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Abstract

Modern Computer Graphics applications commonly feature very large virtual environments and diverse charac-
ters which perform different kinds of motions. To accelerate path planning in such scenario, we propose subregion
graph data structure. It consists of subregions, which are clusters of locally connected waypoints inside a region,
as well as their connectivities. We also present a fast algorithm to automatically generate subregion graph from
enhanced waypoint graph map representation, which also supports various motion types and can be created from
large virtual environments. Nevertheless, subregion graph can also be generated from any graph-based map rep-
resentation. Our experiments showed that subregion graph is very compact relative to the input waypoint graph.
By firstly planning subregion path, and then limiting waypoint-level planning to the subregion path, up to 8 times
average speedup can be achieved, while average length ratios are maintained at as low as 102.5%.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and systems 1.3.7 [Computer Graphics]: Three-
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Dimensional Graphics and Realism—Animation

1. Introduction

Since the turn of this century, various Computer Graphics
(CG) applications have increasingly featured very large vir-
tual environments, which are occupied by diverse characters
with different motion types. This situation poses a challenge
how to perform path planning in a timely manner. Solving
path planning problems usually involves creating a graph-
based structure called map representation to approximate the
virtual environment. Recently, Wardhana et al.’s proposed
enhanced waypoint graph [WJS13], which supports various
motion types that can be automatically generated given a
very large virtual environment. As will be briefly introduced
in Section 3, different from a navigation mesh, the use of
waypoint graph makes it possible for characters to perform
“free-flying” motion, that is not restricted to be on surfaces.
However, the authors make use of A* algorithm directly on
the very large generated waypoint graph, which is conse-
quently impractical.

In Section 4, we present subregion graph, a path plan-
ning acceleration structure that consists of subregions, which
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are clusters of locally connected waypoints inside one re-
gion, and subregion connectivities. By planning subregion
path between two points, only waypoints inside the subre-
gion path need to be considered, thus reducing the number of
visited waypoints and consequently accelerating path plan-
ning. We present an algorithm to automatically generate the
subregion graph from an enhanced waypoint graph, taking
into account different motion types, in Section 5. We will
nevertheless show that our algorithm works for any kind of
graph-based map representation. A two-step path planning
algorithm to use the subregion graph for path planning is
presented in Section 6. In Section 7, we report the outcomes
of some experiments to evaluate the performance and the re-
sult of both our generation and path planning algorithms.

Our contributions can be summarised as follows.

e Extension to enhanced waypoint graph by adding support
for adhesive motion type.

e Subregion graph, a compact data structure to accelerate
path planning process with various motion types in very
large virtual environments.
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e A fast method to automatically generate a subregion
graph, given an enhanced waypoint graph and a set of mo-
tion types.

e A method to generate subregion graph from any graph-
based map representation.

2. Related Work

There are three main categories of abstraction-based tech-
niques to accelerate path planning, namely Node-centred,
Subdivision-based, and Node/Edge-Importance-based tech-
niques. Node-centred abstraction techniques select some
nodes from the graph, and then expands from those nodes
by following certain rules to create abstractions. In STAR
abstraction [HMZMO96], vertices are grouped within a cer-
tain distance from a particular vertex into one abstraction.
On the other hand, Partial-Refinement A* (PRA*) [SBO5]
constraints the groups to a maximum of four vertices as a
hierarchical structure is being built.

In subdivision-based abstraction category, various struc-
tures are explicitly determined to subdivide the original
graph and separate the abstractions. In multiway separa-
tor [Fre87], the constraints are pre-selected boundary nodes.
Geometric containers [WWO03] and arc-flag [Lau04] use an
overlaid 2D grid on the input graph to limit the subdivision,
whereas HTAP [MHO04] uses Voronoi subdivision.

