed distance fields and sampled
points from a mesh to calculate a continuous collision by traversing
the path a point takes and checking for intersections. This method
was also used in a haptic rendering application [XB17]. Oleynikova
et al. [OMT™ 16] use distance fields as a mapping representation in
robotics. This can both be used for the mapping itself and collision-
free navigation.

A problem with many pure point sampling approaches is that a
simple check if a point lies outside does not give enough information
to conclude that the object itself does not intersect with the field.
Macklin et al. [MEM*20] solve this problem by solving a constraint
optimization problem on the primitives of a shape, such as lines or
triangles, to find possible intersections.
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3. Distance Fields

The following section will give a brief overview of distance fields in
general and the version we use in our algorithm.

3.1. Basics

The SDF has many important properties, as shown in [Har96]. Trans-
formations consisting of a translation t, rotation R and a uniform
scaling a can be exactly represented as

s'(x) :as(éRT(x—t)) “4)

Using that form, the movement of objects can be incorporated with-
out recomputing the field. From this, it follows, that the gradient
transforms simply by inversely transforming the input and rotating
the result:

Vs (x) =RVs(éRT(xft)) )

Since R is a rotation matrix, the transformed gradient is still normal-
ized, as stated in equation 3. Constructive solid geometry operations
can be very efficiently computed. The operations needed for our
algorithm are the intersection A N B and union A U B of two objects
A and B.

fanp(x) = max(fs (x),fp(x)) (6)
faup(x) = min(fa (x), fp(x)) )

Since the greatest increase in value occurs orthogonal to the surface,
the gradient of the SDF, as with other implicit surfaces, is the normal
of the isosurface at the given point. Furthermore, combining the
distance and normal information yields a projection operator 7 that
projects a point onto the closest surface. If no unique closest point
exists, the gradient and T are not defined.

n(x) = x —f(x) VI(x) (8)

3.2. Higher Order Fields

While multiple data structures exist to represent distance fields,
one of the most well-suited ones for GPU computation is uniform
sampling, since the GPU provides hardware-accelerated lookup of
interpolated values. If an object feature is smaller than the voxel
size of the sampling, all values around it will be positive and thus
a zero-crossing will be missed in the interpolation, which would
prevent collisions. Increasing resolution may be expensive due to
the memory requirements. We chose a similar representation to Ban
and Gébor [BV20], but use the Dutch Taylor expansion described in
[Kra03, Chapter 4] to correctly increase the order of approximation
to second degree. The Dutch Taylor expansion for a distance field is
given by:

1
f(x) = xo —Q—E(x—xo)Vf(xo) ©)
The formula only differs by a factor of % from the usual first-order
approximation, but when used in a linear interpolation yields a
second-order accurate result. As in [BV20] we rearrange the terms
to store in a four component texture for 3D points. A voxel element

v; jk with coordinates x; ;  is given as:

i
Vijk = ( EV{(X” # )
" f(xi i) — 3 VXijkXijk

_(a
\b
Given an interpolated value v for a point X, we can then compute

the approximated field value as

f(x) ~x-a+b (11)

:(’;).

Section 4.3 will describe the generation and storage of the first-order
data and the memory requirements compared to just storing the
sampled values. Figure 1 shows a comparison of the zeroth-order
and first-order fields.

10)

<l

12

4. Collision detection

This section will describe the collision detection algorithm and its
implementation on the GPU. We don’t require any specific broad-
phase detection and thus any algorithm can be used. The only re-
quirement is that a set of potentially colliding pairs of objects is
generated.

4.1. Algorithm

For each pair of objects, we determine a region of possible inter-
section. We choose the intersection of the axis-aligned bounding
boxes (AABB) of the two objects, which itself will be an AABB. A
possible intersection shape will then be contained in that box. We
then place initial collision particles inside of that box.

