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Abstract
Alias | Wavefront OBJ meshes are a common text file type for transferring 3D mesh data between applications
made by different vendors. However, as the mesh complexity gets higher and denser, the files become larger and
slower to import. This paper explores the use of GPUs to accelerate the importing and parsing of OBJ files by
studying file read-times, runtimes and load resistance. We propose a new method of reading and parsing that
circumvents GPU architecture limitations and improves performance, seeing the new GPU method outperform
CPU methods with a 6-8x speedup. When run on a heavily loaded system, the new method only received an 80%
performance hit, compared to the 160% that the CPU methods received. The loaded GPU speedup compared to
unloaded CPU methods was 3.5x, and, when compared to loaded CPU methods, 8x. These results demonstrate
that the time is right for further research into the use of data-parallel GPU acceleration beyond that of computer
graphics and high performance computing.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors—
I.3.1 [Computer Graphics]: Parallel processing—I.3.6 [Computer Graphics]: Graphics data structures and data
types—

1. Introduction

Graphics Processing Units (GPUs) have seen a lot of inter-
est, outside of their original purpose of rendering computer
graphics, as they offer considerable computation speed ups
over their CPU counterparts in particular use cases [NHP07,
RDV∗12, SHUS10]. While research into N-body simula-
tions, Global Illumination, fluid dynamics and other ‘ex-
citing’ simulations have drawn the majority of the atten-
tion [NHP07, RDV∗12, SHUS10]; this paper focuses on the
more ‘mundane’ elements of programming, such as file im-
porting and parsing, to show that these, too, can take ad-
vantage of the modern GPU and their impressive potential
for parallelization. The area of importing and parsing has
seen relatively little interest as GPU architecture and run-
time differences mean that algorithms either are unsuitable,
or require heavy rework to see any marginal speedup. There
has been research into natural language parsing [HBKCK14,
Joh11] and integrating the GPU into the file system under
Linux [SFKW14] but the closest related research has been
limited to optimizing and running queries in SQL or on data
stored in XML [BS10, SYH∗11]. GPU hardware, however,
has not been neglected and, with the demand for higher

performance and higher resolution devices, it is very dif-
ficult these days to find a device that does not have some
form of integrated GPU -from cell phones to automobiles-
and it is time to start using this untapped resource (http:
//www.nvidia.com/object/cuda_home_new.html).

The concept of General-purpose Programming on the
Graphics Processing Unit (GPGPU) is not a new one but
neither is it a solved problem. It is often that, to make an al-
gorithm run fast on the GPU, one has to re-invent said algo-
rithm, conversely, sometime tasks are ‘embarrassingly paral-
lel’, such that minimal change is necessary. In this research
we look at a task (importing an OBJ mesh to OpenGL) and
investigate how a very linear task on the CPU, can be re-
written so that it can take advantage of the data-driven par-
allelization that the GPU provides.

We chose to use the Alias | Wavefront OBJ file type as it is
an open format, generally accepted as universal, and used in:
engines, development tools and simulations, unlike binary
files which can be software and platform specific. While we
focus on this small edge-case the minor differences between
the text-based file types means that STL or PLY could also
be similarly implemented for the GPU.

c© The Eurographics Association 2015.

DOI: 10.2312/pg.20151283

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pg.20151283


Aidan. L. Possemiers & Ickjai Lee / Parallel Importing of OBJ Meshes in CUDA

2. Preliminaries

The potential of a 60x or more speed up creates a lot of
excitement about GPGPU, though the limitations the GPU
hardware and architecture imposes often means, without
heavy modification, most algorithms will actually run slower
on a GPU. While GPUs are capable of running millions
of threads at the same time, the actual clock speeds can
be magnitudes slower than their CPU counterparts. There
is also the effect of the underlying architecture: while a
CPU is task parallel, a GPU is data parallel or, more pre-
cisely, Kernel parallel. A version of Single Instruction, Mul-
tiple Data (SIMD), the GPU contains multiple processing
cores that perform the same operation on multiple pieces of
data all in parallel: hence data parallel [KMMS10]. This not
only means that CPU algorithms, but also multi-core algo-
rithms, cannot run on a GPU without modification. Assum-
ing the task is data parallel, dynamic memory allocation is
also a heavy overhead as it requires global synchronization.
While there have been attempts to circumvent this limita-
tion [GPK∗12, DWL∗12], the general consensus is to pre-
allocate memory. This limits the use cases; either memory
has to be over allocated, assuming the worst case given the
data, or the number of return values has to be already known
and pre-allocated.

