Pacific Graphics (2021)
M. Okabe, S. Lee, B. Wuensche, and S. Zollmann (Editors)

Neural Proxy:
Empowering Neural Volume Rendering for Animation

Zackary P. T. Sin &, Peter H. F. Ng "/, and Hong Va Leong

The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Achieving photo-realistic result is an enticing proposition for the computer graphics community. Great progress has been
achieved in the past decades, but the cost of human expertise has also grown. Neural rendering is a promising candidate for
reducing this cost as it relies on data to construct the scene representation. However, one key component for adapting neural
rendering for practical use is currently missing: animation. There seems to be a lack of discussion on how to enable neural
rendering works for synthesizing frames for unseen animations. To fill this research gap, we propose neural proxy, a novel
neural rendering model that utilizes animatable proxies for representing photo-realistic targets. Via a tactful combination of
components from neural volume rendering and neural texture, our model is able to render unseen animations without any
temporal learning. Experiment results show that the proposed model significantly outperforms current neural rendering works.

CCS Concepts

e Computing methodologies — Computer graphics, Machine learning;

1. Introduction

Photo-realistic rendering that mirrors reality is potentially a holy
grail for computer graphics. With many recent modern advances,
we can see that many movies and digital games are able to ren-
der scenes that sometimes blur the boundary of reality. However,
most of the scenes are expensive to acquire as they require intensive
human effort to handcraft the scene representation. Neural render-
ing is a recent growing topic that proposes teaching a neural ma-
chine to generate photo-realistic imageries. It is a promising candi-
date for reducing the cost of realistic rendering. Although current
neural rendering works such as NeRF [MST*20] and neural tex-
ture [TZN19] are able to produce impressive results, most of them
are only able to render static scenes or video scenes where the dy-
namics are recorded. There are works that can synthesize for novel
motion, but they are limited to data-rich domains such as human
motion. For many interactive applications (e.g. games, augmented
reality apps), however, animations are an important part of the ex-
perience. To elevate neural rendering to a practical photo-realistic
solution for digital content making, how to enable it for synthesiz-
ing animated frames is an important research question to address.

A typical computer graphics pipeline uses a 3D mesh for where
to render, and a texture for what to render. Could neural rendering
imitate this intuitive pipeline more closely? Our investigation on
this idea paves the way to neural proxy. Instead of a 3D model with
a texture, we have a neural proxy with a neural texture. The neural
proxy determines where the photo-realistic target will render while
the neural texture provides a high-level description on how to ren-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/pg.20211384

der the target’s surface realistically. Another key idea in our method
is a specific integration between neural volume rendering and neu-
ral texture. The result is a model that can render photo-realistic
frames of an unseen animation for a target given only its static pose
via a small collection of images (Figure 1). To summarize, our con-
tributions are as follows:

e Neural proxy, a novel method that empowers animations for neu-
ral rendering by representing photo-realistic targets as manipu-
latable proxies.

o A tactful integration between neural volume rendering and neu-
ral texture that enables rendering of animated frames without
seeing any animations in training.

e Results that show neural proxy’s improvement over existing
methods and illustrate the model’s ability in synthesizing photo-
realistic animations.

.lnput i.magEEs Optimize fm'. Render for unseen animation
with static object 3D representation
PRE

Train

EEE
EER

Deploy,

. pm)

Figure 1: Neural proxy is a neural rendering technique that can
render frames for an unseen animation via an animatable proxy. It
only requires training views with a shared static pose.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-8377-0216
https://orcid.org/0000-0002-9671-896X
https://orcid.org/0000-0001-7682-9032
https://doi.org/10.2312/pg.20211384

32 Sin, Ng & Leong / Neural Proxy

2. Related Work

Image-based neural rendering refers to works that manipulate with
image representations. An early work in this regard is pix2pix
[IZZE17], a conditional imagery GAN [GPAM™14]. It can accept
a UV map or a segmentation mask for generating a photo-realistic
output. Neural texture [TZN19] is, arguably, one piece of earlier
work that explicitly models components of a computer graphics
pipeline to a neural rendering work. Instead of a typical texture,
say albedo (RGB) texture, [TZN19] proposed to sample from a
learned neural feature map. The learned features are then fed to
a neural renderer for producing photo-realistic results. However, a
limitation of this work is that it has difficulty rendering frames for
unseen animations if the renderer learns from static objects and has
not seen them moving.