Node/edge-importance-based  abstraction techniques
modify the Dijkstra/A* algorithm by filtering the nodes or
edges it considers based on their importance with respect
to shortest paths between every pair of nodes. Gutman uses
the concept of reach of a vertex, which is high if the vertex
is in the shortest paths that are long, and low otherwise.
During the node expansion step, only vertices with high
reach values are expanded [GutO4]. In highway hierarchies
technique [SS05], only "highways" or important edges need
to be considered outside a certain radius from the starting
and goal nodes.

One example of non-abstraction class of accelera-
tion techniques is the look-up table preprocessing. In-
cluded in this category are techniques such as Floyd-
Warshall algorithm [Flo62, War62], A*-Landmark-Triangle-
inequality (ALT) [GHO5], and True-Distance Heuristics
(TDH) [FBSS09]. In the preprocessing step, information ta-
bles are created as guidance in either directly determining
paths, or as heuristic values, thus reducing the computation
of the actual path planning step.

3. Review of Enhanced Waypoint Graph and Our
Extension

A regular waypoint graph, also known as roadmap, contains
waypoints, which describe important features in the environ-
ment such as corners and openings, and the waypoint con-
nectivities. Enhanced waypoint graph [WJS13] augments
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Figure 1: Edges that support different motion types

this structure via its capability to handle characters with dif-
ferent sizes and motion types. Every edge in the enhanced
waypoint graph is labelled with a motion type, so that during
path planning, only edges that support the character’s move-
ment are traversed. Wardhana et al.’s paper defines two mo-
tion types, namely surface and volumetric motions. They re-
spectively correspond to movement on ground-like surfaces,
and free-flying movements.

Enhanced waypoint graph’s generation algorithm makes
use of a 3D uniform grid containing axis-aligned boxes
called regions to process very large environments. Way-
points are accordingly labelled as a local waypoint, if a way-
point is inside a region, or a border waypoint, if it is located
at the boundary between two regions.

QOur extension: In this paper, we add another motion type
called adhesive motion. It still needs to be performed on a
surface, but the surface can be of any orientation, excluding
nearly horizontal surfaces. An edge is labelled with adhesive
motion if it is entirely located near a surface whose normal
neither points upward nor nearly upward. Animals like spi-
ders and lizards are examples of characters that can perform
adhesive motion. Fig. 1 illustrates the various motion types.

4. Proposed Subregion Graph and Terminologies

The idea behind our subregion graph, as depicted in Fig.
2, is to cluster waypoints in every region of enhanced way-
point graph based on their connectivity, and represent them
as one abstraction node. Given a motion type set M¢c C M,
where M denotes a set containing all motion types (in our
case, M = {surface, adhesive, volumetric}), a group of
waypoints in one abstraction must be visitable from each
other without going to another abstraction by only consid-
ering edges that support any motion m € M. One region
may contain multiple disconnected waypoint sets, so it can
have multiple subregions. Subregion graph also explains the
abstraction connectivities, and will then be used to filter the
waypoints so that not too many waypoints are visited dur-
ing path planning, thus accelerating the process. A subre-
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Figure 2: (a) An example of a 2D enhanced waypoint graph, consisting of 6 regions, 15 waypoints, 15 edges, and 2 motion types.
Circles and squares are respectively local and border waypoints, whereas black and red edges respectively represent surface
and adhesive motions. (b) The subregions, generated with respect to only surface motion, are overlaid with different colours
on the waypoints. (c¢) The subregion graph, also generated with respect to only surface motion, describes the corresponding
subregions with respect to the waypoint graph, and the connection between the subregions. Circles and edges respectively
denote subregions and subregion connectivities. (d) A different subregion graph generated with respect to both surface and
adhesive motions. Notice that instead of S, it has S’l = S1USy, and the original Sy is non-existent.

gion graph will be constructed for every motion type set in
the application.

