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Abstract
A novel algorithm for generating superpixels of RGB-D images is presented in this paper. A regular triangular
mesh is constructed by the depth and a local geometric features sensitive initialization method is proposed for
initializing seeds by a density function. Over-segmentation of the vertices on mesh can be generated by minimizing
a new energy function defined by weighted geodesic distance which can be used for measuring the similarity of
vertices with color information. At last, superpixels are generated by re-mapping the mesh over-segmentation to
2D image. During energy optimizing, we will check the topology correctness of the superpixels and refine the
topology of the superpixels. Experiments on a large RGB-D images database show that the superpixels generated
by the new method can adhere to the object boundaries well and outperform the state-of-the-art methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

As the rapid advancement of the depth information cap-
turing equipment such as Time-of-flight (TOF) camera and
Kinect, the acquisition of RGB-D image which contains a
depth image and a color image becomes very easy. Over-
segmentation of an RGB-D image can be a preprocessing
of many applications, such as segmentation of RGB-D im-
age [SF11,SSPW14], RGB-D video segmentation [WSC13]
etc. Over-segmentation of RGB-D image is clustering the
pixels on image to small regions. The important properties
of superpixels are that it should be adhere to the objects
boundaries. Some applications which construct the superpix-
els to graph [MB14] need the superpixels have fine topologi-
cal structure like that there should be no hole in a superpixel
and the barycenter of the superpixel should be inside the su-
perpixel.

So far, many algorithms have been adopted to gener-
ate superpixels on 2D image. There are clustering-based
methods like SLIC [ASS∗12] and VCells [WW12], and
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graph-based approaches like graph-cut [VBM10] and N-
cut [Mor05,MBLS01]. There are also some geometric based
methods like Turbopixels [LSK∗09] and Structure-sensitive
method [WZG∗13].There are also over-segmentation algo-
rithms based on the RGB-D images. Some of them over-
segment the RGB-D image by extending the 2D superpixel
generation methods to the RGBD image, like depth adaptive
method [WGB12]. The VCCS method [PASW13] segments
the point cloud which generated based on the RGB-D image
to supervoxels. The over-segmentation of image is also ex-
tended to mesh by Patricio Simari.et al [SPDF14] recently,
which generates superfacets on triangular mesh. In this pa-
per, we present a new over-segmentation method of RGB-D
image. We construct triangular mesh on RGB-D image, and
define a weighted geodesic distance on mesh. A new energy
function is defined based on the geodesic distance and opti-
mized by a Lloyd based iteration algorithm [Llo82] to get
the over-segmentation of the mesh vertices. We also check
and refine the superpixels’ topological structure during the
iteration process. The final superpixels are generated by re-
mapping the over-segmentation results of mesh vertices to
2D image. Fig.1 shows an overview of our method. The main
contributions of our paper include:
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Figure 1: Pipeline of the proposed method.

• We define a weighted geodesic distance and an energy
function to generate superpixels on the corresponding tri-
angular mesh of RGB-D image;

• We present a simple and rapid splitting algorithm to refine
the superpixels with bad topological structure;

• We propose a new seeds initialization scheme to generate
geometric feature sensitive superpixels.

2. Pre-processing of superpixels generation

There is strong noise and corruption in the depth images cap-
tured by depth camera. We denoise the depth image using
a smoothing strategy based on the point cloud’s geometric
structure combining with color information.

After getting the denoised depth image, we compute the
3D points based on the denoised depth image and construct
the triangle mesh by the connected relationship between pix-
els in the 2D image. That is we connect every four adjacent
vertices into two triangles. The edge belongs to two adjacent
triangles should have opposite directions when we travel the
three points in the triangles deasil or withershins.

3. Superpixels generation based on weighted geodesic
distance of RGB-D images

Given a mesh M(X) generated from a RGB-D image with
color image I(x) and depth image D(x). Xi is the vertex on
mesh corresponding to xi in I(x). L(X) is the region label of
vertex X on the mesh and L(x) is the superpixel label of pixel
x. The goal is to over-segment the mesh vertices to {Rl |l =
1...Nc} such that M(X) =

⋃Nc
l=1 Rl , and for l 6= k,Rl

⋂
Rk =

∅. And the corresponding superpixels on image is {Sl |l =
1...Nc}, Nc is the total number of seeds.

We define a weighted energy function based on the
weighted geodesic distance. The triangular mesh is over-
segmented by minimizing the energy function based on the
Lloyd method.

