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Abstract
In this paper, we propose a simple-yet-effective method for isotropic meshing via Euclidean distance transforma-
tion based Centroidal Voronoi Tessellation (CVT). The proposed approach aims at improving the performance as
well as robustness of computing CVT on curved domains while simultaneously maintaining the high-quality of
the output meshes. In contrast to the conventional extrinsic methods which compute CVTs in the entire volume
bounded by the input model, our idea is to restrict the computation in a 3D shell space with user-controlled thick-
ness. Taking the voxels which contain the surface samples as the sites, we compute the exact Euclidean distance
transform on the GPU. Our algorithm is fully parallel and memory-efficient, and it can construct the shell space
with resolution up to 20483 at interactive speed. Since the shell space is able to bridge holes and gaps up to a
certain tolerance, and tolerate non-manifold edges and degenerate triangles, our algorithm works well on models
with such defects, whereas the conventional remeshing methods often fail.

1. Introduction

Triangle meshes have found widespread acceptance in com-
puter graphics as a simple, convenient, and versatile repre-
sentation of surfaces. However, raw meshes obtained from
3D scanners are often not ready for subsequent geometric
processing, since they may contain holes, gaps, noise, de-
generate triangles and non-manifold edges.

A popular approach to improve the mesh quality is via
centroidal Voronoi tessellation (CVT), which can generate
a highly regular distribution of sites with respect to a given
density function. A typical CVT-based remeshing method it-
eratively updates the generator of each Voronoi cell until it
coincides with its center of mass. Then the isotropic mesh
is obtained by the dual graph of the computed CVT. A key
step in CVT computation is to construct Voronoi diagrams
(VD) in each iteration. Although it is fairly simple to con-
struct VD in Euclidean spaces, computing VD on curved
domains is expensive due to lack of closed-form formula
of geodesic distance. A practical way is to compute the re-
stricted Voronoi diagrams (RVD) [YLL∗09], which is the
intersection between the given model and a CVT defined in
R3.

In this paper, we propose a new RVD-based computa-
tional framework for isotropic meshing, aiming at improving
the performance as well as robustness of computing RVD

while simultaneously maintaining the high-quality of output
meshes. Rather than computing CVTs in the entire volume
bounded by the input model, our idea is to restrict the com-
putation in a 3D shell space with user-controlled thickness.
Since the shell space is able to bridge holes and gaps up
to a certain tolerance, and also tolerate non-manifold edges
and degeneracies, our algorithm works well on imperfect
meshes with such defects, whereas the conventional remesh-
ing methods often fail. See Figure 1.

Input mesh CVT Dual triangulation

Figure 1: Isotropic meshing on an imperfect mesh with non-
manifold edges, degenerate triangles and holes.

This paper makes the following contributions:

• We propose an efficient framework for constructing
isotropic meshes via voxel representation. It can com-
pletely avoid the computationally expensive components,
such as implicit function fitting, isosurface extraction, and
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geodesic distance computation, which are often used in
the existing methods.

• Our framework can produce topologically consistent shell
space with user control so that it can bridge holes and gaps
and tolerate noise to some certain extent. It also works
well for models with non-manifold edges and degenerate
triangles.

• We present a fast and memory-efficient algorithm for
computing narrow-banded distance fields on GPUs. The
CVT, RVD and the dual Delaunay triangulations are also
computed in parallel on the GPUs.

2. Related Work

There is a large body of literature in Voronoi diagrams, dis-
tance computation, Delaunay triangulations and their broad
applications. Due to space limit, we review only the most
relevant work.

A centroidal Voronoi tessellation is a Voronoi diagram
whose generating points are the centers of mass of the cor-
responding Voronoi cells. Thanks to its many favorable ge-
ometric properties, CVT has been used in a wide range of
applications [DGJ02]. CVT can be defined by the critical
points of the CVT energy function. A popular way to com-
pute CVT is Lloyd’s algorithm [Llo82], which iteratively
moves each generator to the corresponding mass center un-
til convergence. Lloyd’s method is conceptually simple and
easy to implement, however, as a gradient-decent method,
it has only linear convergence rate. Liu et al. [LWL∗09]
proved that the CVT energy function has 2nd order smooth-
ness for most situations encountered in computer graphics,
therefore, one can improve the performance of CVT com-
putation by the Newton or quasi-Newton-like optimization
methods, which have quadratic or super-linear convergence
rate. Rong et al. [RLW∗11] developed a GPU-based method
for computing the CVT on the plane and observed signifi-
cant speedup of these GPU-based methods over their CPU
counterparts.

