
Pacific Graphics (2021) Short Paper

M. Okabe, S. Lee, B. Wuensche and S. Zollmann (Editors)

Fast and Lightweight Path Guiding Algorithm on GPU

Juhyeon Kim1 and Young Min Kim1

1Department of Electrical and Computer Engineering, Seoul National University

K
IT
C
H
E
N

0.0227 0.0209 0.0198 0.0216 0.0190 MAE

BRDF Quadtree
Ours w/o

rejection opt

Ours w/o

SARSA
Ours Reference

Figure 1: We present a fast and lightweight path guiding algorithm implemented in GPU. Our algorithm utilizes a regular grid structure and

combines the RL algorithm to learn the radiance distribution. The learned distribution is then combined for the product importance sampling

of path guiding, from which we can produce a photo-realistic image. When we compare the path-traced images produced in an equal amount

of time, our algorithm produces superior results. The mean absolute error (MAE) values are included in the last row.

Abstract

We propose a simple, yet practical path guiding algorithm that runs on GPU. Path guiding renders photo-realistic images by

simulating the iterative bounces of rays, which are sampled from the radiance distribution. The radiance distribution is often

learned by serially updating the hierarchical data structure to represent complex scene geometry, which is not easily imple-

mented with GPU. In contrast, we employ a regular data structure and allow fast updates by processing a significant number

of rays with GPU. We further increase the efficiency of radiance learning by employing SARSA [SB18] used in reinforcement

learning. SARSA does not include aggregation of incident radiance from all directions nor storing all of the previous paths. The

learned distribution is then sampled with an optimized rejection sampling, which adapts the current surface normal to reflect

finer geometry than the grid resolution. All of the algorithms have been implemented on GPU using megakernal architecture

with NVIDIA OptiX [PBD*10]. Through numerous experiments on complex scenes, we demonstrate that our proposed path

guiding algorithm works efficiently on GPU, drastically reducing the number of wasted paths.

CCS Concepts

• Computing methodologies → Ray tracing; Reinforcement learning; Massively parallel algorithms;

1. Introduction and Background

Path tracing is a Monte-Carlo method that faithfully simulates light
transport to synthesize a photo-realistic image. The rendering equa-
tion [Kaj86] describes the outgoing radiance Lo(x,ω) from point x

in direction ω as

Lo(x,ω) = Le(x,ω)+
∫

Ω
Li(x,ωi) fr(x,ω,ωi)(n ·ωi)dωi. (1)

The first term Le(x,ω) is the emitting radiance and the second
term aggregates the reflection of incoming radiance over all the in-
coming directions ωi over hemisphere Ω. The proportion reflected
into the outgoing direction ω is defined with the bidirectional re-
flectance distribution function (BRDF) fr(x,ω,ωi) and the inner
product between the surface normal n and the incoming direc-
tion ωi. Path tracing evaluates the above rendering equation using

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/pg.20211379 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-6218-3426
https://orcid.org/0000-0002-6735-8539
https://doi.org/10.2312/pg.20211379

Juhyeon Kim & Young Min Kim / Fast and Lightweight Path Guiding Algorithm on GPU

Monte Carlo integration with N samples

〈Lo(x,ω)〉= Le(x,ω)+
1
N

N

∑
j=1

Li(x,ω j) fr(x,ω,ω j)(n ·ω j)

p(ω j|x,ω)
, (2)

where p(ω j|x,ω) is the sampling PDF. Path guiding accelerates
path tracing by iteratively (i) learning high-energy light paths and
(ii) sampling according to the learned distribution. Although a con-
siderable amount of research has been conducted on path guiding
[Jen95; HP02; VKŠ*14; MGN17], most of them are implemented
on the CPU and the GPU case has been rarely studied except a few
cases [DHD20]. With the emergence of GPU ray tracing libraries
such as NVIDIA OptiX [PBD*10], more commercial ray tracing
programs will shift to GPU-based versions to take advantage of
massively parallel processing.

