
Pacific Graphics (2022) Short Paper
N. Umetani, E. Vouga, and C. Wojtan (Editors)

Learning a Style Space for Interactive Line Drawing Synthesis from
Animated 3D Models (Supplementary Material)

Zeyu Wang1 , Tuanfeng Y. Wang2 and Julie Dorsey1

1Yale University 2Adobe Research

1. Overview

In the supplementary material, we describe the details of input
drawing embedding at run time, dataset preparation, network archi-
tecture, and training strategy. We provide a systematic evaluation
with various test cases and show that our approach learns a power-
ful latent style space for effective line drawing animation synthesis
given different types of user input. We then validate our system
design choices via ablation studies.

2. Input Drawing Embedding

At run time, we allow the user to create a line drawing at a keyframe
in the animation. We need to obtain a style code from the input
drawing that can faithfully reconstruct itself via our generator. The
source of the input drawing can be 1) a NPR rendering of the
keyframe with a set of user-specified parameters; 2) manual edit-
ing based on 1), e.g., removing or adding strokes; and 3) draw-
ing from scratch over a reference image of the underlying geom-
etry. Due to the huge space of drawing variation and limited ca-
pacity of NPR drawing generation, our StyleNet (ES) only works
well with input from 1). To enable an interactive editing workflow
with full user control, during test time, we adopt an optimization-
based approach to embed an input drawing Ia at keyframe a into
the latent style space. Specifically, we compute geometry feature g
when a keyframe is selected. We freeze the weights of our gener-
ator G and optimize a latent code z∗ so that the generated image,
I′a = G(g;z), is similar to the input drawing. Since the gradient of
our binary drawing can be unstable for optimization, we adopt a
pyramid structure with different levels of blurring, i.e.,

z∗ = argmin
z

∑
k=1,33,65

∥∥GauSmk(Ia)−GauSmk(I
′
a)
∥∥

1 , (1)

where k is the kernel size of the Gaussian smoothing operator
in pixels. We initialize the optimization with the projection of
StyleNet, i.e., z0 = ES(Ia,Ma).

3. Implementation Details

3.1. Training Data

We evaluate our approach on five animation sequences:
Mouse [ZZCB21] (480 frames), Lilly [3DP22] (1,200 frames),

Figure 1: Sample training data for the Human character. Our syn-
thetic dataset consist of line drawings generated with different non-
photorealistic rendering methods with varying parameters.

Figure 2: Input to GeoNet EG. We concatenated six geometric
properties, i.e., shading, depth map, and four types of surface cur-
vature. Blue represents low values and red represents high values.

Human [Ado22] (3,000 frames), Michelle [Ado22] (200
frames), and Vegas [Ado22] (123 frames). For Human, we use
the first 2,000 frames for network training and the rest of the se-
quence is only used for generalization test on unseen frames. For
each scenario, we use NPR [DFRS03] to build a synthetic dataset
for network training. For each frame, we use three NPR methods,
i.e., suggestive contours, ridges and valleys, and apparent ridges,
and sample four thresholds for each. We combine outputs from
these methods and generate 64 (4× 4× 4) NPR line drawings for
each frame and 4 additional Canny edge maps [Can86] generated
with different thresholds. For each frame, it takes about 15 seconds
on average to generate all 68 line drawings with a resolution of
W,H = 512,512. We apply commonly used techniques for 2D data
augmentation, including translation, rotation, scaling, and flipping.
We show samples training data for Human in Figure 1. Figure 2
shows an example of the input channels that represent the underly-
ing geometry at each frame with a set of geometric properties.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0001-5374-6330
https://orcid.org/0000-0002-8180-4988
https://orcid.org/0000-0003-2495-4979


Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 3: User interface for drawing editing and interactive ani-
mation authoring. It allows the user to load an NPR line drawing,
edit an existing drawing, or draw from scratch. We show a shading
image of the geometry at the target frame in the background with
adjustable opacity as a reference. In the animation mode, user can
play the sequence, add, edit, and delete keyframes.

3.2. Data Collection for Evaluation

We collect line drawings from three sources to evaluate our system.

1. Similar to the synthetic dataset generation pipeline, we gener-
ate unseen NPR line drawings for selected frames from the an-
imation sequence with random sampled NPR parameters. We
denote these drawings as NPR.