Neural volume rendering is a neural adaptation to the classical
volumetric rendering in computer graphics. A marked beginning of
this line of work is neural volume [LSS* 19]. It samples a voxel grid
of neural features with ray marching. This voxel grid of embedded
features is somewhat similar to the one in [STH* 19]. Neural radi-
ance field (NeRF) [MST*20] is a follow-up work to neural volume.
NeRF proposed that a sampler can be directly fed with a continuous
Cartesian coordinate to produce a particle. As the content is tied to
a coordinate, it is difficult to manipulate for animations.

It is possible to render animated results with neural texture
[TZN19]. The renderer, however, must be given animated training
samples to achieve this, like [RTH*20] which assumes a data-rich
human motion domain. Similarly, [LXZ*19] synthesizes different
human actors via a driving video. There is a body of works that
aims to introduce a temporal component to neural volume render-
ing. Nerfies [PSB*20] uses a multilayer perceptron (MLP) to pro-
duce a deformation field such that a moving particle will be sam-
pled from the same reference coordinate. [PCPMMN20] also pro-
poses a similar scheme to model a video’s dynamics. Instead of us-
ing a MLP for deformation, [LNSW21] uses scene flow. [YLSL21]
enables handling of moving objects without supervised training.
However, although the dynamic models mentioned can handle tem-
poral information, they cannot be used for general animations as
they rely on latent interpolation for generating new animated con-
tent. This design makes it difficult to specify the desired anima-
tion. Furthermore, if the content to generate is not between any
known/learned latent points, it will be impossible to generate.

3. Building Blocks

In this section, we will be discussing two major works of neural
rendering: neural texture and NeRF. One of the key ideas of our
method is to tactfully combine these two works in such a way
that their inherent modelings that hinder animation synthesis are
avoided.

Neural texture [TZN19] provides localized surface appearance
information such that the texture’s neural feature is fed to a neu-
ral renderer for rendering. This method can be formulated as I =
IR (fBi(U;Qrex); ONR), Where 1 is the rendered image; fyr is the
neural renderer and its parameters are Oyg; fp; is a bilinear sam-
pler; U is the UV map; and Qr,, is the neural texture. A problem
exists with respect to Oyg for animated content as it implies that

the synthesized content / relies on what is learned. If 6yr cannot
be generalized for different manipulations of the surface, it may
fail for rendering animated frames as there will be many possible
manipulations for a new animation.

NeRF [MST*20] is a current state-of-the-art model for neural
volume rendering. It utilizes a ray of particles to aggregate the
color for a pixel on an image. The authors proposed that the par-
ticles could be generated by a sampler neural network Sy.rr such
that, (¢,0) = Syerr (x,d), where ¢ and © are the color and the den-
sity of a particle respectively, x is a point in the continuous Carte-
sian coordinate and d is the current view direction for modeling
view-dependent lighting. By accumulating the colors and the den-
sities of particles along a ray r, the color of a pixel, C(r) can be
computed. This accumulation is approximated by the method de-
tailed in [MST*20]. With a ray of particles x; = r(t;) = o+ t;d
where x; is the Cartesian coordinate of the i-th sampled particle,
t is a distance sampled uniformly, and o and d are the origin and
the direction of a ray r respectively, we can render a pixel with
T;i= exp(—):’j;ll o;At),C(r)= Zi\il T;(1 —exp(—0;At;))ci, where
é(}’) approximates C(r), (C,‘,G,') = SNeRF(xhd)’ At = tiy1 —t
and N, is the number of sampled particles along r. In practice,
[MST*20] also introduced a positional encoding which manipu-
lates in a higher dimension. As NeRF’s input is based in a Cartesian
coordinate, it is not easy to manipulate for animating the content.