In this paper, we propose a practical path guiding algorithm that
can be incorporated into the existing GPU path tracing pipeline. We
adapt the framework to be parallelizable by employing regular data
structure and concurrent updates of the distribution. As illustrated
in Figure 2, the scene is divided into voxels, and the directions are
discretized using the equal-area projection with regular shape as
proposed in [GSHG98]. We learn the radiance field with a fast and
lightweight reinforcement learning (RL) algorithm called SARSA
as described in Section 2. Also, we suggest a rejection sampling
method to quickly advocate for the fine geometry and overcome
the limitation of coarse grid resolution as presented in Section 3.
We demonstrate that the proposed method can accelerate the path-
guiding algorithm in various scenes.

GPU-friendly regular grid

Update 𝐿𝑖(𝑥, 𝜔)

Sample from 𝐿𝑖(𝑥, 𝜔)

SARSA → 𝑂 1 time

Rejection sampling → 𝑂 1/𝑐 time

※ 𝑐: acceptance rate

𝐿𝑖(𝑥, 𝜔)
𝑥

𝜔

𝑦 = ℎ(𝑥, 𝜔)𝜔𝑖
𝑥𝜔

Figure 2: The overall flow of our proposed method. We store in-

cident radiance Li(x,ω) in GPU-friendly regular data structure.

We process rays and efficiently update Li(x,ω) with SARSA, while,

from Li(x,ω), we quickly sample valid rays to render the scene with

rejection sampling.

2. Fast and Lightweight Radiance Learning

The rendering equation in Equation 1 can be written in a recur-
sive way. If there is no participating media, the incoming radiance
Li(x,ω) is the same as the outgoing radiance Lo(y,−ω), where
y = h(x,ω) is the hitpoint of the ray originated from x to direction
ω. Using this representation, we can rewrite the rendering equation

in a recurrent form using the incident radiance Li:

Li(x,ω) = Le(y,−ω)+
∫

Ω
Li(y,ωi) fr(y,−ω,ωi)(n ·ωi)dωi. (3)

While coming from a different context, the recursive equation
in Equation 3 resembles the equations in RL. Given a set of states
S and a set of actions A, an agent at state s takes an action a and
transit to the next state s′ receiving the reward r(s,a,s′). For the
sake of finding the optimal policy of actions, we often define the
action value function Q(s,a) as an expected cumulative reward, and
iteratively update it. Expected-SARSA, one of the algorithms to
update the Q function, acts with the following equation:

Q(s,a)← (1−α) ·Q(s,a)

+α ·

(

r(s,a,s′)+ γ

∫
A

π(s′,a′)Q(s′,a′)da
′
)

,
(4)

where π(s′,a′) (also known as the policy) is a probability to choose
next action a′ at the next state s′ and α is a learning rate. Because
of structural similarity between Equation 3 and the update target in
Equation 4, learning radiance distribution Li(x,ω) can be achieved
using expected-SARSA with γ = 1 [DK17]. Regarding the integral
term, [DK17] used stratified sampling over the hemisphere. More
specifically, the radiance Li(x

(m),ω(m)) at m-th iteration of length
M path (m < M) (Figure 3) can be updated as following

Le(x
(m+1),−ω(m))

+
2π

N

N

∑
k=1

Li(x
(m+1),ωk) fr(x

(m+1),−ω(m),ωk)(n ·ωk),
(5)

where x(m+1) = h(x(m),ω(m)). The sampling direction of the hemi-
sphere is equally partitioned into N stratum and ωk is extracted
within each stratum k with uniform probability p(ωk|x,ω) = 1/2π.
This method is computationally heavy because it includes aggregat-
ing N incident radiance computing BRDF for each, which amounts
to O(N) times.

