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Abstract

Surface registration is the process that brings scans into a common coordinate system by aligning their overlap-
ping components, which can be achieved by finding a few pairs of matched points on each scan pair using shape
descriptors and employing the matches to compute an alignment transformation. This paper proposes a local vox-
elizer descriptor, and the key idea is to define a unique local reference frame (LRF) using the local shape around
a basis point, perform voxlization for the local shape within a cubical volume aligned with the LRF, and con-
catenate local features extracted from each voxel to construct the descriptor. A pairwise registration algorithm is
developed by choosing a single pair of matched points using the local voxelizer descriptor, and computing a rigid
transformation based on aligning the corresponding LRFs. Quantitative experiments show that our algorithm can
register scan pairs with small overlap, while maintaining acceptable registration accuracy.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Surfaces and object representations

1. Introduction

Surface registration is essential for 3D shape acquisi-
tion and modeling, which brings scans or partial sur-
faces captured from different views into a common co-
ordinate system. Given a pair of scans, the goal of rigid
surface registration is to find a rigid transform that op-
timally positions one scan relative to the other by align-
ing their overlapping components. When the pose of two
scans are close to each other, Iterative Closest Points
(ICP) [BM92] [CM92] can be used to register the scans.
However, this usually requires manual effort to position the
scans for a coarse alignment. To register two scans with ar-
bitrary initial poses, a few pairs of matched points are re-
quired to be established for estimating an aligning trans-
form [CHC99] [GMGP05] [MBO06] [AMCo08] [MAM14].

The point matching problem can be solved by using local
shape descriptors, which are quantities computed for each
basis point on a scan surface by using the local shape (i.e.,
support) around the point. Points with similar descriptors
potentially correspond. Normally, a few (at least 3) corre-
sponding points found by matching descriptors are required
to compute a rigid transform. By defining a unique LRF for
each point using its support and attaching the LRF with de-
scriptors, using one pair of matched points is able to compute
a rigid transform based on aligning the three corresponding

axes of their LRFs [TSS10] [GSB∗13]. This drastically re-
duces the space of searching corresponding points (i.e., from
at least 3 pairs to 1 pair), and thus increases the chance to
find correct aligning transforms for the scans.

Taking advantage of a uniquely defined LRF [GSB∗13],
we propose a new shape descriptor, called local voxelizer.
The key idea is to firstly define a unique LRF using the sup-
port around a basis point and then perform voxlization for
the local shape within a cubical volume aligned with the
LRF. The descriptor is constructed by concatenating shape
features extracted from each voxel. To find out local shape
feature that ensures high discriminative power of the de-
scriptor, we propose a set of feature candidates and perform
quantitative comparison among them.

A pairwise registration algorithm is developed by using
local voxelizer to represent scans and find corresponding
scan points. First, a number of matches of scan points are
established by comparing their descriptors. Then, aligning
transform candidates are generated by aligning the two LRFs
of each matched point pair and further ranked according to
their descriptor distances. Lastly, the transform that ensures
the scan pair to have maximal surface overlapping area is
selected. Experiments on scans of several 3D models show
that our algorithm can register scan pairs with small overlap,
while maintaining acceptable registration accuracy.
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Figure 1: Constructing local voxelizer. (a) Select a basis point; (b) define support using a sphere centered at the basis point;
(c) construct LRF; (d) define a larger local shape using a cube aligned with the LRF; (e) voxelize the local shape.

2. Related Work

Rigid surface registration can be achieved either by using
ICP or matching local shape descriptors. We mainly review
methods that use descriptors since they are more related.

Low-dimensional shape descriptors, such as integral vol-
ume [GMGP05] [PWHY09], surface curvature [GCO06],
and surface hash [ART10], are easy to compute and com-
pare. Yet, they have low discriminative ability since differ-
ent points on the same scan surface could have very close
descriptor values. Thus, multiple ambiguous matches can be
resulted and a further disambiguating process is required.

High-dimensional descriptors provide a fairly detailed de-
scription of the shape around a surface point, and thus can
be directly used to solve the correspondence problem. John-
son et al. [JH99] proposed a spin image representation by
spinning a 2D image about the normal of a feature point
and summing up the number of points falls into the bins
of that image. Huber and Hebert [HH03] further applied
the spin images for automatic surface registration. Frome et
al. [FHK∗04] proposed 3D shape context descriptor by accu-
mulating 3D histograms of points within a partitioned sphere
centered at a feature point. Mian et al. [MBO06] proposed a
3D tensor representation by constructing an LRF from a pair
of oriented points and encoding the intersected surface area
into a multidimensional table.