2. We allow users to edit an NPR line drawing by adding new
strokes or erase existing ones. We build a user interface for
this purpose as shown in Figure 3. It allows users to select a
frame and load an NPR line drawing from the training set or
from NPR. We show a shading image of the geometry at the se-
lected frame in the background with adjustable opacity. Users
can draw and erase strokes on the left canvas. We denote these
drawings as NPR w/ edits.

3. More experienced users can directly create line drawings from
scratch by looking at the reference shading image. We denote
these drawings as Freehand.

3.3. Network Architecture and Training Strategy

Our GeoNet, EG, is a neural feature extractor built with con-
volutional layers followed by Parametric Rectifying Linear Unit
(PRelu) activation [HZRS15] and batch normalization. Starting
from the multi-channel geometric signal map Ma ∈ R512×512×6,
our network gradually decreases the dimension of the output to 256,
128, 64, and 32, while increases the number of channels gradually
to 32, 64, 256, and 512 after each layer. This results in a 2D geo-
metric feature, g ∈ R32×32×512. Our StyleNet, ES, adopts a simi-
lar architecture but maps the input line drawing Ia ∈ R512×512×1

into a 1D style code, z ∈ R1×1×2048 with five more layers. The
architecture of our generator, G, follows StyleGAN2 [KLA∗20]
including bilinear upsampling, equalized learning rate, noise in-
jection at every layer, variance adjustment of residual blocks and
leaky ReLU. The final output of this pipeline is a line drawing im-
age I′a ∈ R512×512×1. We trained our network with a learning rate

of 0.02 using four NVIDIA V100 GPUs with a batch size of 4. It
takes about 48 hours on average to converge in our experiments.

During the drawing embedding step, we implement the op-
timization using the optim package from PyTorch [Fac20]. We
choose LBFGS algorithm [LN89] as our optimizer with a learn-
ing rate of 0.1. The optimization takes place on a single NVIDIA
V100 GPU for 100 steps for all the cases discussed in this paper.
This optimization takes about 30 seconds for 50 steps on average.

4. Evaluation

We evaluate our system with respect to line drawing synthesis, style
interpolation, latent code embedding, and interactive editing. Ex-
periments show that our approach outperforms vanilla style trans-
fer and style interpolation baselines. Our approach produces plau-
sible output that follows the properties of user input and transitions
naturally in the animation. Although our network is trained in a
case-specific manner, we show that it is easy to generalize to new
cases with quick finetuning. Users of our system think the synthe-
sized line drawings are consistent with their style and are useful for
efficient and controllable animation authoring.

Latent style space embedding. We first evaluate the latent space
embedding for a given line drawing. As discussed in the paper, the
style code directly predicted from an input drawing may not be
accurate enough for an edited NPR drawing or one drawn from
scratch. In Figure 4, we see that the drawing generated from the
learned latent style code z is similar to the target input in general
but missing quite some details especially for NPR w/ edits and Free-
hand cases. With latent code optimization, the generated drawing
can recover strokes missing from the initial projection. Our pyra-
mid strategy facilitates gradient propagation and leads to better re-
construction compared to the one without the pyramid as shown by
the L1 +VGG error. In case b), the pyramid strategy helps recover
strokes that are missing in the optimization without the pyramid.

Disentanglement between style and geometry. Since we cast
the style as an intrinsic property that depicts the relationship be-
tween stroke placement and geometric features, same drawing style
at different frames in a sequence should be mapped to the same
place in the latent style space. In other words, no matter which
frame the style is learned from, the latent style code should all
produce the same drawing for the target frame. Our NPR dataset
provides consistent style across frames in a sequence. In Figure 5,
given a target line drawing Ia at a certain frame a, we randomly
pick two other frames b and c from the same sequence. The cor-
responding drawings with the same style are denoted as Ib and Ic.
We show the style code extracted from Ib and Ic can be used to
faithfully reconstruct the target drawing Ia.

Style interpolation. Our latent style space is learned from a set
of separated NPR line drawings. The dataset itself cannot provide
supervision on smooth style transition due to the nature that some
NPR parameters are not interpolatable. Instead, our interpolation
loss and strokeness loss provide self-supervision for this purpose.
Here, we evaluate the performance of our method on interpolating
between two projected latent style codes. Starting from style in-
terpolation at a fixed frame, we learn the geometric features g and
keep it unchanged during the interpolation. We embed the source

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 4: Evaluation of latent style code embedding. We test our style embedding approach on different types of line drawings, i.e., NPR,
NPR w/ edits, and Freehand. We show generated drawings from 1) learned latent style code z, 2) optimized z without the pyramid strategy,
and 3) optimized z with the pyramid strategy (ours). Our approach achieves best reconstruction from the latent embedding. Red arrows
highlight challenging areas. Ours achieves the lowest L1 +VGG error as shown by the values below each entry.