Amdahl’s law [Hea15, HM08] is another big hurdle for
GPGPU and parallel processing in general, which demon-
strates that the potential speedup of a linear algorithm on
a fixed problem size, as the algorithm is made more paral-
lel and run on more cores. While it ignores costs like mem-
ory overhead and data transfer rate -which benefits GPUs as
these are expensive for it to perform- the law is considered a
double edged sword: it stipulates that as the number of cores
increases there is a diminishing performance return limited
by the percentage of the code that is run in serial. For exam-
ple, if the serial fraction of code exceeds 1%, the speed up
can never exceed 100x, no matter how many processors are
used [Hea15, HM08]. Taking Amdahl’s law into account for
data parallel, GPGPU programming means coming up with
more inventive ways to parallelize serial code sections as of-
ten applications use task parallelization to create a speed up.

CUDA is NVIDIA’s foray into making GPGPU program-
ming more accessible by extending C/C++ to take advan-
tage of their GPU architecture (http://www.nvidia.com/
object/cuda_home_new.html). It works by splitting code
into functions to run on either the host; the CPU and system
memory, or the device; the current GPU that the CUDA con-
text is running on. Host code resembles C/C++ and is com-
piled by the native C/C++ compiler other than when it calls
device code, or uses CUDA functions, in which it has to be
compiled under NVIDIAs CUDA compiler. Device code or
‘Kernels’ resemble C/C++ as well but with certain function-
alities, like realloc, missing, due to the GPU architecture and
instruction set differences. Though with each new version of
CUDA more and more C++ features are added.

Kernel functions are run in parallel by blocks of threads,
with a maximum of 1024 threads per block on a device with
compute capability 2.0+. These thread blocks are run on in
grid of a maximum size of 231 - 1 blocks in the x direction
with compute capability 3.0+ [GPK∗12]. Blocks are pro-
cessed by stream multiprocessors with threads processed in
warps of 32 parallel threads with the warp scheduler pick-
ing which warp in a block to be executed. A grid can be
launched in one dimension and a thread’s global index is
found by adding its thread index inside the block in the x
direction, to its block index multiplied by its block dimen-
sion, both in the x direction. This one dimensional thread
id is used to access relevant information from the GPUs
memory, such as the particular element in an array that is
to be acted upon by this thread. By accessing and writing
to memory in this manner we are practicing memory coali-
tion within our warps. Memory coalition is a high priority
CUDA ‘best practice’ (http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/), as mentioned before,
each thread runs the same operation, and accessing concur-
rent memory in a warp is necessary to take full advantage
of the architecture. Avoiding branch divergence is another
best practice, and occurs when there is a decision statement
like if or switch. Only threads that share the same path are
executed synchronously, with the other paths running after
the first path has been finished or a barrier is met. It can
be avoided by having branches logically occur on separate
warps, avoiding the diverged branches having to be run sep-
arately.