To compute CVT on genus-0 surfaces, some researchers
[AdVDI03,RJSG11,SGJ13] parameterized the input models
to R2 and computed a 2D CVT whose density function com-
pensates the parameterization distortion. Recently, Wang et
al. [WYL∗15] proposed an intrinsic method for comput-
ing CVT on arbitrary manifold triangle meshes. Rather than
computing the mass centers of Voronoi cells that involves
area integration, their algorithm computed the Riemannian
centers using exponential maps. The parameterization-based
and exponential map based CVT algorithms are intrinsic
and hereby independent of the embedding space. However,
they are computationally expensive and in practical for time-
critical applications.

Rather than computing CVT on surfaces directly, Yan et
al. [YLL∗09] [YWLL13] proposed a novel indirect method
by computing the restricted Voronoi diagram, that is, the in-
tersection between the input mesh and a 3D CVT. They also

Figure 2: Overview of our approach on the Sculpture model.
(a) Input mesh; (b) Shell space with d = 3; (c) CVT with 3K
seeds; (d) The output isotropic mesh.

adopted the quasi-Newton method for efficient computing
the 3D CVT in the volume bounded by the input mesh. Chen
et al. [CCW12] proposed an iterative method for generating
constrained centroidal Delaunay mesh (CCDM). With local
vertex relation, their method does not require geodesic dis-
tances and can guarantee the computed CCDM has the same
topology as the input mesh. However, their method cannot
handle non-manifold edges and degenerate triangles.

Li et al. [LZM∗14] presented an elegant method for trian-
gulating the conformal uniformization domain via the pla-
nar Delaunay refinment. They gave explicit estimates for the
Hausdorff distance, the normal deviation, and the differences
in curvature measures between the surface and the mesh.

3. Algorithm

Let O denote the input 3D mesh. We first construct a voxel
representation M of O at a given resolution res. Then we con-
struct a shell space P̄ consisting of off-surface points, where
each point in P̄ has a distance dp ≤ d to its closest point
on M. The threshold d is specified by the user and model-
dependent.

Our isotropic meshing algorithm adopts Lloyd’s frame-
work. Starting with k randomly generated seeds, it mini-
mizes the CVT energy by iteratively updating the seed posi-
tions. In each iteration, it computes the Voronoi diagrams
confined in the shell space and moves the seeds toward
the corresponding mass centers. The algorithm projects the
seeds back to P̄ if they are outside the shell space. Upon
convergence, it propagates the seed information in the shell
space to look for connected Voronoi cells and extracts the
dual Delaunay triangulation. Our method is described in de-
tail in the next subsections, and furthermore outlined in Al-
gorithm 1.

3.1. Memory-efficient Shell Space Construction

We introduce a memory-efficient way to construct shell
spaces in real-time. We extend the Parallel Banding Algo-
rithm (PBA) of Cao et al. [CTMT10] to compute Euclidean
distance transform (EDT) in the narrow-band manner. Their
algorithm partitioned the input domain into small chunks of
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Algorithm 1 Isotropic Meshing based on EDT
Input: 3D surface O, voxel resolution res, shell space thick-

ness d, convergence threshold ε, and number of seeds k
Output: Isotropic mesh with k vertices

1: S← k random seeds
2: M← Voxelization(O, res)
3: P̄← ShellSpaceConstruction(M, res, d)
4: while convergence not reached do
5: Vk ← SearchClosestSeedInShell(P̄, S)
6: Ck ← CenterMass(Vk)
7: C̄k ← UpdateSeed(P̄, Ck)
8: S← C̄
9: end while

10: Vk ← ShellFlooding(P̄, S)
11: return DualTriangulation(Vk)

equal size, which can be processed in parallel. The results
are then merged concurrently. Although their method is ex-
act and efficient, it is not practical for large-scale models
due to rapidly growing memory consumption. Our method
addresses this memory issue by on-the-fly computation and
integrating fast bitmap indexing technology on GPUs. We
explain the principle in two dimensions for simplicity; the
idea can be easily extended to three dimensions.

The input image is divided into a virtual grid made up of
occupied and non-occupied pixels, where the former pixels,
denoted as sites ∈ S, are run-length encoded. Every pixel
goes through a two-step process : (1) finding the nearest site
Si j , among all sites in row j; (2) determining the closest site,
among all the nearest sites in the current column i. For the
first step we assign one thread to process a row because it’s
more efficient to do more computation in a single thread than
repeatedly accessing global memory with multiple threads.
The second step extends the dividing-and-merging approach
of PBA, with employing warp†-vote and warp-shuffle func-
tions in CUDA to exchange the nearest sites information
within a chunk. We make every thread in the same warp do-
ing the same calculation, hence greatly reducing the warp
variation that often compromises performance.