Instead, taking inspiration from the frameworks in RL, we pro-
pose a fast and lightweight method to learn the complex distribu-
tion of radiance. Basically, in RL, Q function estimation could be
largely categorized into three groups; dynamic programming (DP),
Monte Carlo (MC), and temporal difference (TD) methods. Fig-
ure 3 illustrates how the aforementioned Q value prediction algo-
rithms can be interpreted in radiance learning. DP, or expected-
SARSA, involves the exhaustive aggregation over the next state
which is computationally heavy (Figure 3(a)). MC method updates
Q value to the actual return from complete episodes without boot-
strapping (Figure 3(b)). However, MC requires an additional mem-
ory because we have to store all previous points which can be a
serious problem when we concurrently process a large number of
rays. Instead, we propose to use SARSA, one of TD methods that
updates Q value to the expected future return with bootstrapping.

Unlike expected-SARSA, SARSA only considers the single next
state, which does not require aggregation (Figure 3(c)). Specifi-
cally, the SARSA’s update target is similar to expected-SARSA,
while it only differs in estimating future expected rewards

Le(x
(m+1),−ω(m))+a

(m+1)
Li(x

(m+1),ω(m+1)), (6)

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

2

Juhyeon Kim & Young Min Kim / Fast and Lightweight Path Guiding Algorithm on GPU

Standard RL Path Tracing

Single path (𝑥(𝑚), 𝜔(𝑚))
Surface

Possible next directions

State, action pair

(𝑠(𝑡), 𝑎(𝑡))
Possible next actions

T Terminal state

(c
)

S
A

R
S

A

𝑥(𝑚)
𝜔(𝑚) …𝜔(𝑚+1)

𝑥(𝑚+1) 𝑥(𝑀−1)
𝑥(𝑀)

𝑥(𝑚)
𝜔(𝑚) 𝜔(𝑚+1)

𝑥(𝑚+1)

𝑥(𝑚)
𝜔(𝑚)

𝑥(𝑚+1)

𝑠(𝑀)

𝑠(𝑡)
𝑠(𝑡+1)𝑎(𝑡)

T T

T

𝑎(𝑡+1)

𝑠(𝑡)
𝑠(𝑡+1)𝑎(𝑡)

T T

T

𝑎(𝑡+1)

𝑠(𝑡)
𝑠(𝑡+1)𝑎(𝑡)

T T

T

(b
)

M
o

n
te

 C
a

rl
o

(a
)

E
x
p

e
c
te

d
-

S
A

R
S

A

Update Target : 𝑄(𝑠 𝑡 , 𝑎 𝑡) Update Target :𝐿𝑖 𝑥(𝑚), 𝜔(𝑚)

Figure 3: Difference between three updating method (a) expected-

SARSA, (b) Monte Carlo and (c) SARSA in standard RL and path

tracing.

where a(j) =
fr(x

(j),ω(j−1),ω(j))(n·ω(j))
p(ω(j)|x(j),ω(j−1))

is the attenuation factor. By

considering only a single next state, the time complexity could be
reduced from O(N) to O(1) where N is a number of the possible
states. Although MC also takes O(1) time to update a single path,
it empirically turned out to take more time compared to SARSA,
which may be due to read/write overhead from the array that stores
previous points. In conclusion, SARSA is superior to expected-
SARSA or MC in terms of speed and memory consumption, which
can be exploited with GPU acceleration.

The update in Equation 6 is attenuated by α, yielding the full
update equation

Li(x,ω)← (1−α) ·Li(x,ω)+α(Le(y,−ω)+ayLi(y,ωi)) (7)

where ay is the attenuation factor at (y,−ω,ωi). However such up-
date still suffers from the concurrency issue, and possibly yield the
race condition in GPU environment. We resolve the problem by
separating the rendering iteration into a few steps and updating Li

in a batch.