4. Methodology

The motivation of our work is to empower animations for neural
rendering. The core idea is to inject neural proxies into a scene
such that each neural proxy represents its photo-realistic counter-
part. By animating these proxies, animated photo-realistic frames
can be rendered. Our work mimics the typical computer graphics
pipeline for neural rendering (Figure 2a).

To achieve our goal, we use a volumetric renderer and a neu-
ral proxy wrapped with a neural texture for localizing particles.
This design circumvents the need for training a renderer with an-
imated frames which may be intractable to provide. By animat-
ing the proxy, localized particles will move with it, resulting in
an animation. Our proposed method starts with the construction of
a proxy that relies on shell maps [PBFJ05], a classical computer
graphics technique. For modeling localized surface appearance, we
wrap the proxy with a neural texture. For rendering a scene with
animatable targets and static surroundings, we use a mixture of a
neural proxy sampler and a static sampler for particles sampling.

4.1. Proxy Construction

The construction of a proxy starts by retrieving a reference geome-
try, which can be done by a structure-from-motion technique such
as COLMAP [SF16], or manually (e.g. use a low-resolution ico-
sphere for a high-fidelity football). Then, the volume of the proxy
that specifies how far the proxy is influencing the photo-realistic re-
sult is constructed. This volume needs to enclose the photo-realistic
target such that the relevant particles are fully contained. In com-
puter graphics, a classical way to construct this volume is shell
maps [PBFJO5], which we propose here to adapt for neural render-
ing. The volume can be constructed by viewing the coarse geometry

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Sin, Ng & Leong / Neural Proxy 33

as a "thick surface", which can be further understood as an outward
surface extruded from the original surface to form a shell. It is easy
to see that by extruding a triangle, a prism is formed, thereby trans-
forming from an area to a volume. The original coarse geometry
is defined as M and we assume that it is populated with vertices v;
with smoothed normals n; such that M = {v,}i\i 1» where N, is the
number of vertices in M. The extrusion is done so that there is an
outward surface M and an inward surface H We denote the notion
of outward (inward) with the arrow < (—). Their vertices can be
computed by 7,) =v;+n;- € and Vl =v;—n;- %, where ? (?) is
the tuned offset parameter for the outward (inward) surface under
the conditions that ?, € >= 0, € + ‘e > 0. It should be set such
that the shell will enclose the target object. To generate a volume
that guarantees no intersection between prisms, one could use the
method stated in [CVM™*93]. In practice, by using reasonable e
and %, such method is not necessary for neural proxy.

We will wrap a neural texture around the proxy later. So, we need
to define the UV coordinates for the extruded surfaces. For the orig-
inal 3D mesh M, we assume that there is a UV coordinate u,p for
each vertex. As the proxy’s volume (or shell) contains the parti-
cles for rendering, we need some method to tell the 3D location.
This can be achieved by lifting the 2D UV coordinate to 3D with
a proxy depth component w such that we have ﬁ,) = (uap, W) and
= (u2p, W), where %! is the UV coordinate of v{. The new third
dimension component w is referring to how deep a point is within
the proxy’s shell. For easier conceptual understanding, we choose
W = 1, which indicates the outward shell, and W = 0 which in-
dicates the inward shell. However, it is simply a label to feed to a
learnable network. The labels need not have an explicit range as
long as W and W are different. After the extrusion, we now have
M which includes W and % such that M = {W}f\il U {Vl}fv:‘l To
sample particles via the neural texture, we need to map between the
shell space and the texture space. To achieve this, the Barycentric
coordinate system can be used. The prisms, however, should be first
broken into three tetrahedra with the method detailed in [PBFJO5].