3.1. Energy function definition

We define the weighted geodesic distance on mesh M as fol-
lows:

Dg(Xi,Xj) = min
PXi ,Xj

∫ 1

0
ω(PXi,Xj (t))‖ṖXi,Xj (t)‖dt (1)

ω(PXi,Xj (t)) = eE(x)/σ1 · eC(X)/σ2 (2)

where PXi,Xj (t) is a path parameterized by t = [0,1], connect-
ing Xi and Xj respectively, ṖXi,Xj (t) is the first derivative of

PXi,Xj at t. Similar to [LSK∗09], E(x) = ‖∇I‖
Gσ+γ

, where ‖∇I‖
is the color gradient of image I(x), Gσ is a Gaussian smooth-
ing function with standard deviation σ, and γ is a constant.
C(X) = 1−cos(nl ,nX ), where nX is the normal of X and nl
is the seed’s normal which is computed by averaging all the
vertices’ normal in Rl .

To reduce the influence of the noise, we define the energy
function based on the weighted k-means model similar to
[WZG∗13]. The energy function is defined as:

c© The Eurographics Association 2015.

Xiao Pan & Yuanfeng Zhou & Shuwei Liu & Caiming Zhang / Superpixels Generation of RGB-D Images72



E = ∑
l

∫
L(X)

WX ,lDg(rl ,X)dX (3)

where WX ,l = e−∇I(x,l)/σ1 · e−C(X)/σ2 , ∇I(x, l) is the color
distance between x and the average color of Rl . C(X) is de-
fined the same as in Eq.2 and rl is the seeds position of Rl .

3.2. Local geometric feature sensitively seeds
initialization

For every pixel and its neighbor pixels, we use a principal
component analysis based method to estimate the best fit-
ting plane. We define a density function ρ(x) by the ratio
between the minimum value of the three eigenvalues and
the sum of other two eigenvalues generated by the principal
component analysis. And using a threshold value to suppress
the maximal density value to avoid placing too many seeds
in the regions with sharp feature. We sample on the image
using a method similar to Poisson disk sampling method [D-
W85] according to the probability density function as shown
in Fig.2. And the minimum radius of the Poisson disk is de-
fined as R = 1/4

√
N/Nc. N is the total number of the pixels

in the image.

(a) (b)

Figure 2: Initial seeds scheme. (a) Density map and initial
seeds. (b) Map the seeds to the mesh .

3.3. Over-segmentation based on Geodesic distance

We use the fast-marching method [KS98] to compute the nu-
merical solution of the geodesic distance between the seed-
s and vertices. The basic idea of the fast-marching method
is solving a Eikonal equation. Based on the definition of
geodesic distance in Eq. 1, the weighted geodesic distance
can be computed by the following Eikonal equation:

|∇Dg(rl ,X)|F(x) = 1 with Dg(rl ,rl) = 0,∀l. (4)

where F is the velocity function can be defined as:

F(x) = ω(x)−1 (5)

The label of vertex X is the label of the seed which is the
first one to arrive it.

3.4. Seeds refinement

After getting the labels of every vertex, we refine the seeds’
position. The∇Dg(rl ,X) cannot be written explicitly, so we
approach the Dg(rl ,X) by ν‖X − r′l‖, where the ‖X − r′l‖ is
the 3D Euclidean distance in camera coordinate system, and
ν is a constant. Thus the new position of the seed point r′l can
be computed by minimizing the energy function through the
Lloyd’s algorithm:

r′l =
∑X∈Rl

WX ,l
‖X−rl‖X

∑X∈Rl

WX ,l
‖X−rl‖

(6)

Here r′l computed by Eq. 6 may be not on the mesh. So
we search the over-segmentation regions and find the ver-
tex which has the minimal Euclidean distance to r′l as the
new seed point.

Superpixel splitting: According to the mesh construction
process, we can easily project the over-segmentation result
to image to get the superpixels. There may be holes in the
superpixels or it doesn’t have a good convex shape which
lead to the result that it’s barycenter is not inside the super-
pixel. We correct these superpixels’ topological structure by
splitting it.

Figure 3: Splitting of superpixels. Upper-right corner: the
superpixel whose barycenter is not inside the superpixel is s-
plit to two new superpixels. Bottom-right corner: superpixel
which has holes will split to four superpixels.

For the superpixel which satisfies the splitting condition,
We split it as follows: we set the barycenter of the superpixel
as the original point, set the horizontal direction as the x-axis
the vertical direction as the y-axis. Then the image space is
divided to four quadrants as shown in Fig.3. We use Si

l to
denote the subset of Sl in the ith quadrant. If |Si

l |> η|Sl |, we
add the barycenter of Si

l to the seed point list as a new seed
point, where |Sl | and |Si

l | are the number of pixels in Sl and
Si

l respectively. η is a constant, and here we set it as 3/16.
The splitting process is shown in Fig.3.

3.5. Termination condition and complexity analysis

We compute the difference value∇E of the energy function
with the previous iteration. So we terminate the optimization
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iterations if∇E is smaller than a threshold or the number of
iteration exceed the maximum iteration number and there is
no new seed inserted in this iteration. The maximum itera-
tion number is set to 10 in this paper.

The time complexity of the whole algorithm is
O(Nlog(N) + kN). Where O(N) is for the Pre-processing
and seeds updating process, and O(Nlog(N)) is for the fast-
marching process.