Thrust is a C++ template library for CUDA, based on the
Standard Template Library (STL) (https://developer.
nvidia.com/Thrust). Thrust provides access to two vec-
tor templates: one that stores data on the GPU or device, and
another that stores it in system memory or the host. These
generic containers allow simple transfer between the two
memory locations, however, the real strength of the Thrust
library comes with access to simple, yet powerfully par-
allel algorithms: Count, Sort, Scan, Reduce, Remove and
Unique. These algorithms, when combined with our context-
specific predicate functions, and other custom parallel code,
can be used to simply and easily circumvent traditionally
linear code section. We chose to use the Alias | Wavefront
OBJ file type as it is an open format, generally accepted as
universal, and used in: engines, development tools and sim-
ulations. Unlike PLY or STL, OBJ files store 3D mesh data
as a series of single line elements prefixed by a character se-
quence: ‘#’ for human readable commenting; ‘v’ for vertex
coordinates; ‘vt’ for texture coordinates; ‘vn’ for vertex nor-
mal vector; and finally ‘f’ for the draw ordered indices of the
other arrays that are used to build the triangles of the mesh
in 3D [Mv96]. Importing OBJs on the CPU is traditionally
very linear. As Algorithm 1 shows its broken into 3 stages:
read the file line by line and parse the data into temporary
vectors, pack unique vertices into dictionary and store draw
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ordered indices, unpack vertices and pass vertex coordinate,
UV coordinate, normal vector and index arrays’ to OpenGL.

3. Framework

3.1. Import

To begin the import, first the text file must be passed to the
GPUs memory. This is a major hurdle that must be overcome
as the GPU itself does not have access to the hard drive nor
does it have any way to access the file system in the same
manner as the CPU does. Because the data must be read into
the system memory by the CPU: this creates a bottleneck as
it takes time for the CPU to read the file, during which time,
the GPU is sitting idle with nothing to process. We reduce
this overhead by reading the data in chunks. As the current
chunk is read by the CPU, the GPU searches for delimiting
characters in the previously read chunk and records their po-
sition, per character, in parallel. This works fine if the GPU
delimits the chunk faster than the CPU can read them. How-
ever, if the file is pre-buffered, due to O/S caching or the
GPU model is simply not powerful enough, the GPU section
will cause a bottleneck, with the CPU idling, waiting to read
in the next chunk. To prevent this the GPU kernel is fired off
from a separate CPU thread. The main CPU thread checks
if the thread running the GPU kernel is finished, if not, the
CPU will read in more data while it waits. This minor tweak
creates a load balancing effect that takes into account differ-
ent hardware configurations and bus speeds, as well as other
elements that could un-balance the two processes.

3.2. Parsing and Indexing

As show in Figure 1, once the full file has been read to GPU
memory, it is parsed, in parallel, into an array of interim ob-
jects; this section of the code is ‘embarrassingly parallel’, as
the information in each line, at this stage, is un-reliant on
any other piece of information as long as order is preserved.
This also circumvents the GPU issue, in the lack of fast dy-
namic memory allocation, as we know the total number of
elements from the delimitation step, yet not how many of
each element type. These ‘proxies’ store the data type (in
the OBJ case this is vertex, UV, normal, face and unknown)
and has memory allocated equivalent to nine 32-bit integers
(the amount needed to store indices for a single triangle) for
the parsed values to be stored in binary format. If there is
any undesired information, like comments, it is tagged as
unknown and removed using Thrust’s remove. If the file is
formatted correctly in blocks of single data types, there is
minimal warp branch divergence, as the kernel only diverges
at the end of each block of types.

The face elements are then used to build an array of
packed vertices that are a raw, draw order representation of
the mesh. Each PackedVertex object holds the vertex’s 3D
coordinate, 2D texture coordinate and normal vector as well
as its draw index: its current index in this array. The final

Figure 1: Parse and Index stage.

act of the import, before the arrays are passed to OpenGL
for rendering, is to remove the duplicated data by removing
created when triangles share common vertices. To display
the mesh correctly, even if vertices share the same 3D co-
ordinate, their normal vector may be different to allow for
a sharp/smooth edge, or their 2D coordinate might be dif-
ferent to optimize texture space. Figure 2 outlines the pro-
cess of parallel VBO indexing with the vector of PackedVer-
tices as input, and outputs the vectors to be passed as arrays
to OpenGL. The code shows branching parallelism, as the
whole block is run from the CPU which fires off the Kernel
Code sections which run on the GPU. While the Kernels are
running, the main thread waits for them to finish then contin-
ues to the next section. Figure 4 shows this process visually,
by breaking down each step of our algorithm. PackedVer-
tices are represented by capital letters with their draw order
index, with duplicates using the same letter.