4.2. Proxy Shell Sampling

The proxy’s shell is the basic building component for the neu-
ral proxy to sample features from its neural texture. Recall from
Section 3 that neural volume rendering requires sampling in the
Cartesian coordinate such that a sampler will produce the color ¢
and the density ¢ given a location. For our proposed neural proxy,
this process stays similar with a Cartesian point x to be given to
the neural proxy sampler S, such that (c,0) = Sp(x) (the view
component d is dropped for simplicity), which produces a two-
valued output. The key difference between the samplers from NeRF
and neural proxy is what actual information is used for process-
ing. NeRF uses global information as input (a point in the scene’s
space) while neural proxy uses local information as input (the fea-
ture sampled from a neural texture). Before sampling the neural
texture, we need to first travel from the Cartesian coordinate to
the Barycentric coordinate. The function that translates between
the coordinates is defined as @t = fcarr—Bary(X:T), Where @z is
tetrahedron T’s Barycentric counterpart of x. Suppose we wish to
convert a point with the Cartesian coordinate x to its Barycentric
coordinate @r = (Q4,9p,9c,¢p) for a tetrahedron T consisting of

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

vertices ABCD, the following volumes within the tetrahedron will
need to be first computed, V4 = %()C*XB) “((xp —xp) X (xc —xB)),
Vg = §(x—xa) - ((xc —xa) X (xp —x4)), Ve = (x—xa) - ((xp —
_ 1
xa) X (xg —xa)), Vp = 5(x —xa) - ((xp —xa) X (xc —xa)) and
Vapep = £(xg — xa) - ((x¢ —x4) X (xp —x4)), where x4 is the
Cartesian coordinate of the vertex A. The Barycentric components
can then be computed by comparing the volumes such that we
have ¢4 = VA‘I/?CD » ¢p = VABE;',D » bc = VA‘I/:(:'D and ¢p = VA‘ZZ',D Qs
important to check which sample x € X is within which tetrahe-
dron, or any at all. The following equation can be used to check if a
sample is within a tetrahedron T, X1 = {x € X|@4,9p,¢c,¢p >
0 A (94,98,9¢,9D) = fCart—Bary(x;T)} which can also help us
find all points X; that lie within the volume of t. To find all
points that lie within any of the tetrahedra, Xp;, = U?ﬁl Xr;, where

M = {’ci}?ﬁ , and Nz is the number of tetrahedra, can be used in-
stead. On the other hand, we can also derive a method to find Ty, the
tetrahedron that contains x. It can be done by T, = {T € Mz|x € Xt }.
Finding 7, is important as we need to know which tetrahedron x is
in for sampling the neural texture. To find the UV coordinate of
a point, given its Barycentric coordinate, it can be computed with
U= fRary—uv (Qt;uz) = Qatig + Qpup + Pcuc + Ppup, where uy
is the UV coordinate of the vertex A and ur = {us,up,uc,up}. The
UV is now retrievable for each location in a Cartesian coordinate.

4.3. Neural Proxy

Neural proxy is a key component of our proposed method. It is a
proxy representation of the photo-realistic target. The proxy afore-
mentioned is only a volume and does not contain the appearance
information. We propose using a neural texture to wrap around the
proxy to specify its fine surface information. Here, a learned net-
work Sty that mimics a neural texture is used to sample a neu-
ral feature ¢ given a UV coordinate such that ¢ = Srey(u;07ex)-
Then, to sample the particles of a neural proxy, it can be done with
(c,6) = Sy(¢;0,), which we will later simplify as S,(x) for the
sake of clarity. Now, we are able to use a Cartesian point x to sam-
ple a neural feature ¢ and feed it to SAp for rendering a particle.

It is now possible to use neural proxies to model a scene. How-
ever, at this stage, it will require us to construct a proxy for every
object in the scene. Although this is possible, there may be scenar-
ios where we want to have two rendering routes (Figure 2¢): one
that uses the neural proxy sampler for important objects that we
want to animate; and, the other that uses a scene sampler for model-
ing static elements. To this end, we also propose mixing the neural
proxy sampler S, with a neural scene sampler S¢. The architecture
of S, p and S¢ are identical to NeRF (i.e. SyerF).