To define a subregion graph, some terminologies need
to be introduced. Firstly, a waypoint v is locally visitable
from another waypoint w with respect to a motion type set
M C M and region r if w can be visited from v by traversing
only waypoints in r and edges that support motion types in
M. Then, a subregion S is a set of waypoints such that two
unique waypoints in § are locally visitable from each other
with respect to motion type set Mc. Two subregions S; and
S> on subregion graph Gg are connected if there is an edge
(v,w) such that waypoint v is in Sj, waypoint w is in S, and
the edge supports a motion type in M¢. To every waypoint v,
we associate a label L(v), indicating the subregion contain-
ing v. A subregion graph can finally be defined as a graph
Gs = (Vs,Eg) whose vertex set Vg contains all subregions,
and edge set Eg describes the connectivity among the subre-
gions with respect to motion type set M.

5. Automatic Generation of Subregion Graph

Our algorithm to automatically generate a subregion graph,
takes two input data, namely an enhanced waypoint graph
Gy and a character’s motion type set Mc C M. The algo-
rithm will return a subregion graph Gy and, for every way-
point v, a label L(v), which is the subregion containing the
waypoint. All waypoints are initially unlabelled. The genera-
tion algorithm itself consists of two steps, namely Subregion
Detection and Subregion Connection.

In the Subregion Detection step, we firstly initialise a vari-
able index = 0. The algorithm visits an unlabelled starting
waypoint (chosen randomly, with all local waypoints chosen
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first before border waypoints), and performs Breadth First
Search to visit unlabelled waypoints without going out of the
active region, and only traversing edges which support mo-
tion type in M. An active region is the region containing the
waypoint, if it is a local waypoint, or one of the two regions
the waypoint borders, if it is a border waypoint. Whenever a
waypoint v is visited, we set the label L(v) = index. Once no
more waypoint can be visited, index is incremented, a new
unlabelled waypoint is selected, and the process is repeated
until all the waypoints are labelled.

In the Subregion Connection step, the algorithm visits ev-
ery edge which supports any motion in M¢, and check the
two waypoints v and w at its end. Their respective labels
L(v) and L(w) are then examined. If they are different and
not yet connected, the connection is established.

To assign costs to subregion connectivities, we compared
a few schemes in the experiment. Two most outstanding cost
schemes are Fixed Cost (FC), in which the cost is fixed to
value 1, and Centroid Distance (CD), which uses the dis-
tance between the centroids of two subregions as a cost. A
centroid is the average of the waypoint locations in the sub-
region.

If the input waypoint graph is generated using another
technique, the regional subdivision structure can be trivially
constructed and associated to the waypoint, and we can con-
tinue with rest of the algorithm. It should be noted that if
there is an edge that spans across multiple regions, no bound-
ary waypoints need to be generated, as the subregion graph
generation algorithm only needs to check the waypoints at
both edge ends to connect the containing subregions. Sub-
region graph can also be created for a navigation mesh by
firstly constructing the dual graph from the navigation mesh,
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which can then be treated as an input. However, it should
be noted that in spite of recent development in multi-layered
environment, the navigation mesh structure can only handle
surface motion.

6. Path Planning Using Subregion Graph

Given two arbitrary points, we firstly look for their re-
spective nearest traversable waypoints from them, using
traversability test similar to the method Wardhana et al. pro-
posed [WIS13]. Then, in the subregion graph level we per-
form the Dijkstra’s algorithm on the subregion graph that
supports the character’s movement between the subregions
that contain those nearest traversable waypoints. This results
in subregion path, which contains a list of subregions. If the
subregion path is empty, there is no path between the two
points, and the algorithm stops here. Otherwise, we find the
path between the two waypoints using filtered A* algorithm,
which only expands waypoints inside the subregions in the
subregion path. The original arbitrary points are appended to
the result of this step, and the final path is returned. This path
can be further smoothened in a post-processing step, for ex-
ample using a technique akin to Pinter’s algorithm [PinO1].

If there is a path between two waypoints, there is also a
subregion path in subregion graph which connects the sub-
regions containing them. Likewise, if there is a subregion
path between two subregions, there is also a path between
every waypoint in both subregions. Planning a path between
the same pair of waypoints without and with subregion graph
will either both return paths or both not return paths.