3. Efficient Importance Sampling from Learned Radiance

As we update the radiance value, we simultaneously run path guid-
ing in Equation 2 using the estimated distribution as the sampling
distribution ω ∼ p(ωi|x,ωo) ∝ Li(x,ωi) fr(x,ωo,ωi)(n ·ωi) where
the value of the product is approximated for each of the discretized
angle. Note that our sampling distribution jointly considers the ra-
diance, BRDF, and the cosine term such that we can effectively per-
form product importance sampling. The 5D radiance field Li(x,ω)
is tabulated as a 3D coarse spatial grid that contains the 2D spher-
ical radiance distribution in each cell as shown in Figure 4. Using
the shared spherical distribution per spatial cell reduces memory
but results in invalid samples that are directed opposite to the sur-
face normal. Previous works [DK17; VKŠ*14] store hemispheri-
cal distributions adaptive to each surface point that align with the
surface normal to achieve better sampling efficiency at the cost of
additional memory.

We propose a hybrid approach to efficiently sample the distri-
bution considering the local geometry, which greatly reduces the
number of wasted samples. Specifically, we find the intersection
between the stored spherical distribution and the hemisphere that
aligns with the normal direction of the current surface point, and
sample only from the intersection distribution as illustrated in Fig-
ure 4. While our GPU-friendly grid structure may suffer from
lower directional resolution than the quadtree-based implementa-
tion [MGN17], our regularity can quickly adapt to finer geometry
within the cell and therefore efficiently utilized to product impor-
tance sampling. The sampled distribution p(ω) changes according
to the normal direction of the hitpoint and minimizes wasted sam-
ples. The distribution can be sampled in many ways, but let’s only
think of three widely used ways.

Inversion sampling The most intuitive way is inversion method,
which samples from the cumulative density function (CDF). Since
we are sampling from the intersection of the normal-oriented hemi-
sphere and the spherical distribution, and we have to dynamically
construct the CDF which requires O(N) time complexity.

Rejection sampling Another possible way is rejection sampling,
which is also known as the dart-throwing approach. Rejection
sampling first produces sample from other easy-to-sample PDF
u(ω) such that cp(ω) < u(ω) for some scalar value c. In our
setting, we use the uniform distribution u(ω) whose domain is
the normal-oriented hemisphere. The sample is accepted only if
η < cp(ω)/u(ω) for a uniform random variable η. If u is a uniform
distribution and c is set to the minimum value (1/pmax), then c be-

𝑛 𝑛 𝜔normal-oriented
hemisphere

Invalid regions are excluded

Radiance stored in
spherical domain

Sample 𝜔

Figure 4: The hemispherical domain sampling removes probability

of sampling from invalid hemisphere.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

3

Juhyeon Kim & Young Min Kim / Fast and Lightweight Path Guiding Algorithm on GPU

comes the same as the acceptance rate which represents the relative
area between the two distributions (Figure 5, left).

In order to reduce rejection rate, we propose to mix a sampling
distribution with uniform distribution:

psampling = (1− ε)p+ εu, (8)

where ε ∈ [0,1] is a constant value that controls the trade-off be-
tween using the correct distribution for the importance sampling
and the high rejection rate. Figure 5 illustrates how the mixture
maintains the shape of the original distribution but yet avoids severe
rejection by smoothing the peaks. Numerically the total number of
effective samples is

argmax
ε∈[0,1]

(1− ε)(c+(1− c)ε) (9)

and the optimal ε is max(1−2c
2−2c ,0). Choosing the appropriate ε is

important to guarantee the performance of the rejection sampling,
which is further evaluated in Section 4.3.

𝑝𝑠𝑎𝑚𝑝𝑙𝑒 = 1 − 𝜖 𝑝 + 𝜖𝑢𝑝
Acceptance rate: 𝑐

Mix with 𝑢
Acceptance rate:𝑐′ = 𝑐 + 𝜖(1 − 𝑐)𝜔 10 𝜔 10

𝑝𝑚𝑎𝑥 𝑐 = = 1𝑝𝑚𝑎𝑥

Figure 5: Rejection rate alleviation with mixing uniform PDF.

Metropolis sampling Metropolis sampling is a Monte Carlo
Markov Chain algorithm, where samples are drawn from an ar-
bitrary mutation function and then the samples are mutated with
a pre-defined probability. However, such sequential mutation on a
random variable cannot be easily implemented on GPU, possibly
causing race conditions that update the same random variable si-
multaneously. Thus, it is skipped in this paper.