Recall that the key to neural volumetric rendering is to utilize a
set of particles to compute the color of an image pixel. These par-
ticles are located in a set of points x in Cartesian coordinates such
that x € X. As we are going to sample from the two samplers, S,
and S¢, we need to separate X such that a proxy set X, is fed to Sp,
and a scene set X; to S¢, where X = X, U X. Instead of finding the
entire X;, which may be very expensive to compute, we simply find
the sections of rays that intersect with Xj,. For efficiency, the section
for a ray r is here represented as the convex set X, bounded by the
closest point and the farthest point where r intersects with M (Fig-
ure 2b). Using the triangle intersection method f5 from [MT97],

34 Sin, Ng & Leong / Neural Proxy

Classical CG Rendering ~ Rendering with Neural Proxy
3D Model Texture Neural Proxy Neural Texture

N Avoly

v]
- 2
| Y — r A
(a) In (b)

Sample Coordinates

Covert to Ci merl to Sample Sample
Barycentric Neural Texmre Particle Rendered Output

fCart—Bar /n YU \}—{ ST(ox],

cea B

Figure 2: (a) The intuition of neural proxy is to imitate a typical computer graphics pipeline. The proxy mirrors a 3D model while the
neural texture is a neural replacement for a typical texture (e.g. albedo). (b) Each ray r is checked for its convex set X, where particles are
considered to be within the proxy (red). (c) Neural proxy’s pipeline. A sample is handled by the proxy sampler S, and the scene sampler S¢
separately depending on whether it is within the proxy i.e. Xp or outside the proxy i.e. Xc. The neural texture is used to sample particles for

local surface appearance.

we can get a three-valued function (7, ug,vg) = f5(r,8), where § is
the triangle in question with three vertices; f is the distance such
that r(r) = o +id is where the intersection will be, if occurred; and
ug, vg are the Barycentric coordinate of where the intersection oc-
curred. In [MT97], ug,vs > O,us +vs < 1, need to be true such that
the ray r has intersected with the triangle 8. Now, the convex set
where r intersects with M can be found with the following,

Ds(r) = {(f,us,vs)|(7,u5,vs) = f5(r,8) NS € M5}
D = {{|(f,us,vs) € Dg(r) Nug,vg > 0Aug+vsg <1} e))
fn = minD,fy = max D,

where Dg(r) is a three-valued set for all triangles, D is a set of
distances to where intersections occurred and Mg denotes the set of
all the triangles in M. Then, the samples on the ray r that we will
feed to S are therefore,

=" iftD=10 .
{r(®)|in <7 <ir} otherwise.

To render an image, however, will require processing a batch of
rays. The full sampled proxy set for rendering an image (or par-
tially) is X = J,cg Xr, where R is a batch of rays. Finally, we will
have the following for mixing the two samplers,

Sp(x) ifx € XpNXyy,
(¢,0) =S(x) =< Sc(x) ifxe€Xc 3
(0,0) otherwise.

The three conditions describe the different spaces that the sample is
in (Figure 2b). For the first condition, X, N Xj,, (which can be sim-
plified as Xy,) specifies the volume in which a sample will be both
within the proxy and its shell. Thus, it can be sampled by Sp. For
the second condition, it can be seen that it is referring to the volume
outside the proxy, therefore S, is used. For the last condition, it is
referring to the volume that is within the proxy P (x € X)) but not
within the shell Mz (x ¢ Xjy,). Since it is not within any of the tetra-
hedra, it cannot be sampled by S,. With S(x), the image can be ren-
dered ray by ray by using C (r) described in Section 3 and the model
can be trained with a photometric loss L = ¥, ||C(r) — C(7)] I3,
where C(r) is the ground truth. As we have two samplers in the
same scene, we may need to stabilize the learning. A distillation
process can be used [RPLG21]. Figure 2c illustrates the pipeline.

We are now able to reproduce a scene with neural proxy. Re-

call that our goal is to animate objects for neural volume rendering.
Since the proxy M is basically a mesh, it can be converted to a
skinned mesh, which enables animations via a skeleton. When the
animation skeleton moves, our neural proxy sampler will sample
according to the change of volume. Thus, the animation will prop-
agate to the particles and finally, to the rendered result (Figure 1).