In many cases, such as two objects just touching at their sides,
the intersection box will be very short in one or two directions. To
avoid putting too many samples in directions that do not need it,
we employ a scheme to distribute the resolutions per dimension
according to the length ratios of the intersection box. We start with
an initial resolution N for an n-dimensional cube, giving N"* particles.
Let b;,i = 1...n be the i-th largest box side length and rj,i =1...n
the corresponding resolutions in those dimensions. We compute the
ratios a; = g—;’ fori =2...n. Using the same ratios for the resolutions
lets us solve for rq in the continuous case.

I =N"
I a; = N"

13
I 13)

VI

The other ; for i > 1 can then be computed by using the ratios a; as
r; = ry * a;. For very short dimensions, some of the r; will result in
values less than 1. To counter that, we start from the smallest r;, set
it to at least 1 and convert it to an integer by rounding. Afterward, we
calculate the resulting number of particles as the product of all ;. We

compute the ratio of the actual and desired number g = % All
ri,i < j will then be multiplied with ’%‘/‘?’ which divides the excess

resolution equally between the remaining dimensions. This process
is repeated for all j =n...1. Algorithm 1 shows this process in 3D.

r =
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(a) Original mesh.

(b) Zeroth-order.

s

£

(¢) First-order.

Figure 1: Comparison of the same model (1a) visualized from a zeroth-order (1b) and a first-order field (1c) with lower resolution. The
zeroth-order field uses a resolution, such that its memory usage is similar to the first-order field. Still, the first-order field provides more details

and manages to capture some thin object parts better.

Instead of testing, whether one of the collision points is inside both

Algorithm 1: The algorithm computing the sample resolu-
tion for a given intersection box in three dimensions.

Input: Sorted (descending) bound extends by, b;, b3, base
resolution N
Qutput: Sorted (descending) resolutions

N
\3/112113
4 rp < rax
5 r3 < max(round(rja3),1)

nnr
3

6 g < N

7 r %
8 1y < max(round(%), 1)
nrrs
N?
10 1| <—max(round(?‘) 1)

9 g <

1 return (r,r,r3)

of the objects, we instead project them onto the intersection surface.

The general idea of the algorithm is shown in figure 2. According to
equations 6 and 8 we define an update step for each collision point
X; as:

Xl = {m(xi) if £4(x;) > fp(x;) »

np(x;) else

Due to sampling inaccuracies and discontinuities, we repeat the

update step multiple times to arrive at a final position x{ . If an

f

intersection was found x; will be on the surface of at least one of

the two objects with fAmB(xif ) < €, where € is an iso value to allow

for a small offset surface for the collision. x{ is also possibly inside

one of the two objects if they are not just touching. The intersection
depth d; is found by considering the distance to the union of both
objects given by equation 7

di = faup(x)) (15)

The collision normal n; from object B to object A is then obtained
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Figure 2: Visualization of the collision detection between a circle
and a triangle shown in white. The background lines show the
isolines of the distance function of their intersection. The red points
with white outlines are the initial sample points, that are projected
onto the intersection object.

by the gradient:
n; = VfB(X{) (16)

By the properties of SDFs, n; is equal to the normal of the closest
point on B and pointing to the outside of the object. Algorithm 2
shows the projection algorithm.

4.2. Accuracy

In contrast to other point-based algorithms, we do not only check for
basic containment but search out the collision shape. The projection
operator is unique for all points except where no unique closest point
exists. The set of such points is a null set and thus nearly all points
have a defined projection. An intersection can be found if a sample
point lies in the Voronoi region of that intersection. Therefore it is
possible to miss features when those regions are not sampled.
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Algorithm 2: Pseudocode for the iterated projection.