We can therefore perform sampling with adaptive normal di-
rections on GPU via rejection sampling. In our implementa-
tion, we further accelerate the pipeline on GPU with memoiza-
tion for the normalizing constant. Note that the rejection sam-
pling or Metropolis sampling does not require normalized distri-
bution, and we sample from the available un-normalized distribu-
tion Li(x,ωi) fr(x,ωo,ωi)(n ·ωi)∝ p(ωi|x,ωo). However, we need
to scale the distribution so that its sum becomes one in order to
finally evaluate the Monte Carlo integration as described in Equa-
tion 2, or to find the pmax for the optimized rejection sampling. The
normalization term changes frequently because we only consider
the hemisphere that aligns with the local surface normal instead of
using the stored whole spherical directions. To make the problem
simple, we only applied guiding to diffuse-like materials and avoid
repetitive calculation with memoization. In this case, we can store
the normalizing factor N(x,ωo,n)≃ N(x,n) at position x with nor-
mal n by using the same data structure to store the incident radiance
field Li(x,ω).

Table 1: Equal time comparison for several methods. The top

part shows the mean absolute error. BRDF-based method sam-

ples the ray according to BRDF and does not consider the radi-

ance distribution, and quadtree-based method is our implementa-

tion of [MGN17] on GPU. ‘Ours without Rej+’ samples the dis-

tribution without rejection optimization. ‘Ours without SARSA’ uti-

lizes expected-SARSA for radiance learning [DK17].

Scene Name BRDF Quadtree
Ours w/o

Rej+
Ours w/o
SARSA

Ours

BATHROOM 0.0374 0.0358 0.0554 0.0387 0.0366
BATHROOM-2 0.0345 0.0339 0.0338 0.0344 0.0288

CORNELL-BOX 0.0114 0.0062 0.0093 0.0098 0.0072
CORNELL-BOX-HARD 0.0216 0.0134 0.0182 0.0181 0.0134

KITCHEN 0.0227 0.0209 0.0198 0.0216 0.0190

LIVING-ROOM 0.0092 0.0087 0.0180 0.0130 0.0116
LIVING-ROOM-2 0.0190 0.0181 0.0197 0.0189 0.0169

LIVING-ROOM-3 0.0558 0.0611 0.0767 0.0622 0.0511

STAIRCASE 0.0144 0.0105 0.0164 0.0122 0.0094

STAIRCASE-2 0.0146 0.0101 0.0178 0.0107 0.0092

VEACH-AJAR 0.0747 0.0640 0.2010 0.0772 0.0745
VEACH-AJAR-2 0.1233 0.1066 0.1222 0.1323 0.1029

Mean (MAE) 0.0366 0.0324 0.0507 0.0374 0.0317

Time per Sample (ms) 10.59 11.18 54.73 34.48 16.30

Samples per Pixel 4005 3774 1302 1239 2523

Invalid Sample Rate 0 0.1719 ∼ 0 ∼ 0 ∼ 0

4. Experiments and Results

We implemented our algorithm on a GPU environment with
megakernel architecture. We wrote the path-guiding algorithm with
our own renderer using OptiX [PBD*10] and built several BRDFs
referring to the rich material library of Mitsuba2 [NVZJ19].

We tested our algorithm for 12 scenes from [Bit16]. All of the
path guiding methods used unidirectional path tracing without next

event estimation (NEE) for simplicity as [MGN17] and the follow-
ing works. The reference image is used to evaluate the quality of
the rendered image by comparing the mean absolute error (MAE).
For each path guiding algorithm, a time budget or samples per pixel

(spp) budget can be imposed, but a time budget (40 sec) was mainly
used for fair comparison. Maximum depth was set to 16 and Rus-
sian roulette was set to begin after depth 8. Learning and rendering
were fused into the same pipeline in a totally online manner. Instead
of exponential growth in [MGN17], we used the constant number
of samples per iteration and accumulated the distribution over the
iteration. Learned distribution was updated for new distribution at
every step that single step is composed of 8 spp. Spatial and direc-
tional resolution was both set to 8, 16 respectively (83× 162). We
also tested higher resolutions, but we found that too high resolution
rather increased the error.