7. Experimental Results

We performed a few experiments to evaluate the subregion
graph generation and path planning algorithms on a worksta-
tion with Intel Xeon E5-1650 @ 3.20 GHz processor and 16
GB of memory. We used the graph data structure, Dijkstra’s,
and filtered A* search implementations in Boost Graph Li-
brary [SLL14]. Ogre3D library [Thel1] was used as the ren-
dering engine. We used two virtual environments, namely
Kampong Glam and Marina Bay, which are two areas in
Singapore. The Kampong Glam environment has an area of
488.65m x510.9m with 79,875 triangles, whereas the Ma-
rina Bay environment has an area of 2,338.9m x2,832.48m,
with 555,238 triangles.

Subregion graph is compact. The number of subregions is
not more than 3% of the number of waypoints, whereas the
number of subregion connectivities is not more than 0.2% of
the number of edges. The generation mechanism itself takes
only around 20 seconds to process a graph with millions of
waypoints and tens of millions of edges.

We also performed an experiment to evaluate the quality
of path planning result using subregion graph. It involved

(b)
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Figure 3: (a) Without subregion graph, 120,878 edges were
traversed (red lines) when planning a path between two dis-
tant waypoints. (b) The same set of edges with the environ-
ment hidden. (c) With subregion graph, the number of tra-
versed edges is reduced to 13,483, which implies faster path
planning. (d) The same set of edges with the environment
hidden.

sampling waypoints from the waypoint graph, and perform-
ing path planning repeatedly for every pair of these way-
points without subregion graph and with subregion graph,
considering different cost schemes. These schemes were
evaluated using two measurements, namely average length
ratio and average speedup. The average length ratio de-
scribes the average deviations of the path lengths planned
using subregion graph with a specific cost scheme, com-
pared to the path lengths planned without a subregion graph.
The average speedup explains how much acceleration was
achieved on average for a particular cost scheme.

These experiments and calculations show that path plan-
ning using subregion graph with any cost scheme results in
paths that are not significantly longer than paths planned
without subregion graph, as their average length ratios are
close to 100%. Subregion graph can accelerate path plan-
ning, via graph traversal restriction to the subregion path, as
visualised in the example in Fig. 3. With subregion graph,
up to more than 8 times acceleration can be achieved, while
average path length ratios are maintained to as little as only
102.5%. CD cost scheme consistently had the lowest average
length ratios, whereas in most cases where paths are found,
FC cost scheme has the highest average speedup. If paths do
not exist, higher speedups of over 200 times can be achieved.

8. Conclusion and Future Work

We have presented subregion graph, a compact graph-based
data structure which can be used to accelerate path planning
in very large virtual environments involving diverse charac-
ters with various motion types without significantly sacrific-
ing path length. Subregion graph acts as an abstraction on

(© The Eurographics Association 2015.



N. M. Wardhana, H. Johan, & H. S. Seah / Accelerating Graph-based Path Planning Through Waypoint Clustering 63

top of a waypoint graph, and its primary role is to reduce the
number of visited waypoints during path planning. We also
presented a fast algorithm to automatically generate subre-
gion graph, as well as a path planning method using subre-
gion graph.

For future work, we will provide more discussion on the
influence of the subregion graph size with respect to the in-
put enhanced waypoint graph size, as well as comparison
with existing techniques. Exact path planning algorithm us-
ing subregion graph as well as using adaptive subdivision
(e.g. octree [GKB14]) to build a subregion graph are also a
few interesting directions to explore. It might also be pos-
sible distribute path planning process to different frames,
to allow other processes, such as rendering and the actual
movement, to be performed. Another research direction is
towards efficient multi-character path planning, for example
planning crowd paths in a very large urban scene. Finally,
due to the fast generation algorithm, we foresee that we can
perform real-time update of subregion graph in a dynamic
environment.
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