More recently, Zhong [Zho09] proposed intrinsic shape
signatures by improving [FHK∗04] based on a different par-
titioning of the 3D spherical volume and a new definition of
LRF with ambiguity (four variants). Tombari et al. [TSS10]
proposed the signature of histograms of orientations (SHOT)
by constructing a unique LRF for a feature point and con-
catenating local histograms defined on each bin within a 3D
spherical volume. Guo et al. [GSB∗13] constructed a unique
and more robust LRF, and then extracted a rotational project
statistics (RoPS) descriptor for a feature point.

Comparing with [TSS10] [GSB∗13] that also attach a
unique LRF to shape descriptors, local voxelizer is based
on the voxelization of local shape within a cubical volume
(rather than a spherical volume) aligned with the LRF, and
partitions the volume into uniform bins (i.e., voxel) such that
local feature inside each bin can be equally weighted and
extracted more easily, e.g., surface area feature that requires
mesh clipping. Moreover, we propose a set of feature can-

didates that can be extracted from each bin, and perform
a quantitative comparison among them to find out the best
one to construct the descriptor. Comparing with [MBO06]
that also uses voxelization to construct 3D tensors, local
voxelizer performs voxelization within a uniquely defined
LRF, and thus enables scan alignment using a single pair of
matched points based on aligning the LRFs. As a result, local
voxelizer requires less amount of overlap for aligning scans.

3. Local Voxelizer Shape Descriptor

We take a surface mesh S as input. If a 3D point cloud is
given, we first convert it into a mesh [HDD∗92]. A local
voxelizer descriptor is a function that assigns to each point
p ∈ S a vector f (p) ∈ Rm by analyzing the support around
p, where m is the length of the vector.

3.1. Local Voxelizer Construction

Given a basis point p and a support radius r, we construct
local voxelizer by defining a unique LRF using the support
around p and performing local voxlization within the LRF,
see Figure 1. The descriptor vector is calculated by concate-
nating value(s) computed from shape features (e.g., point,
normal, curvature) of local mesh triangles within each voxel.

Constructing LRF. We define the support around p by in-
tersecting the input mesh S with a sphere of radius r cen-
tered at p, see Figure 1(b). Taking the support as input,
we construct an LRF using the method in [GSB∗13] with
two steps: 1) construct three orthogonal directions based
on principal component analysis (PCA) of triangles in the
support; 2) disambiguate the sign of each orthogonal di-
rection to obtain three unique coordinate axes of the LRF,
see Figure 1(c). Note that the sign disambiguation method
in [GSB∗13] could fail for local symmetrical surfaces, e.g.,
flat or spherical surfaces. Thus, we adopt the surface normal
of p to assist the disambiguation such that the principal axis
associated with the smallest eigenvalue (i.e., the red axis in
Figure 1(c)) is consistent with the normal of p.

Local Shape Voxelization. Once the LRF is constructed,
we can define a cubical volume centered at p, whose edges
are aligned with the LRF and have length of 2r, see Fig-
ure 1(d). Note that such cubical volume is the smallest one
that contains the support used to construct the LRF. We in-
tersect the cubical volume with the input mesh S, obtaining
a local surface patch Sp.
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Table 1: Feature candidates extracted from local shape
within each voxel. Note that F2 and F6 use centroid posi-
tion relative to the minimum point of the voxel cube.

Taking Sp as input, we perform local voxelization for it
by partitioning the cubical volume into K×K×K grids (i.e.,
voxels), see Figure 1(e). For each voxel Vi, we find the in-
tersection between Vi and Sp by clipping Sp using the six
planes of Vi. The resulting triangles in Vi are denoted as Si

p.
For each non-empty voxel, we compute value(s) based on the
shape features of Si

p, while empty voxels are assigned default
zero value(s). We calculate the descriptor vector by concate-
nating the value(s) assigned for each voxel. Since most of
the voxels in the voxelization are likely to be empty, the re-
sulting descriptor will have many zero elements.

Extracting Local Feature Candidates. As described
above, for each non-empty voxel Vi, one or a few values
need to be computed from Si

p for representing the local shape
in Vi. In Table 1, we propose a set of feature candidates that
can be extracted, as well as the number of output values. For
each candidate, we normalize its value(s), e.g., F1, F2, F5,
and F6 are normalized relative to the voxel dimension.