Step 1, we sort the data so that identical vertexes are clus-
tered together in a Thrust parallel sort, which has a complex-
ity of O(n logn). The predicate function we use to sort, looks
at each value of each element, and uses strict weak ordering,
first by 3D coordinate, then 2D coordinate and finally nor-
mal vector, to give us the clusters of duplicates. As we have
already stored the original index of each PackedVertex, we
donâĂŹt need to preserve order. Step 2, we create an array
of unsigned integers the same size as the sorted packed ver-
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Figure 2: Parallel VBO indexing algorithm.

tices array. This will eventually be used to build the OpenGL
index buffer. Step 3, in parallel, we assign 1 to the element
that shares the same index as the first packed vertex in each
cluster of duplicates: a complexity of O(n). Step 4, we run a
Thrust inclusive scan on the new array, which sets the value
of an element to the sum of all previous elements: another
complexity of O(n). Step 5, we use the original draw index
of the packed vertex to reorder the integer array, which gives
us the index array of the unique packed vertices to pass to
an OpenGL index buffer object. This step is once again ‘em-
barrassingly parallel’, and as such has a complexity of O(n).
Step 6 shows the unique packed vertex array. This array is
then split into 3 separate arrays of vertex coordinates, tex-
ture coordinates, and normal vectors, and along with the in-
dexed array, are passed to OpenGL. Over all complexity of
the indexing process is O(n logn) running in parallel.

4. Methodology

Getting the mesh data quickly into OpenGL for rendering,
or modification, is the primary driving force of this research.

With that in mind, overall speed of the import and parse is
of the most importance. There are, however, considerations
to be made as the hardware specifications differences shown
in Table 1 between the CPU and GPU, make a direct im-
plementation comparison difficult. While purely comparing
parse times of the two systems would be ideal -this would
always lead to a distinct GPU advantage due to most of the
problem being ‘embarrassingly parallel’- the real world lim-
itations of GPGPU is the cost of memory transfers, and ar-
ranging data in a manner that GPUs can process. Therefore
all the tests observe the total runtime, from reading the file
from a hard drive, to outputting the final arrays for OpenGL.

Using the total runtime also allows for a wider
set of sample cases. 3D modelling applications:
Autodesk Maya (http://www.autodesk.com.
au/products/maya/overview), and MeshLab
(http://meshlab.sourceforge.net/), both output
their total import times for OBJ meshes. Both these ap-
plications are complex systems that do much more than
simply import a mesh so -the open source- Tiny OBJ
Loader was also used as a direct code to code comparison
(http://syoyo.github.io/tinyobjloader/). The
last limitation accounted for was the operating system
caching the file after it was first imported. Initial testing
showed great time variances for all methods but, only
on the first import of a particular file. We determined
that this was due to caching so all data gathered after
insured that the file was cached first. The mesh used,
Asian Dragon, was sourced from Stanford’s 3D scan-
ning repository provided generously by XYZ RBG Inc.
(http://graphics.stanford.edu/data/3Dscanrep/).

4.1. Import Test

The mesh was first taken into Pixologic’s Zbrush and dec-
imated at intervals of 10%. Table 1 shows the breakdown
for each of the meshes and how the decimation level effects
the total number of elements (lines) needed to parse, in rela-
tion to the number of triangles to render. The overall import
speed tests were run 11 times for each application at each
decimation level, with the first result discarded to account
for O/S caching, as eliminating its effect was found to be
impossible.

4.2. Under Load Test

In the second experiment, we ran the tests, but only for the
un-decimated mesh (100% in Table 1) but this time with
a CPU loading application in the background, flooding all
cores with a normal priority process to test the robustness of
each application.

4.3. GPU Section Test

The final experiment compared the GPU method on 2 dif-
ferent GPUs. Looking at the time that the reading section
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Table 1: Mesh breakdown.

