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Abstract
Extreme feature regions are increasingly critical for many image matching applications on affine image-pairs. In this paper,
we focus on the time-consumption and accuracy of using extreme feature regions to do the affine-invariant image matching.
Specifically, we proposed novel image matching algorithm using three types of critical points in Morse theory to calculate
precise extreme feature regions. Furthermore, Random Sample Consensus (RANSAC) method is used to eliminate the features
of complex background, and improve the accuracy of the extreme feature regions. Moreover, the saddle regions is used to
calculate the covariance matrix for image matching. Extensive experiments on several benchmark image matching databases
validate the superiority of the proposed approaches over many recently proposed affine-invariant SIFT algorithms.

CCS Concepts
•Computing methodologies → Image processing; image-matching; random sample consensus; affine invariant;

1. Introduction

Local invariant feature detector can occupy very important position
in many research areas, such as multiple images point cloud recon-
struction, face tracking and object recognition [SYL∗17]. Tradi-
tional feature detector searches interest points with high curvature,
which includes corner or edge [WS16]. SIFT is a state-of-art fea-
ture matching method, which can match features in different scale
spaces. However, the accuracy of SIFT can seriously decline when
handling with images under different view perspectives [Slu15].
Rosten E et.al [ERT09] proposed to use machine learning on cor-
ner feature detecting and achieved a high processing time of 5% of
per frame. This method needs a long time to build the descriptor.
Also, this method gets unsatisfied results when matching corners on
affine image pairs, because the descriptor of corner changes under
different view perspectives.

Yu et.al [YM09] proposed a fully affine-invariant SIFT (ASIFT)
method. It can retrieve the object under extreme change of angle if
the object has rather flat surface. ASIFT builds a hemisphere space
and uses two parameters: longitude and latitude to find the position
of camera, then imitates the affine transformation. However, ASIFT
is highly complex. The time complexity of ASIFT is nearly 6 times
of SIFT in extreme cases [BJU10]. Another fully affine-invariant
feature detecting method is the Maximally Stable Extreme Region
(MSER) [XGN16]. This method works by creating max-tree and
min-tree called MSER+ and MSER- of the gray-scale images. And
uses a stable extract function to find node regions in the image and
finally get root regions along the successive nodes area. MSER can
simply expressed as :

S = (E∆−−E∆+)/E (1)

Where S is the MSER result regions, E∆− and E∆+ are the max-tree
and min-tree. The complexity of MSER is o(nlog(logn)), which is
nearly achieve linear [JOMT04]. MSER also has high accuracy and
achieved state-of-art method. Recently, some researchers proposed
to combine the advantages of MSER and SIFT. Hu et.al [HZG17]
proposed to find MSER regions on image-pairs with different view
angles and use these regions to do SIFT matching. However, the
number of regions tracked by normal MSER is small, and MSER
regions always contain many useless backgrounds, which decreases
the accuracy and increases time consuming. Torr et.al [TZ00] tries
to normalize the affine image-pairs by MSER. This method is
based on the theory that affine transform matrix can be derived by
three groups of matched points. However, this method cannot find
enough results in many situations.

In our work, we propose a precise extreme feature region (PEFR)
method for image matching. The main contributions including: (1)
we improve the tree structure of MSER method to increase the
number of precise extreme regions, and eliminate the feature of
complex background regions according to the new characters of
PEFR regions. (2) we calculate the affine matrix by the saddle
points and use SIFT detector on each normalized region to get
matching result.

2. The Proposed Method

In this section, we describe the proposed method details. The
flowchart of our fusion method is shown in Fig.1. It consists of the
following four steps: Morse-and-MSER-based PEFR region, back-
ground elimination, affine normalization, and SIFT matching.
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Figure 1: the flowchart of proposed method.

2.1. Morse-and-MSER-based PEFR region

Morse theory aimed at describe the topological changes of the color
level in image in terms of the critical points. Morse theory works
on smooth real-valued manifold to find critical points. Critical point
include minimum points, maximum points and saddle points. Crit-
ical points give clues to research the topological relationship of the
level in a local space, however this method can only work on non-
degenerate areas and can not track flat area. Meanwhile, it is not
enough for tracking feature regions from image.