5. Result

The main goal of neural proxy is to enable the generation of frames
for unseen animations via neural rendering. To animate a scene
with neural proxy, one would need to provide images with cam-
era parameters (intrinsic and extrinsic) and a 3D reference mesh
for the target to animate. These two requirements can usually be
provided by software such as COLMAP [SF16] simultaneously.
Alternatively, the reference mesh can be handmade instead of re-
constructed. It is also assumed that the mesh is UV mapped which
can be done automatically with most 3D modeling software. In our
experiments, we visually checked that the proxy volume contains
the target by adjusting suitable offset parameters € and £

To evaluate the effectiveness of the proposed model, the exper-
iments need to show its ability to generate frames for unseen an-
imations. Providing samples for real data is difficult as the ani-
mated poses of the target object need to be retrieved. Therefore,
our experiments mainly rely on synthetic data. Specifically, three
synthetic objects are prepared, a ball (80 polygon faces), a ninja
(190 faces) and the armadillo (184 faces). For each object, a set
of training images is provided to a model for learning the object
representation such that it can synthesize the object. Each train-
ing image is an RGB rendering viewing the object at a random-
ized view and a randomized distance. The ball, the ninja and the
armadillo target has 2000, 1000 and 1000 training images respec-
tively. They all share the same static pose such that no animation
(or temporal information) is present in the training data. Each ob-
ject has its own set of testing animations. The unseen animations
are only rendered as testing images for evaluation. The animations
are ball-bounce (60 frames), ball-intersection (100 frames), ninja-
walking (50 frames), ninja-capoeira (100 frames), armadillo-punch
(50 frames) and armadillo-kick (50 frames). All images are ren-
dered in 512 x 512. MSE, PSNR, Intersection over Union (IoU)
and Learned Perceptual Image Patch Similarity (LPIPS) [ZIE* 18]
are used for evaluation. IoU is for measuring whether the shape of

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Sin, Ng & Leong / Neural Proxy 35

the target could be replicated during animations while LPIPS is for
measuring the visual fidelity.

There is a limited number of neural rendering works to com-
pare with. Neural volume works, by default, are used for modeling
static scenes (e.g. NeRF [MST*20]). Similarly, works such as Ner-
fies [PSB*20] that model a video are not practical to synthesize for
animations as they do not have a direct mechanism to control the
exact pose. This leaves us with image-based methods such as neural
texture [TZN19] and pix2pix [IZZE17]. To our knowledge, these
two models are the closest neural rendering techniques that can en-
able animations. As neural texture and pix2pix require 2D maps as
input, a sequence of animated UV maps is provided to them while
for neural proxy, an animated proxy M is provided frame by frame.
All models have never seen any animations during training.

As shown in Table 1, our neural proxy model is able to outper-
form the others in almost all metrics. This outcome shows that our
model yields a significant improvement over current neural ren-
dering works in synthesizing frames for unseen animations. These
results are also reflected qualitatively on Figure 4. For pix2pix, as
it does not have an explicit mechanism to map the UV to some ap-
pearance feature, it generally performed poorer than the other two
models. We can see that for ball-bounce and armadillo-kick, the
ball’s pattern and the armadillo’s texture degrade as the two tar-
gets are animated. For neural texture, as its learned renderer has
not seen the animated frames, it is expected that it will produce ar-
tifacts when the object’s pose deviates from the static pose it has
seen during training. In ball-bounce, although neural texture can
maintain the pattern of the ball, a halo artifact will intensify as the
ball deforms while in armadillo-kick, tearing artifacts (i.e. tearing
holes) will start to appear as the character animates. The texture
and the shape of the armadillo also gradually loses their fidelity. In
contrast to the two models, the proposed neural proxy, in general, is
able to produce clearer results with higher visual fidelity. The high
IoUs and low LPIPSs of neural proxy further validate its success in
rendering frames for unseen animations.

The enticing proposition of animating a real scene is one of the
key motivations that drives our work on neural proxy. For a clas-
sical computer graphics pipeline, animating a realistic scene will
involve a high-quality 3D model that may be expensive to acquire.
With our work, this cost is reduced to taking some pictures and
preparing the geometry. To investigate if our method is applicable
for rendering novel poses for animations given a real scene, we
have taken 51 images of a scene involving a stuffed toy. COLMAP
is used for reconstructing a proxy geometry and retrieving camera
parameters. We set the rendering resolution as 512 x 512. As shown
in Figure 3, by manipulating the skeleton of the proxy, we are able
to render animations with photo-realistic quality. To the best of our
knowledge, we are the first to show how to synthesize frames of an
unseen animation for a real scene via neural volume rendering.