4.1. GPU-based Path Guiding with a Regular Grid

Our path guiding algorithm using a regular grid is compared
against the BRDF-based method and path guiding using the
quadtree [MGN17] in Table 1. Quadtree structure adaption is im-
plemented using additional OptiX kernel and updated per exponen-
tially growing steps with flux threshold 0.01. We also used multiple
importance sampling with BRDF with a probability 0.5, the same
with the original paper. The maximum number of nodes is set to
the same as the grid case. Also, as the original paper, it is set to use
MC method only to learn radiance.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

4

Juhyeon Kim & Young Min Kim / Fast and Lightweight Path Guiding Algorithm on GPU

BRDF-based method can be easily implemented on GPU and
fast, leading to process more number of samples for equal-time
comparison. However, the quality of the produced image does not
meet that of path tracing especially when there is complicated oc-
clusion and inter-reflection leading to larger mean absolute error
(MAE). The quadtree update is fast enough and also gives bet-
ter result than pure BRDF sampling, but seems to suffer from in-
valid samples that heading down to the surface. On the other hand,
our implementation of path guiding algorithm is normal-sensitive,
thus provides nearly zero invalid samples. It has advantage over
quadtree by product importance sampling with GPU friendly reg-
ular grid structure. Our method evolves to converge to the true ra-
diance distribution Li and sample more efficient paths as the itera-
tion proceeds. This can be verified by counting the number of rays
that hit the light source for each iteration as shown in Figure 7-(a).
Compared to BRDF sampling, our method achieves 10∼ 20 times
higher hit rate.

4.2. Comparison for Radiance Learning Methods (Section 2)

In this section, we compare several radiance learning method dis-
cussed in Section 2, which are namely based on expected-SARSA,
Monte Carlo and SARSA. Table 2 shows SARSA is the best choice
for radiance learning in GPU, leading to the smallest noise when
rendered with an equal time limit. This is mainly due to the fast
speed of SARSA. Compared to the BRDF sampling method that
does not involve any radiance learning, the computational time of
SARSA turns out to be minimal. In contrast, the increase of com-
putation time for expected-SARSA is nearly ×2.1, which signifi-
cantly decreases the number of completed samples under the equal
time budget. MC is fairly fast, but slightly slower than SARSA
which may due to accessing a record that stores previous points.

Figure 6 shows an example of the learned radiance field us-
ing the three RL methods. It is widely known in RL that SARSA
tends to have higher bias, while Monte Carlo method tends to have
higher variance [SB18]. We can easily verify this in Figure 6 that
Monte Carlo method results in spotty noise. Expected-SARSA and
SARSA are known to be biased, which means they cannot generate
the correct reference image even though we the increase number of
samples. However, by comparing equal-spp results, we found out
that the variance or bias of approximated radiance field have min-
imal affect in the final image, and speed is more important factor
when time becomes the budget.

Memory consumption is also an important issues for prac-
tical path guiding in GPU. Expected-SARSA and SARSA do
not require additional memory. However, Monte Carlo method
stores every intermediate point (the maximum could be lim-
ited as 32 in [MGN17]) which may requires a considerable
amount of memory. The approximated memory usage can be
calculated by (size of single data)× (maximum concurrent ray)×
(maximum depth). In our setting, the distribution is stored in total
12 floats for single data, 16 maximum depth, and about 46,000 con-
current rays, indicating that Monte-Carlo method causes additional
35 MB of stack usage. Of course this may still harmful for perfor-
mance, the more serious problem occurs when we use wavefront-
based method that have to keep millions of rays; it would lead to
significant memory usage (1 million ∼ 768 MB). Therefore, we

Table 2: Equal time (40 sec) comparison for different learning and

sampling method discussed in Section 2 and Section 3.