Most of the proposed feature candidates are straight-
forward to calculate except F5 and F6, and we estimate
them using a uniform sampling approach [SFLF15]. For a
local voxelization with K×K×K voxels, we first build a
(b×K +1)3 uniform 3D point grid within it, where we have
b+1 sample points along each edge of each voxel. Then we
cast (b×K +1)2 rays through the local mesh Sp, where each
ray passes through (b×K + 1) sample points. We compute
intersecting points between each ray and Sp, and identify
each intersecting point as inner or outer based on the angle
between the normal of the point and the ray direction (we set
the threshold as 90 degree). We classify each sample point
as interior or exterior by checking if it locates between inner
intersecting point (or the voxel boundary) and outer inter-
secting point along the ray direction, see Figure 2. After that,
F5 is estimated by counting the number of interior sample
points and then computing their coverage percentage within
the voxel, while F6 is estimated by averaging the positions

Figure 2: Our local shape volume and centroid estimation
method for ray directions along (a) x-axis and (b) y-axis of
LRF, where b = 6. Inner and outer ray-mesh intersecting
points are marked as yellow and red circles, while interior
and exterior sample points are marked in green and gray.

of all interior sample points. In our experiments, we select
performing the ray casting along x-axis of the LRF such that
most rays will intersect Sp only once, see Figure 1(e) and
Figure 2(a). Note that the concept of F5 is similar to the in-
tegral volume feature employed in [GMGP05], while using
a cubical instead of spherical bounding volume.

3.2. Local Voxelizer Generation Parameters

The local voxelizer descriptor has three parameters: (i) the
support radius r; (ii) the voxel grid resolution K; and (iii) the
local feature f extracted for each voxel.

We conducted experiments for different settings of param-
eters on the UWA dataset [MBO06] using the criterion of
recall versus 1-precision curve (RP Curve) [MS05], which
is calculated as follows. Given two scans Si and Sj and the
ground truth transformation, a point on Si is matched against
each point on Sj to find the closest match by using the Eu-
clidean distance of two points’ descriptor vectors. If the ratio
between the smallest distance and the second smallest one is
less than a threshold τ, then the point on Si and the closest
one on Sj are considered a match. A match is considered as
a true positive only if the distance between the physical lo-
cations of the two points is sufficiently small, otherwise it
is considered as a false positive. Thus, recall is the number
of true positives relative to the total number of correspond-
ing points, and 1-precision is the number of false positives
relative to the total number of matches. An RP curve can be
further generated by varying the threshold τ.

Support Radius. Support radius r determines the amount
of surface that is encoded by local voxelizer. A large sup-
port radius enables the descriptor to encapsulate more in-
formation of scan surface and therefore provides more de-
scriptiveness, yet it also makes the descriptor more sensitive
to the overlapping size of input scans since the overlapping
region of two scans need to be large enough to contain sup-
ports with radius r for at least one pair of matched points.
We tested the performance of the descriptor on the UWA
dataset with respect to a number of support radii. The other
two parameters were set constant as K = 12 and f = F1.
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Figure 3: RP curves with respect to different settings of (a) support radius, (b) voxel gird resolution, and (c) local feature.

Figure 3(a) presents the generated RP curves. The plot
shows that the descriptor performance improved signifi-
cantly when r was increased from 0.02d to 0.05d, and im-
proved slightly when r was further increased from 0.05d to
0.08d, where d is the average diagonal size of test scans.
Therefore, we select r = 0.05d as a tradeoff between the de-
scriptiveness and robustness to scan overlap size.

Voxel Grid Resolution. Voxel grid resolution K deter-
mines the descriptiveness of the descriptor since a dense par-
tition offers more details about the local shape. However, a
dense partition also requires more computation cost for both
descriptor construction and comparison. We tested the per-
formance of the descriptor with respect to a number of dif-
ferent partitions. The other two parameters were set constant
as r = 0.05d and f = F1.

Figure 3(b) presents the generated RP curves. The plot
shows that the descriptor performance kept improving when
K was increased from 2 to 20. However, the improvement
was not that obvious after K has reached 12. Therefore, we
select K = 12 as a tradeoff between the descriptiveness and
computation cost.

Selecting Local Features. Selection of local features plays
an important role in generating the descriptor. It determines
not only the descriptor’s ability to encapsulate local shape in-
formation but also the size of the descriptor vector. We tested
the performance of the descriptor with respect to the feature
candidates presented in Table 1. The other two parameters
were set constant as r = 0.05d and K = 12.

Figure 3(c) presents the generated RP curves. The plot
shows that integral features (i.e., F1 and F5) achieved the
best performance, and F5 is a bit better when 1-precision is
close to zero. The performance of two centroid features (i.e.,
F2 and F6) is very close to each other, yet still not compa-
rable with that of integral features. The differential features
(i.e., F3 and F4) obtained the worst performance. One rea-
son is that their values are close to zero when the local sur-
face is flat, which is the same as the default value assigned
for empty voxels, making discriminating such surfaces dif-
ficult. Moreover, differential features are sensitive to mesh
noise and varying resolution, thus we suggest avoiding us-
ing them for constructing local voxelizer.