6. Conclusion and Discussion

In this paper, we have discussed the current limitations of neural
rendering works in synthesizing frames for unseen animations. Our
solution to this research gap is neural proxy, which utilizes a proxy
to represent a photo-realistic target. In addition, by tactfully com-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

bining components from neural volume rendering and neural tex-
ture, our model is able to render animations without learning from
any temporal input. We have provided a set of experiments which
shows that our model is able to synthesize frames for unseen anima-
tions with considerable improvement over current neural rendering
techniques. We also synthesized for a real scene, showcasing our
model’s promise in animated photo-realistic rendering.

Although the proposed model improves upon current works, arti-
facts can still be seen with our model. One of our future directions is
to utilize inpainting techniques to smooth out these artifacts. Speed
is another limitation, but it is expected to be possible to bring the
rendering speed to real-time for interaction (e.g. [RPLG21]). Fur-
thermore, as the neural texture represents the surface appearance of
a target, an exciting direction we are pursuing is to further utilize
it for mesh and texture editing. We expect that with further investi-
gation, neural proxy can be used as a building block for a real-time
photo-realistic neural renderer that can be used in an array of real-
world applications such as digital games, augmented reality, 3D
photo editing and more.

Figure 3: The real scene result. The proposed neural proxy is able
to synthesize unseen animation photo-realistically. Our model has
never seen the character animated before.

References

[CVM*93] COHEN J., VARSHNEY A., MANOCHA D., TURK G., WE-
BER H., AGARWAL P., BROOKS F., WRIGHT W.: Simplification en-
velopes. In SIGGRAPH (1993). 3

[GPAM*14] GOODFELLOW 1. J., POUGET-ABADIE J., MIRZA M., XU
B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative adversarial nets. In NeurIPS (2014). 2

[IZZE17] 1soLA P., ZHU J.-Y., ZHOU T., EFROS A. A.: Image-to-
image translation with conditional adversarial nets. In CVPR (2017).
2,5,6

[LNSW21] Li1Z., NIKLAUS S., SNAVELY N., WANG O.: Neural scene
flow fields for space-time view synthesis of dynamic scenes. In CVPR
(2021). 2

[LSS*19] LOMBARDI S., SIMON T., SARAGIH J., SCHWARTZ G.,
LEHRMANN A., SHEIKH Y.: Neural volumes: Learning dynamic ren-
derable volumes from images. ACM TOG 38, 4 (July 2019), 65:1-65:14.
doi:10.1145/3306346.3323020. 2

[LXZ*19] Liu L., Xu W., ZOLLHOFER M., KiM H., BERNARD F.,
HABERMANN M., WANG W., THEOBALT C.: Neural Rendering and
Reenactment of Human Actor Videos. ACM Transactions on Graph-
ics 38,5 (Oct. 2019), 139:1-139:14. URL: http://doi.org/10.
1145/3333002,d0i1:10.1145/3333002. 2

[MST*ZO] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. In ECCV (2020). 1,2, 5

[MT97] MOLLER T., TRUMBORE B.: Fast, minimum storage ray-
triangle intersection. Journal of Graphics Tools 2, 1 (July 1997), 1-7.
doi:10.1080/10867651.1997.10487468. 3,4

https://doi.org/10.1145/3306346.3323020
http://doi.org/10.1145/3333002
http://doi.org/10.1145/3333002
https://doi.org/10.1145/3333002
https://doi.org/10.1080/10867651.1997.10487468