MAE
Sphere Hemisphere

Inv Inv Rej Rej+
Expected
-SARSA

0.0425 0.0474 0.0521 0.0374

MC 0.0368 0.0467 0.0524 0.0332
SARSA 0.0340 0.0434 0.0507 0.0317

Time per
Sample(ms)

Sphere Hemisphere
Inv Inv Rej Rej+

Expected
-SARSA

21.62 45.57 66.37 34.48

MC 10.94 26.09 76.61 17.67
SARSA 9.23 25.37 54.73 16.30

could conclude that our SARSA-based update is fast, memory effi-
cient, while also competent in performance.

Expected-SARSA

Monte Carlo SARSA (Ours)

Time: 31.40

MAE: 0.0242

Time: 3.88

MAE: 0.0290

Time: 3.54

MAE:0.0276

Reference

Figure 6: The learned radiance map at the position indicated as a

red dot in the scene on the left. MAE and required time per sam-

ple (ms) are showed. We increased directional grid resolution to

emphasize the difference.

4.3. Comparison for Radiance Sampling Methods (Section 3)

In this section, we compare the radiance sampling methods cov-
ered in Section 3. The simplest way is the inversion method using
the stored spherical distribution without considering normal which
is similar to quadtree method. Ignoring the local geometry, the CDF
does not change and can be calculated beforehand with a minimal
overhead of O(logN) where N is the number of directional grid
bins. Despite the speed, a significant number of samples are invalid
representing rays that direct toward the inside of the surface, result-
ing in degradation of the quality.

We can overcome the limitation by considering the valid hemi-
sphere that aligns with the surface normal. Overall, our proposed
rejection-based sampling with optimization gave the best result. In-
version method with the hemisphere sampling involves calculating
the normal-adaptive CDF online, which is O(N), and it is no longer
fast. Rejection sampling can be an alternative method because the-
oretically the time complexity is O(1/c) where c is the acceptance
rate. With a naïve implementation, however, the rejection sampling

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

5

Juhyeon Kim & Young Min Kim / Fast and Lightweight Path Guiding Algorithm on GPU

0.035

0.04

0.045

0.05

0.055

0.06

0.0001 0.001 0.01 0.1 1
M

A
E

𝜖
BRDF
expected-SARSA
Monte Carlo
SARSA (Ours)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

200

400

600

800

1000

1200

0.0001 0.001 0.01 0.1 1

H
it
 r

a
te

#
 o

f
s
a

m
p

le
s

𝜖
of samples

Hit rate

(b) (c)(a)

0

10

20

30

40

50

60

#
 o

f
ra

y
 h

it
 l
ig

h
t

(1
k
)

Iteration

BRDF

Ours

Ours w/o Rej+

Figure 7: Numerical analysis on various aspects of rejection sampling with mixed distribution. (a) The light hit rate increases as number

of iteration increases, or the radiance distribution is learned. (b) The error in the rendered image changes as the mixture ratio of two

distributions changes for the rejection sampling. SARSA has the minimal error when using the correct ε. (c) The trade-off between the hit

rate and the number of samples. The hit rate is high with small ε while the number of valid samples might decreases.

does not improve the performance. A significant number of samples
is rejected due to the discrepancy between the initial and the target
sampling distribution. We can achieve faster sampling by optimiz-
ing ε that mixes the distributions as described in Equation 9. With
the optimized ε as shown in Equation 9 (indicated with post-fixed
‘+’ sign in Table 1 and 2), the rejection sampling results in the best
quality image for the equal time comparison, greatly reducing the
time. The sampling complexity of the optimized version is O(1/c′)
where c′ = c+(1− c)ε is an acceptance rate for the mixed PDF as
proposed in Section 3.