In our work, we use MSER tree structure to simulate the non-
degenerate situation of Morse theory and find the tree structure.
For minimum and maximum points, MSER tree-structure can get
results as Fig.2.

Figure 2: tree-structure of feature region.

In Fig.2(a). L1∈ L3,L2∈ L4,L3&L4∈ L5 . MSER method only
keeps L5 in regions list. Here we define the minimum region and
maximum region as extreme region:

∃R&R′ ⊃ R,∀r ⊂ R′,r∪R = ∅→ R = ExtremeR (2)

Here we keep extreme regions L3 and L4 in our region list. L1
and L2 are more precise regions than L3 and L4, which has the
same topological means as L3 and L4. However, it is just the ex-
tension of the father nodes, not the leaves. In order to avoid losing
features, we choose the extreme regions L3 and L4 to keep more
space. On the other hand, L3 and L4 are the separate of a node,
which means different areas in topological conception.

The number of feature will depend on the layer of the tree. As
Fig.2(b), L6&L7∈ L2,L3&L4∈ L5, so extreme regions L6, L7 and

L3, L4 will be kept in the PEFR region list. It will bring an expo-
nential growth on the number of results, which makes the high time
consuming when we can get many layers in a MSER tree. In our
work, a max layer value 4 is used.

Saddle points finding by topological tree is critical problem. In
our work, a contour-based method is used to find the saddle regions.
A saddle area can exist at the contact position of several PEFR re-
gions, as Fig.3 (b) shows. Our method finds the area where several
PEFR regions contact and keeps them as saddle regions.

Figure 3: contour map of gray-scale. (a) is a contour map of gray-
scale, four images in (b) is the contour map by PEFR.

PEFR method can also finds flat areas. Morse theory cannot find
the flat areas due to flat areas always keep the same gray-scale,
MSER tree-structure can tract flat area easily. However, in MSER,
flat areas may be covered by higher gray-scale. In our method,
we keep the regions which not grow when the threshold increases.
These areas are the flat regions. Flat areas will be calculated at last,
in case of the influence to the tract of saddle regions.

2.2. Background elimination

The proposed PEFR method brings regions new characters to sepa-
rate regions in background from the foreground. The background
elimination can decrease the time consumption in the following
steps. RANSAC method is used to eliminate the regions in back-
ground as algorithm.1 shows. RANSAC works as a filter by itera-
tive calculation. We build a region detect model to separate back-
ground from foreground.

Fig.4 (a) and Fig.4 (b) are the bright regions and dark regions of
PEFR method. We find that after precise curving, regions in fore-
ground become more focus and have more layers, but the back-
ground are more disperse and have lower layers or even have only
one layer. According to this characteristic, we use three thresholds
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Algorithm 1 Background elimination RANSAC
Input: The set of PEFR regions, R; The threshold, X ,Y,M;
Output: Boolean result, result;

1: r = R.radius;R = R.around_regions;r1 = R.radius;
2: if r > X then result = 1;
3: else if r1 <= X and r1 >= Y then result = 0;
4: else if r1 >= X/3 and R.amount <= M then result = 0;
5: end if

X, Y and M to eliminate the background. X is the first radius thresh-
old to compare with the radius of each region. Y is the second ra-
dius threshold to compare with the around regions of some regions.
M is the third threshold to compare with the amount of the around
regions. We manually choose some foreground regions and some
background regions to calculate the parameters X, Y and M.

Figure 4: background of PEFR, (a) is the bright_PEFR, (b) is
the dark_PEFR. Regions in the rectangle are background regions.
Comparing with regions in the house, they are disperse and small.

2.3. Affine Normalization

Affine transformation is the combination of linear transformation
(enlargement, reduction and rotation) and translation. In order to
build the descriptor of the saddle points, we propose method fus-
ing the centroid of a MSER region and the relative gradient of the
saddle point. We choose soble detector to calculate the gradient. As
Fig.5 shows, we use the location and rotation of the saddle point as
the descriptor. Intersection angle α of L1 and L2 is:

Figure 5: relationship between saddle and centroid. Regions in (b)
is the affine situation of regions in (a).