.
% decimated Lines in file Triangles to

render
10% 3,248,494 721,886
20% 6,497,011 1,443,778
30% 9,745,561 2,165,668
40% 12,994,030 2,887,560
50% 16,242,535 3,609,450
60% 19,491,049 4,331,342
70% 22,739,554 5,053,232
80% 25,988,068 5,775,124
90% 29,236,573 6,497,014
100% 32,485,087 7,218,906

and parsing/indexing section take and comparing these val-
ues while running on 2 different pieces of GPU hardware.
Due to the memory limitations of a lower end card -with re-
writing the code to use a buffer was determined to be out
of scope- the experiments were run 11 times on the mesh
decimated to 60%: the first results were again, discarded.

5. Results

In parallel parsing the mesh runs between 5-8x faster under
CUDA on the GPU, than it does sequentially in C++ on the
CPU. Figure 6 shows the overall runtimes of each method,
with the GPU methods running considerably faster than the
CPU methods. Autodesk Maya, one of the most widely used
3D applications, unsurprisingly, ran consistently faster than
the other two CPU applications. As there is no source code
available for its OBJ importing code, it is difficult to tell if
this is due to some CPU multithreading, or just a more effi-
cient data structure behind the scenes.

The open source Tiny OBJ Loader runs on a single thread,
and follows a similar algorithm to the one in Algorithm 1. It
is import times were almost exactly in between Maya, and
MeshLab, which ran the slowest, and as such, taking into
account the Maya optimizations, serves as the code to code
comparison. The GTX 970 with its 4GB of memory, easily
fit both the large mesh file and the parsed arrays in memory
in all cases. However, the GTX 750 with 2GB of memory,
could only handle up to the 60% mesh before running out.
Excluding the memory limitation the GTX 750, while slower
than the GTX 970, has almost half the total power draw of
the tested CPU, and yet, for this case, outperformed the CPU
methods by a factor of 5x.

When running the tests again on a loaded system (Fig-
ure 3) the speedup between the loaded GPU and the loaded
CPU method was the same as the unloaded speed up. The
GPU method, with an approximate 3x speedup, still ran
faster on a loaded CPU system than the CPU method run-
ning on an unloaded system.

Figure 3: Load comparison.

Figure 4: GPU comparison.

Figure 4 shows us a glimpse of Amdahl’s law in effect by
comparing GPU times, with minor micro benchmarking to
split the read and parse times from the file import time,. The
GTX 970 may have a slightly faster core clock speed, but it
has 3x the number of CUDA cores however, the major per-
formance differs only in the highly parallel parse and index
section.

Figure 5 shows the percentage speedup that the GTX 970
has over the three different CPU methods as well as an aver-
age. This average speedup is almost always aligned with the
speedup compared with that of Tiny OBJ Loader.

6. Conclusion

In this paper we have shown that GPUs are capable of pars-
ing OBJ files upwards of 5x faster than current CPU meth-
ods. This is achieved by creating algorithms that take advan-
tage of the strengths of the GPU, while avoiding their weak-
nesses. By comparing our method with applications (Maya,
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Figure 5: GTX 970 speedup per mesh comparison.

MeshLab, as well as Tiny OBJ Loader) we provide strong
evidence to this case.

Though we see significant speed ups, there is more work
to be done, especially in the read areas of our code. Under-
standing the effect of Amdahl’s law shows us that the read
section of our code requires further parallelization for the
whole system to benefit. Lack of direct access to the file sys-
tem makes this very difficult, however, there are several re-
searched options worth investigating. GPUfs [SFKW14] or
Direct Memory Access with GPUDirect, both under Linux,
are very interesting, as then, GPU thread blocks could be
used to both read and parse, cutting down on serial sections,
so that as cores increase so would performance. Beyond sim-
ply speeding up the current use case, this method could be
applied to other different data types. By adding support for
hierarchical data at parse time, other 3D file types like FBX,
Maya ASCI, STL and PLY. Beyond just 3D data, Comma
Separated Values would be easily read by this system as it
is currently implemented. Hierarchical data handling JDON
and XML data could also be parsed in much the same way
as the other 3D data types.
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