4. Experimental results and comparisons

In order to evaluate the quality of the superpixels gener-
ated by the new method, we perform comparisons with
the state-of-art RGB-D image over-segmentation method-
s using depth information such as VCCS [PASW13] and
DASP [WGB12], and the superpixels generation algorithm-
s on image plane such as SLIC [ASS∗12], turbopixel-
s [LSK∗09] and structure-sensitive superpixels [WZG∗13].
In order to illustrate the effectiveness of the new seed point
initialization method, we compare both the uniformly seeds
superpixels and the geometric information sensitive super-
pixels with other five methods. We also compare the super-
facets generated on the constructed triangular mesh with the
algorithm [SPDF14]. All the RGB-D data used in this paper
come from NYU Depth Dataset V2 of Silberman et al. [NS-
F12], which contains 1449 pairs of aligned RGB and depth
images and human annotated densely labeled ground truth.

4.1. Parameters setting

Our algorithm is not sensitive to most of the parameters. The
σ1 and σ2 in Eq. 2 are set to be 0.1 and 0.05 respectively, and
the σ1 and σ2 in Eq. 3 are set to be the same as they are in
Eq. 2. The σ and γ in Eq. 2 are set to be 11 and 0.25.

4.2. Quantitative evaluation

Boundary recall: Boundary recall [LSK∗09] is computed
by calculate the fraction of the ground truth within a small
disk shaped neighborhood of the superpixel’s boundary, and
in our experiments the disk radius is set to 2 pixels. The
boundary recall comparisons between our method and other
five methods are shown in Fig.4(a).

Under-segmentation Error: The under-segmentation er-
ror [LSK∗09] is defined as:

U =
1
N

[
K

∑
k=1

(
∑

{Sl‖Sl∩Gk|>B}
Area(Sl)

)
−N

]
(7)

where Area(Sl) is the area of the superpixel Sl , Gk is the
ground truth segmentation and N is the total number of pix-
els. B is the minimum area of overlapping and is set to be
5% of Area(Sl). The comparisons are shown in Fig.4(b).

Achievable Segmentation Accuracy: The achievable seg-
mentation accuracy [NGL10] gives the highest accuracy
achievable for object segmentation that utilizes superpixel-
s as units. We plot the achievable segmentation accuracy of
our method and the other five methods as shown in Fig.4(c).

4.3. Qualitative evaluation

Compare with superpixels generation method

Fig.5 shows a visual comparison of new method with the
two RGB-D image over-segmentation algorithms VCC-
S [PASW13] and three algorithms which generate super-
pixels directly on 2D image SLIC [ASS∗12], turbopixel-
s [LSK∗09] and structure sensitive superpixels [WZG∗13].
From Fig.5, we can see that the superpixels generated by the
new method can adhere to the objects boundaries better and
are more compact.

Compare with the superfacets generation method

The new method can be used for over-segmenting the vertex-
es on mesh. We can generate superfacets by a postprocess-
ing. If the three vertexes of a triangle have the same over-
segmentation label l, the triangle is labeled to l. If the three
vertexes of a triangle have different labels, then the triangle
is labeled as one of the three vertices’ labels which has the
minimal normal distance with it. We test the effectiveness
of the geometric information in the weight function of Eq. 2
by generating superpixels using only the geometric informa-
tion. We compare the superpixels generated by this weight
function with a superfacets generation algorithm [SPDF14],
which over-segments the mesh to superfacets with only the
aid of geometric information. Fig.6 shows both the super-
facets results on mesh and the superpixels results on 2D im-
age.

5. Conclusion and limitation

An efficient superpixels generation method of RGB-D im-
ages is presented in this paper. To utilize the spatial informa-
tion of RGB-D images effectively, we map the pixels to 3D
space based on the denoised depth image and construct the
regular triangular mesh. Based on color and geometry infor-
mation, a weighted geodesic distance is defined to measure
the similarity of vertices on the mesh. Lloyd based optimiza-
tion method is used for updating seeds of superpixels. From
the experimental results, we can see the new method not only
outperforms the existing methods on RGB images and RGB-
D images, but also the superfacets generation method which
is used on triangular mesh.

As we give a preprocessing process and a superpixel split-
ting scheme in the algorithm, the new method has a slight-
ly higher time complexity than the existing RGB-D images
over-segmentation methods. We intend to reduce the time
complexity of the algorithm by accelerating the optimization
process such as using GPU computation in the future.
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(a) (b) (c)

Figure 4: Quantitative comparisons with other methods.

Figure 5: Comparisons with other superpixels results. The superpixels’ number is 1100 (upper left) and 500 (low right)
respectively. From left to right: DASP [WGB12], VCCS [PASW13], SLIC [ASS∗12], Turbopixels [LSK∗09], structure sensitive
superpixels [WZG∗13], and new method.
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