Let’s take Fig. 3 as an example. When the threads in a
warp come to column i, each row will compute their cor-
responding nearest sites Si j . The nearest site of the current
pixel is colored in blue. Note that only some sites (Blue-
blank dots) satisfy the the distance constraint. Therefore, the
sites Si1 of thread 1 can be safely discarded. We set a bar-
rier to ensure that every thread obtains some sites before
exchanging information. After synchronization, we sweep
each Si j to other threads in the same warp to update the
closest site of the current pixel (i, j), based on the distance
function di j. A bitmap stores a key (boolean) value for every

† A warp is a pool of threads that executes physically in parallel.

Figure 3: An illustrative example on distance field compu-
tation in a narrow band. See the text for the description and
function ShellSpaceConstruction for the pseudo code.

// To ease representation, we show the 2D version here
function ShellSpaceConstruction(M,res,d)
for all thread j = 0 to res in parallel do

for i = 0 to res do
Si j← GetNearestSite(M,,j,d)
discard Si j if ‖ di j ‖> d
set barrier // Ensure every thread gets Si j
// Compare with other threads in same warp
// warp size = h, current warp ID = k
Ck ← Si j
for x = 0 to h do

if IsCloser(Ck, Cx) then
Ck ← Cx
id← x

end if
end for
// Mark the closest site of pixel (i, j)
Bitmap[i][id] = true

end for
end for
Collect and merge the closest sites if Bitmap[i][ j] = true
return P̄ // return pixels located inside the shell

pixel. The ’0’s indicate that the corresponding nearest sites
are not possible to be the closest sites of the current column.
Then the threads repeat the same procedure for the next col-
umn i+1 until they reach the last column. In the final step we
collect the closest sites with flag ’1’ in different chunks and
merge them to get the pixels that form the shell region. Since
the nearest sites are computed on-the-fly and the temporary
result is indexed by bitmap only, our algorithm requires less
memory than the PBA method.

3.2. Constructing 3D Voronoi Diagrams in Shell Space

As mentioned above, the shell space represented by P̄ is used
as constraints to construct Voronoi diagrams and update the
positions of seeds. Initially, the seeds S = {s1, ..,sk} are lo-
cated on the input mesh. We collect points ∈ P̄ that share the
same closest seeds to build Voronoi diagrams.

We perform a proximity search to find the closest seed for
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all query points from P̄. To speed up the process, the seeds
are projected onto a uniform grid G with smaller resolution
of res (e.g. 323), such that, for a query point q, it just looks
up the seeds in the grid cell Gq where q falls into. In case
any border of the grid cell is closer to q than the seed found
in Gq, query point q looks up the neighbor cell of Gq.

3.3. Computing CVTs

Updating the seeds’ position towards uniform distribution is
crucial for constructing CVT. Based on the following energy
function, optimal positions can be reached by minimizing
E(S).

E(S) =
m

∑
i=1

∫
Vi

ρ(p)‖p− si‖2dp,

where Vi is the Voronoi cell of seed si, p ∈ P̄ and ρ is a non-
negative user-defined density function.

According to Lloyd’s algorithm, a seed si moves itera-
tively toward the corresponding mass center ci of Voronoi
Diagram Vi until convergence. However, the mass center
could be located far from the surface, as is constructed in
the shell space. We consider the following new position to
replace mass center for each iteration.

c̄i = si +u
−→sici

‖−→sici‖
,

where u ∈ R+ is the magnitude of movement of seeds. We
observed that if the seeds move in different magnitude, the
area of CVTs will largely vary depending on surface cur-
vature. In addition, in order to guarantee the topology con-
sistence, the new center will be projected back to M if it
exceeds the shell space, as shown in Fig. 4.

(a) (b)

Figure 4: Illustration of the update process with two seeds
in an iteration. (a) Yellow dots are the seeds of Voronoi cells
Vi (in red) and Vj (in green). Red and green dots are their
mass centers respectively. (b) The seeds move along vector
−→sc to the new centers (blue dots). Project c̄ j (light blue dot)
to the surface since it is outside the shell region.

3.4. Computing Dual Triangulations

Upon convergence we have all the generators uniformly dis-
tributed. The remain part describes how to extract the dual
Delaunay triangulation.

First, we find the direct neighbors of all seeds, where the
direct means if there exists two voxels from their Voronoi
cells that are connected. The adjacency neighbors can be
found by flooding all seeds information to all voxels in the

shell∈ P̄. Each voxel associates a hash table to hold the loca-
tion of neighbors (26 voxels). Each propagation updates the
current seed information to neighbor voxels until all voxels
are reached. This approach avoids producing wrong network
for seeds that are geometrically close, but topologically far
from each other. After that we organize their direct neigh-
bors in clockwise order and finally extract the triangle mesh.