Figure 5: Disentanglement between geometry and style. For each
target drawing (1st col.), we learn the latent style code z from one
rendered with the same NPR parameters but at a different frame
(2nd and 4th cols.) The drawing reconstruction from the learned
style codes is almost identical at the target frame (3rd and 5th cols.)

and target line drawings into latent space to obtain the correspond-
ing latent style codes zsource and ztarget. We perform linear interpo-
lation between zsource and ztarget to generate the transitioning line
drawings accordingly, as shown in Figure 6.

An alternative baseline method for this task is to adopt a vanilla
StyleGAN [KLA∗20]. In the even rows of Figure 6, we train a

Table 1: Statistics of style interpolation on static frame in Figure 6.
We calculate sparsity loss, interpolation loss, and the strokeness
loss along the interpolated sequence. We show our method outper-
forms the baseline approach on style interpolation.

Lilly Mouse
Lsparsity Linterp Lstroke Lsparsity Linterp Lstroke

Ours 0.069 0.044 0.025 0.098 0.073 0.042
NPR

Baseline 0.082 0.207 0.113 0.130 0.237 0.181
Ours 0.054 0.047 0.020 0.075 0.097 0.034

NPR w/ edits
Baseline 0.059 0.275 0.147 0.099 0.190 0.148

Ours 0.073 0.096 0.047 0.072 0.126 0.052
Freehand

Baseline 0.072 0.283 0.148 0.090 0.244 0.168

vanilla StyleGAN with the same NPR dataset and perform the
drawing embedding with our pyramid-based optimization. Instead
of performing interpolation in the style space, we directly per-
form interpolation in the W space for the vanilla StyleGAN to
generate corresponding output. The optimization-based embedding
performs reasonable for reconstructing target drawings in the W
space [KLA∗20]. However, without an explicit disentanglement of
style and geometry, the interpolation results using the vanilla Style-
GAN have heavy artifacts.

In this experiment, we test line drawings from NPR, NPR w/ ed-
its, and Freehand. We show that our method learns a robust latent
style space for all the three types of drawings. In Table 1, we report
the sparsity loss, interpolation loss, and the strokeness loss along
the interpolated sequence. We show that our method achieves lower
loss which agree with the qualitative comparison.

Next, we elaborate on the experiment setup for an animation
sequence rather than a static frame. The geometric features g are

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 6: Style interpolation at a static frame. For each case, the source line drawing (1st or 6th column) and the target (5th or 10th column)
are given and embedded into the style space. Linearly interpolated style codes are used to generate transitioning line drawings (2nd–4th or
7th–9th columns). We compare our approach (odd rows) with a baseline method (even rows), vanilla StyleGAN trained with the same dataset.
Our approach outperforms the baseline method due to geometry/style disentanglement and drawing-specific supervision during training.

Figure 7: Style interpolation between dynamic frames. We evaluate our system on animation sequences with dynamic frames using the same
experiment setup from Figure 6.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 8: t-SNE visualization of style interpolation between dy-
namic frames. For the Lilly dataset, we calculate the VGG fea-
tures for 10k randomly sampled NPR line drawings in the training
dataset and embed them into a 2D space via t-SNE [VdMH08]. We
then calculate the VGG features for each frame in the three clips
shown in Figure 7. We visualize the three sequences (NPR: red,
NPR w/ edits: green, Freehand: blue) with the same 2D embed-
ding. The trajectories indicate that the predicted style interpolation
between frames is perceptually smooth and generalized well to un-
seen styles (NPR w/ edits and Freehand).

learned from the underlying geometry at each frame accordingly,
while the style code z is still interpolated linearly between the
source and target line drawings. As shown in Figure 7, our learned
latent space supports different types of line drawings for interpo-
lation between the frames. The generated line drawings have a
smoothly transitioning style along the sequence. We also visualize
the drawing sequence as a trajectory in the 2D embedding space
as shown in Figure 8. Specifically, for the test animation, we ran-
domly sample 10k NPR line drawings from our dataset and com-
pute the 512-dimensional VGG feature for each drawing. We apply
t-distributed stochastic neighbor embedding (t-SNE) [VdMH08]
for the VGG features. For the sequences in Figure 7, we embed the
VGG feature for each entry into the same t-SNE domain. We see
that the line drawing animation with linear interpolated style forms
a smooth trajectory in the perceptual embedding space. This backs
up our observation that the transition between source and target line
drawings is smooth and natural.