αn = arctan
|kn1− kn2|
|1+ kn1 ∗ kn2|

(kn1 ∗ kn2 6= 0) (3)

where kn1 = dx
dy
,kn2 =

|Snx−Fnx|
|Sny−Fny| , S and F are the saddle and the

centroid. If kn1 ∗ kn2 =−1,α = 90◦. We build the relative gradient

as (5),

Tn =
√

T 2
nx +T 2

ny (4)

where Tnx =
f (x,y+Rcosβ)− f (x,y−Rcosβ)

R , Tny is as the same formula,
and β = arctankn1.The saddle will be described as a set of intersec-
tion angle and relative gradient Tn. We store saddle descriptors of
each image in a list, and then match the saddle by the descriptor.
We choose multi-groups of saddles to calculate the affine matrix,
which can eliminate the match error.

2.4. Image matching stage

SIFT will match the feature in the normalized PEFR, to achieve the
affine invariant SIFT method. Original SIFT detector is complex.
However, our proposed PEFR only have simple logical cutting and
normalization, and has the same time complexity as MSER of o(n).
Our method does not increase the efficiency of SIFT, besides, the
background elimination even decrease the running time.The pro-
posed PEFR method can be conclude as algorithm.2:

Algorithm 2 Progress of PEFR Algorithm
Input: The input image, I; The set of extremal regions, R; The

threshold, T ; The set of saddle points, S;
Output: The list of PEFR regions, P;

1: T = 0, R = extremal region (I,T );
2: while (T != 255) do
3: R = get region(I,T ++);
4: R = get region(reverse(I),T ++);
5: end while
6: if (R.i + R. j) > (|R.i| + |R. j|) then
7: P.add(extreme region(R.i,R. j));
8: end if
9: Eliminate(Ransac(P.i))

10: S.add(Contour(P.i, P. j))
11: Affine-Matrix = match(S);
12: return SIFT(P∗ Affine-Matrix);

3. Experimental Results

We display a quantity of results of important steps of our method
in this section. The proposed algorithm will be implemented on

Figure 6: matching result by our method. (a) is the result on nor-
malized image, (b) is the result on original image.
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OpenMVG framework and use Oxford-VGG dataset. First we use
the affine matrix to repair the affine image and uses SIFT to match
the feature points. Then we use the matrix to get the original po-
sition of the matched features and get another result. Fig.6 is the
matching result of our method. Fig.6(a) is the result with normal-
ized image, Fig.6(b) is the result with original image.

We noticed that our method can get precise matching features on
affine images, and most of the features are focus on the foreground
part. In Fig.7 we compare our method with SIFT and Hu’s [HZG17]
method which combines normal MSER with SIFT.

Figure 7: comparison of SIFT and PEFR. (a) is result of SIFT, (b)
is result of Hu’s method, (c) is result of our method.

Figure 8: comparison with [ERT09]. (a): our result on low affine
image-pair and high image pair. (b),(c): FAST-9 and FAST-ER on
low affine and high affine.

Table.1 compared the accuracy, feature number and time costing
of SIFT, ASIFT [BJU10], Hu’s method [HZG17] and our method
on different inputs. In Fig.8 we also compare our method with Ed-
ward’s methods [ERT09] which using machine learning to detect
corner features.

Table.2 is the comparison of result on low affine and high affine
image-pairs. From table.1 and table.2, we find our result better
than SIFT in feature number and time costing and better than Hu’s
[HZG17] method in accuracy and feature number. A-SIFT can get
more matches, but it is costs much more time than our method.
Edward’s methods can only get few match points, especially when
handle high affine image-pairs. Our method costs a little more time
because it need more time to test the accuracy of features.
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Table 1: Comparison with other methods

SIFT ASIFT Hu’s
method

Our
method
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Accurate(%) 92.3 91.1 85.7 95.1
feature number 45 2765 110 405
running times(s) 0.9885 209 0.7574 0.872
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IP

Accurate(%) 96.7 96.1 91.4 96.5
feature number 86 1757 221 609
running times(s) 1.1994 284 0.782 0.9681

Table 2: Comparison with machine learning

FAST-9 FAST-
ER

Our
method

Low
Affine

feature number 2601 2765 405
running times(s) 206 209 0.872

High
Affine

feature number 86 1757 609
running times(s) 1.1994 284 0.9681
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