1 Function iterateProj:
Input: Initial point p, SDFs sg, s, intersection epsilon €,

maximum steps maxSteps

Output: Projection data
for i to maxSteps do
da +30(p)
dp < s1(p)
if d, > dj, then

| g+ Vso(p)
else

| g+ Vsi(p)
9 if max(da,d)) < € then
10 L result < { p, Vs;(p),max(da,dp), min(da,dp) }

®° N U s W N

1 return frue, result

12 | P < p—max(da,dp)g

13 | return false, null

4.3. GPU

As with other particle-based algorithms, the described procedure
is independent for each particle and thus can be efficiently im-
plemented on the GPU. An additional advantage is the hardware-
accelerated filtering for textures, which improves the lookup speed
of distances and gradients of sampled distance fields. We extend
the SDF generation algorithm for meshes from [KM19] to store
V; j k according to equation 10. We obtain the gradient as follows. If
the voxel center lies on the closest triangle, we return the triangle
normal. Otherwise the normal is the normalized vector from the
voxel center to the closest point, weighted by the sign of the distance
value at that point. This ensures that the normal always points to the
outside of the mesh. Due to the second-order approximation, we do
not use the filtered grid approach found in [BV20]. Other types of
objects can be implemented either by sampling them directly from
their functional representation or by implementing the function di-
rectly in code. As the first-order field needs four values instead of
one, storing them at full precision would also increase the mem-
ory requirement four times. We instead use a 16 bit floating point
type for our textures, thus only requiring twice the memory of a
zeroth-order field stored with 32 bit precision at the same resolution.
This is roughly equivalent to a first-order field with v/2 times the
zeroth-order field’s resolution.

Algorithm 3 shows the basic process. In the first step, the number
of actual collisions is counted. To avoid the overhead of having
one compute operation spawned per object pair, we handle them
all at once. We calculate the appropriate sample resolutions per
pair according to algorithm 1. The particle counts for each pair are
accumulated into an array. We then spawn parallel compute invoca-
tions for the total number of particles. Since the particle count array
is monotonically increasing, we can use binary search on it. Each
compute invocation searches for the first entry that is greater than
its invocation index. The found entry is the collision pair to which
the invocation belongs. This can be used to find all the necessary
information regarding the two collision objects. Additionally, the

preceding particle count or O for the first entry is used to find the
number of particles of the pair and the relative index of the invo-
cation. This one-dimensional relative index is transformed into the
corresponding n-dimensional index for the pair’s sample resolution.
That index is then used to find the actual position inside the intersec-
tion region. Using the position, the projection described in section
4.1 is computed. If the final position is inside the intersection, we
atomically increase a per pair counter to get the total number of
actual collisions. Offsets and storage requirements for all pairs are
computed with a parallel prefix sum performed on the actual colli-
sion counts. Afterward, enough memory is reserved to be able to
store the data for all collisions. The process is performed again, but
this time the offsets of the previous step are used to store the actual
collision information. These can then be processed further, either
on the CPU or GPU.

Algorithm 3: Pseudocode for the collision detection algo-
rithm.
Input: Array of intersecting pair ids P, Array of accumulated
sample particle counts C, Resolutions per particle R,
total number of collisions n
Output: Array of collision points
1 counts <— ZeroArray (n)
2 parallel for i to » do
3 idx - LowerBound (GC,i)
a;,b; < PJidx]
bounds <— get IntersectBounds (idx)
P < getPointInBound (bounds, idx)
p, hit« iterateProj (p,sq4,Sy)
if hit then
L atomicInc (counts[idx])

e ® N s

—

0 memoryBarrier ()

1 totalCount <— prefixSum (counts)

2 result «— Array (totalCount)

3 parallel for i to » do

14 idx < lowerBound (C,i)

15 a;,b; < P[idx]

16 bounds < getIntersectBounds (idx)
17 p < getPointInBound (bounds, idx)
18 p, hit < iterateProj (p,sq,Sy)