4. Experimental Results

All tests were performed on a PC with an Intel Xeon E5
2.5GHz CPU and an nVidia Quadro K5000 with 4GB RAM.

4.1. Narrow-banded Distance Fields

Table 1 lists the computational time and the peak memory
under varying parameter d and res ( Fig.5). Clearly, when
d increases, the computational time increases insignificantly
with the increased amount of nearest sites in the shell. This
is due to the low cost of intra-warp communication and the
reduction of warp divergence in our algorithm. Also, the
memory consumption is remarkably small, considering the
scene is in high resolution uniform grid. Traditional algo-
rithms (e.g., [CTMT10]) usually require memory at least 10
times more than ours.

Table 1: Performance (time in seconds) of our algorithm on
different d in resolution 10243 and 20483.

Model d Memory Time Memory Time
Dinosaur 1 149MB 1.186 1.18GB 12.3

3 174MB 1.239 1.23GB 13.1
6 206MB 1.313 1.30GB 13.3
9 235MB 1.383 1.36GB 13.5

Table 2 compares our algorithm with PBA on the Sculp-
ture model in resolution 5123. Since PBA computes a full
distance map, their performance is independent of distance
d. The result shows that our algorithm consumes signifi-
cantly less memory and runs much faster than PBA with a
reasonably small d.

Table 2: Comparison of our algorithm with PBA in resolu-
tion 5123 (time in seconds).

Model Memory d Time
Sculpture (PBA) 1073MB N/A 0.310
Sculpture (Ours) 26.6MB 1 0.147(×2.1)

33.7MB 3 0.173 (×1.8)
49.7MB 6 0.200 (×1.6)
66.1MB 15 0.286 (×1.1)
76.2MB 20 0.339(×0.9)

4.2. CVT Computation

Similar to [WYL∗15], we adopted the following criteria to
measure the triangle mesh quality. (1) Triangle quality Q(t)
defined by 6Pt/

√
3Ht , where Pt and Ht are the inradius and

the length of the longest edge of triangle t. (2) The smallest
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Figure 5: Evaluating the mesh quality under various shell space parameter d. (a) and (b) show the triangulation quality
measure and the singularity ratio. (c) We also observe that our GPU-based Lloyd algorithm converges in usually 100-200
iterations and d has little impact on the convergence rate. The horizontal axis shows the iteration number and the vertical axis
is the normalized CVT energy function.

angle θmin and the average θavg of minimal angles of all tri-
angles. (3) The ratio of singularities, defined by vs/k, where
vs is the number of non 6-valent vertices and k is the number
of vertices.

We allow the user to balance accuracy and efficiency in
the choice of offset d. Figure 5 describes the relationship be-
tween the distance d, the number of generator and the qual-
ity of remeshed surface. As the offset increases to 9, with
4k generators, the mesh quality of dinosaur model dramat-
ically drops. This also happens when the offset decreases
to 2 with 1k generators. Figure 5(b) illustrates the quality
difference between different d clearly. Along with other ex-
amples in Table 3, we can show that the mesh is at best
quality with offset distance in specified range (2 to 6). Fig-
ure 6 compares our method with two parameterization-free
isotropic meshing methods, the intrinsic CVT method by
Wang et al [WYL∗15] and the extrinsic RVD method by Yan
et al. [YLL∗09]. Thanks to the GPU-friendly structure and
the computational power of modern GPUs, our method runs
significantly faster than their CPU-based implementations.

5. Conclusion and Future Work

This paper presents a robust and efficient method for con-
structing isotropic meshes using Euclidean Distance Trans-
form. Our algorithm constructs a narrow band space en-
closing the input surface, in which 3D centroidal Voronoi
tessellations and restricted Voronoi diagrams are computed.

Our algorithm is fully parallel and memory-efficient, and it
can construct the shell space with resolution up to 20483

at interactive speed. Moreover, our method can process im-
plicit surfaces, polyhedral surfaces and point clouds in a uni-
fied framework. Computational results show that our GPU-
friendly isotropic meshing algorithm produces results com-
parable to state-of-the-art techniques, but runs significantly
faster than the conventional CPU-based implementations.

Our current implementation adopts a constant resolution
to construct the shell space. This, however, is not optimal,
since it is over-pessimistic for the regions with fairly flat ge-
ometry, and it may not be enough for the highly-curved. In
the future, we will develop a geometry-aware algorithm for
parallel constructing the shell space with adaptive resolution.
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