5. Ablation Study

We use an ablation study to validate our design choices. Starting
from a source edited NPR line drawing, we perform style interpo-
lation on a static frame towards a target edited NPR line drawing.
Figure 9 shows the effect of the loss terms used in network train-
ing. We see that the three losses proposed to self-supervise drawing
interpolation, i.e., sparsity loss, interpolation loss, and strokeness
loss, are functioning as expected as the toy examples discussed in
the paper. We observe a smoother transition from the source to the
target in our full pipeline. We also observe that those losses pro-
vide supervision over the gaps between samples in the NPR dataset,
which helps the method generalize to unseen input line drawings.

We adopt the same style interpolation setup to evaluate the effect
of latent space dimension. We train the same network but reduce the
dimension of the latent style space from 2048 to 1024 to 512. After
training with the same number of epochs, we compare their style
interpolation performance in Figure 10. We observe that the qual-
ity of line drawing synthesis is improved along with the increase
of the latent space dimension, where the model size and training
time for each epoch are increased as well. Therefore, our choice
of a 2048-dimensional latent style space is a reasonable tradeoff
between training efficiency and network performance.

References
[3DP22] 3DPEOPLE: 3D People for Your Visualizations and Animations.
https://3dpeople.com/, 2022. 1

[Ado22] ADOBE: Mixamo. https://www.mixamo.com, 2022. 1

[Can86] CANNY J.: A Computational Approach to Edge Detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence 8, 6 (Nov
1986), 679–698. 1

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SAN-
TELLA A.: Suggestive Contour Software: rtsc. https://rtsc.cs.
princeton.edu, 2003. 1

[Fac20] FACEBOOK: torch.optim. https://pytorch.org/docs/
stable/optim.html, 2020. 2

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Delving Deep into Rec-
tifiers: Surpassing Human-Level Performance on ImageNet Classifica-
tion. In Proceedings of the IEEE International Conference on Computer
Vision (2015), pp. 1026–1034. 2

[KLA∗20] KARRAS T., LAINE S., AITTALA M., HELLSTEN J., LEHTI-
NEN J., AILA T.: Analyzing and Improving the Image Quality of Style-
GAN. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2020), pp. 8110–8119. 2, 3

[LN89] LIU D. C., NOCEDAL J.: On the Limited Memory BFGS method
for Large Scale Optimization. Mathematical Programming 45, 1 (1989),
503–528. 2

[VdMH08] VAN DER MAATEN L., HINTON G.: Visualizing Data Using
t-SNE. Journal of Machine Learning Research 9, 11 (2008). 5

[ZZCB21] ZHENG M., ZHOU Y., CEYLAN D., BARBIC J.: A Deep Em-
ulator for Secondary Motion of 3D Characters. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2021),
pp. 5932–5940. 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://3dpeople.com/
https://www.mixamo.com
https://rtsc.cs.princeton.edu
https://rtsc.cs.princeton.edu
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html


Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 9: Ablation study of loss terms. Given the same source and target line drawings, we first embed the drawings to obtain their latent
style codes. We linearly interpolated the style codes to generate the in-between drawings. From top to bottom, we first show our method (a),
and gradually remove strokeness loss (b), interpolation loss (c), and sparsity loss (d). Reconstruction error is reported for the embedding
of source and target drawings. Red arrows highlight the artifacts in the interpolation. We show that, with all the loss terms, our approach
performs the best for style interpolation and reconstruction of unseen input line drawings.

Figure 10: Ablation study of latent space dimension. We train the same network with a latent space dimension gradually decreasing from
2048 to 1024 to 512. With an experiment setup similar to Figure 9, we show that a 2048-dimensional latent space (ours) is more capable of
learning diverse drawing styles. Decreasing latent space dimension worsens the performance in drawing embedding and style interpolation.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.