36

Sin, Ng & Leong / Neural Proxy

Ball-bounce Ball-intersection
Model MSE| PSNRtT IoUt LPIPS] | MSE] PSNRt{ IoUtT LPIPS]
pix2pix [IZZE17] 8.494 19.502 0.837 0.0691 8.135 22220 0.956 0.0506
Neural Texture [TZN19] | 9.018 19.567 0.833 0.0643 4693 25772 0916 0.0343
Neural Proxy (Ours) 7.819 19480 0.850 0.0583 | 2.658 26979 0952 0.0179
Ninja-walk Ninja-capoeira
Model MSE| PSNRtT IoUt LPIPS] | MSE|] PSNRt IoUtT LPIPS]
pix2pix 9.709 20943 0.891 0.0498 8957 21.002 0.885 0.0560
Neural Texture 9.646 21.883 0912 0.0382 8.473 22.635 0917 0.0390
Neural Proxy 8.768 23.046 0.931 0.0327 | 7.720 23.640 0.929 0.0358
Armadillo-punch Armadillo-kick
Model MSE| PSNRtT IoUt LPIPS] | MSE|] PSNRtT IoUtT LPIPS]
pix2pix 11.395 19.022 0.858 0.0864 | 10.335 20.453 0.904 0.0595
Neural Texture 8950 24.039 0.938 0.0421 9320 21938 0.920 0.0503
Neural Proxy 8.889 27.568 0.942 0.0289 9395 24455 0.937 0.0337

Table 1: Comparison of the performance from different models.

Ball-bounce

&

% & %
® ke K

Armadillo-kick

2%

Figure 4: The results of the ball-bounce animation and the armadillo-kick animation.

W W W

<+

% e % %

B
gl ® 6 -
E=4 — —
w L o
o -
i @
v
& 'Y
- -
- -
. @
=z .
v ¢
: @ <« <«
: @
=} o -
& w (5 <
[PBFJO5] PORUMBESCU S. D., BUDGE B., FENG L., Joy K. I.: Shell
maps. ACM TOG 24, 3 (July 2005), 626-633. doi:10.1145/

1073204.1073239. 2,3

[PCPMMN20] PUMAROLA A., CORONA E., PoONs-MoLL G.,
MORENO-NOGUER F.: D-NeRF: Neural Radiance Fields for Dynamic
Scenes. In CVPR (2020). 2

[PSB*20] PARK K., SINHA U., BARRON J. T., Bouaziz S., GOLD-
MAN D. B., SEITZ S. M., MARTIN-BRUALLA R.: Deformable neural
radiance fields. arXiv preprint arXiv:2011.12948 (2020). 2, 5

[RPLG21] REISER C., PENG S., L1AO Y., GEIGER A.: Kilonerf: Speed-
ing up neural radiance fields with thousands of tiny mlps. 2021. 4, 5

[RTH*20] RAJ A., TANKE J., HAYS J., VO M., STOLL C., LASSNER
C.: Anr: Articulated neural rendering for virtual avatars. arXiv preprint
arXiv:2012.12890 (2020). 2

[SF16] SCHONBERGER J. L., FRAHM J.-M.: Structure-from-motion re-
visited. In CVPR (2016). 2,4

[STH*19] SITZMANN V., THIES J., HEIDE F., NIESSNER M., WET-
ZSTEIN G., ZOLLHOFER M.: Deepvoxels: Learning persistent 3d fea-
ture embeddings. In CVPR (2019). 2

[TZN19] THIES J., ZOLLHOFER M., NIESSNER M.: Deferred neural
rendering: image synthesis using neural textures. ACM TOG 38, 4 (July
2019), 66:1-66:12. doi1:10.1145/3306346.3323035. 1,2,5,6

[YLSL21] YUAN W., Lv Z., SCHMIDT T., LOVEGROVE S.: Star: Self-
supervised tracking and reconstruction of rigid objects in motion with
neural rendering. arXiv preprint arXiv:2101.01602 (2021). 2

[ZIE*18] ZHANG R., ISOLA P., EFROS A. A., SHECHTMAN E., WANG
O.: The unreasonable effectiveness of deep features as a perceptual met-
ric. In CVPR (2018). 4

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://doi.org/10.1145/1073204.1073239
https://doi.org/10.1145/1073204.1073239
https://doi.org/10.1145/3306346.3323035