19 if hit then

20 prevEntry <— atomicInc (counts[i])
21 L result[prevEntry] < hitData

e

22 return result

5. Results

We implemented our algorithm in C++ using OpenGL compute
shaders for the parallel computations of the intersection finding.
Distance fields are accessed via the bindless texture extension. This
allows us to directly access textures via an id. A common alternative
is using an atlas texture. Times are measured with OpenGL timer
queries to accurately get the compute shader execution time. The
actual collision handling was delegated to the Bullet Library. For
the simulation, the SDF is used to approximate the inertial tensor of
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an object. That is accomplished by integrating the formula over all
voxels, where a voxel is considered part of the object if its center
distance is not positive. Figure 3 shows example scenes computed
with our algorithm. The tests were run in Windows 10 with 8GB
of RAM, an Intel Core i7-6700HQ CPU, and an NVIDIA GeForce
GTX 1070 GPU. We evaluated the algorithm for different scenes.
One scene contains a terrain with two models falling on top of
each other. The second scene consists of the same terrain, with
many objects being dropped on it. The third scene has several balls
rolling down a pipe and falling into a bowl. Table 1 shows the
results. As all collisions are computed in parallel, we see the average
time per colliding object pair going down as the number of those
pairs goes up. As the base resolution N corresponds to roughly N 3
sample particles, higher values have a large impact on execution
time, though the time per pair still stayed in the sub-millisecond
range.

6. Limitations

As discussed in section 4.2, intersections can be found, if a point lies
in the intersection’s Voronoi region. Thus, depending on the number
of sample points and the complexity of the model, small intersec-
tions might be missed. A related scenario can be seen in figure 4,
where a badly spaced sample does not reach the actual intersection,
as the projection has to jump between two nearly parallel lines. This
problem is similar to the one encountered in sphere tracing. This
might be compensated by using an overrelaxation scheme, such as
in [KSK*14].

7. Conclusion and future work

We presented an algorithm to find the intersection between two arbi-
trary objects represented by signed distance fields. Because of that,
it is not restricted to triangle meshes and does not need any special
handling for different types of objects, such as a distinction between
convex and concave. Collisions are detected simultaneously for both
objects. This is in contrast to previous techniques. These either used
a specific geometric representation, such as triangles, or had to check
sampling points for each of the two colliding objects separately. Due
to its parallel nature, it can be efficiently implemented on the GPU.
Many areas could be explored in the future. Currently, collisions
are computed independently in each call, but found collisions could
be cached for subsequent checks. Instead of uniformly sampling
the intersection region, a random or quasi-random sampling might
overcome possible aliasing artifacts. To reduce the number of gener-
ated collisions, a basic binary grid structure could be used to only
allow for one collision in a voxel region. Additionally, a final step
could find the £ collisions with the deepest penetration and discard
all others per object pair.
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(a) Armadillo model with multiple tori put on (b) Multiple different models with different com-(¢) Multiple balls fall through a winding tube into
around its hands and ears. plexity, with interlocking and concave shapes after a bowl.
being dropped on a simple terrain.

Figure 3: Examples of different scenes.

Scene N A.vg. #eolli- Avg. #pairs Avg.  time Avg. time/pair [ms] Scene image
sions [ms]

5 4.57 3 0.31 0.1017
Armadillo and Buddha statue | 10 9.38 3 0.31 0.1048
on terrain 15 16.18 3 0.38 0.1271
20 37.99 3 0.47 0.1554
5 14704.20 1209.40 4.10 0.0034
Terrain with many objects 10 118520.59 1325.405 15.27 0.0115
15 354805.26 1204.096 37.16 0.0309
20 808656.76 1121.437 69.97 0.0624
5 2015.98 408.13 1.72 0.0042
. . 10 65590.03 505.23 5.01 0.0099
Pipe with balls and bowl 5 288067.48 565.70 7.15 0.0303
20 705999.38 576.88 41.21 0.0714

Table 1: Timings of the example scenes. All scenarios used a variable time step and were timed using 1000 samples each.

Figure 4: Problematic case for the projection operator. An under-
sampled region with two objects being close to parallel to each other:
Even with a high iteration count, the projection will not converge.
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