Effect of ε in Equation 8 We further investigate the effect of mix-
ing the sampling distributions with different ε ∈ [0.0001,1] in Fig-
ure 7. Figure 7-(b) confirms that the performance of SARSA (TD)
is better than BRDF-based sampling or other RL-based algorithms
such as expected-SARSA (DP) or Monte Carlo when implemented
in GPU. The optimal ε allows us to efficiently sample the rays,
and clearly leads to performance improvement. Figure 7-(c) further
scrutinize the effect of different ε with SARSA. With a small ε, we
could draw more samples proportional to radiance such that the hit
rate increases, but too many samples get rejected which drastically
increases time to sample and reduces the number of samples. As we
increase ε, while it increases the acceptance rate, the rejection opti-
mization dilutes the estimated radiance distribution Li. As a result,
we can observe that the hit rate doubles without the rejection opti-
mization (Figure 7-(a)). The optimal value has to balance between
the number of samples and the hit rate, and we found the minimum
MAE for ε near 0.5.

5. Conclusion

We propose a fast and memory-efficient path guiding algorithm in
the GPU environment. For learning radiance, we suggest SARSA-
based update which outperforms expected-SARSA or Monte Carlo
method. For sampling radiance, we only sample in the valid hemi-
sphere from spherical distribution employing rejection sampling
and memoization to achieve efficient and fast sampling. All of our
suggested methods have been implemented on GPU with megak-
ernel architecture using OptiX [PBD*10]. However, our work is

designed to also work on wavefront-based rendering which could
be covered in future work.

References

[Bit16] BITTERLI, BENEDIKT. Rendering resources. https://benedikt-
bitterli.me/resources/. 2016 4.

[DHD20] DITTEBRANDT, ADDIS, HANIKA, JOHANNES, and DACHS-
BACHER, CARSTEN. “Temporal Sample Reuse for Next Event Estima-
tion and Path Guiding for Real-Time Path Tracing”. (2020) 2.

[DK17] DAHM, KEN and KELLER, ALEXANDER. “Learning light trans-
port the reinforced way”. ACM SIGGRAPH 2017 Talks. 2017, 1–2 2–
4.

[GSHG98] GREGER, GENE, SHIRLEY, PETER, HUBBARD, PHILIP M,
and GREENBERG, DONALD P. “The irradiance volume”. IEEE Com-

puter Graphics and Applications 18.2 (1998), 32–43 2.

[HP02] HEY, HEINRICH and PURGATHOFER, WERNER. “Importance
sampling with hemispherical particle footprints”. Proceedings of the

18th spring conference on Computer graphics. 2002, 107–114 2.

[Jen95] JENSEN, HENRIK WANN. “Importance driven path tracing using
the photon map”. Eurographics Workshop on Rendering Techniques.
Springer. 1995, 326–335 2.

[Kaj86] KAJIYA, JAMES T. “The rendering equation”. Proceedings of the

13th annual conference on Computer graphics and interactive tech-

niques. 1986, 143–150 1.

[MGN17] MÜLLER, THOMAS, GROSS, MARKUS, and NOVÁK, JAN.
“Practical path guiding for efficient light-transport simulation”. Com-

puter Graphics Forum. Vol. 36. 4. Wiley Online Library. 2017, 91–
100 2–5.

[NVZJ19] NIMIER-DAVID, MERLIN, VICINI, DELIO, ZELTNER, TIZIAN,
and JAKOB, WENZEL. “Mitsuba 2: A retargetable forward and inverse
renderer”. ACM Transactions on Graphics (TOG) 38.6 (2019), 1–17 4.

[PBD*10] PARKER, STEVEN G, BIGLER, JAMES, DIETRICH, ANDREAS,
et al. “Optix: a general purpose ray tracing engine”. Acm transactions on

graphics (tog) 29.4 (2010), 1–13 1, 2, 4, 6.

[SB18] SUTTON, RICHARD S and BARTO, ANDREW G. Reinforcement

learning: An introduction. MIT press, 2018 1, 5.

[VKŠ*14] VORBA, JIŘÍ, KARLÍK, ONDŘEJ, ŠIK, MARTIN, et al. “On-line
learning of parametric mixture models for light transport simulation”.
ACM Transactions on Graphics (TOG) 33.4 (2014), 1–11 2, 3.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

6