4. Pairwise Surface Registration using Local Voxelizer

So far we have developed a novel shape descriptor based on
local voxelization within a unique LRF. In this section, we
apply the descriptor for pairwise surface registration. Given
a data scan Sd and a fixed reference scan Sr, our pairwise
registration algorithm consists of three key steps to align Sd
with Sr, i.e., scan representation, generating scan alignment
candidates, and selecting best scan alignment.

Step 1: Scan Representation. Given a scan, we first se-
lect N seed points from the scan point cloud. To represent
the scan more closely, we want the seed points to cover the
whole scan surface and to avoid picking points that are too
close to each other. Thus, we randomly sample the point
cloud and enforce minimal separation distance among the
samples to obtain N seed points. For each seed point, the
corresponding LRF and local voxelizer are constructed, and
stored in a library. We select N = 2000 in experiments as a
tradeoff of computation cost and sampling performance.

To align a pair of scans Sd and Sr, we simply can match
the descriptors of their sampled seed points. However, since
the seeds points cover the whole scan surface evenly, one
randomly picked point on Sd could match one seed point on
Sr correctly, giving that the physical distance between the
seed point and the real match on Sr is small. In our exper-
iment, we find that sampling M = 200 feature points on Sd
and matching their descriptors with those of N seed points on
Sr can achieve good matching result, and vice versa. Thus,
for each scan, we further sample M feature descriptors from
the original N seed descriptors, and store them in the library.

Step 2: Generating Scan Alignment Candidates. To
align Sd with Sr, each feature descriptor of Sd is matched
against all seed descriptors of Sr. If the Euclidean distance
between the two descriptor vectors is less than a threshold,
the feature point on Sd and its closest seed point on Sr are
considered a match. Note that the match is not guaranteed
to be correct since: 1) there could be no or very small over-
lap between Sd and Sr; 2) the local shape around the fea-
ture point is not discriminative, e.g., flat or spherical; and 3)
there exist similar or symmetrical shape features on Sr. Each
generated match creates a scan alignment candidate (i.e., a
4×4 transformation matrix) by aligning the three axes of the
uniquely defined LRFs, see Figure 4 for two examples.
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Figure 4: Align two scans of CHEF by matching local vox-
elizer. (a&b) A pair of correctly matched descriptors (zoom-
in views show the local shapes); (c) align the two scans
based on the LRFs; (d&e) another pair of matched descrip-
tors; (f) the two scans are not aligned properly since the se-
lected local shape is not discriminative (i.e., flat).

Step 3: Selecting Best Scan Alignment. By matching the
descriptors of Sd and Sr, we can obtain around M alignment
candidates. We first sort these candidates based on the de-
scriptor distance and then pick the top five candidates with
the smallest distance. To find the (real) best one from the
five candidates, we evaluate each candidate by transforming
Sd into Sr and estimating the normalized overlapping area
between the transformed Sd (denoted as St

d) and Sr. In de-
tail, we first build a kd-three for the point cloud of Sr. Then
for each point in St

d, we find its closest point in Sr. We con-
sider a point in St

d and its closest point in Sr as overlapping
if their distance is smaller than a threshold. The score of the
alignment candidate is calculated as the overlap area divided
by the surface area of Sd. Lastly, we select the one with the
highest score from the five candidates as the output.

By the above procedure, a pair of scans with certain
amount of overlap can always be properly aligned, which
can be further refined by using ICP [BM92]. Since the ini-
tial transformation calculated by aligning LRFs is very close
to the real one, near perfect alignment can be achieved af-
ter only one or two ICP iterations. Figure 5 shows two scan
alignments before and after using ICP. Their accuracy (with-
out using ICP) are reported in Section 5.

5. Results and Quantitative Analysis

We implemented our method in C++ and executed it on a
desktop PC with an Intel i7-3770 CPU (3.4GHz, 4 cores) and
8GB memory. In general, our method took around 20 sec-
onds to register a pair of scans in the UWA dataset [MBO06],
where the number of triangles of scans ranges from 50k to
100k, see Figure 4 and 5 for examples. We further evaluate
our pairwise algorithm according to two criteria: 1) accuracy
of alignment; and 2) required amount of scan overlap.

Figure 5: Pairwise alignment for CHICKEN and T-REX. (a)
Input scans; aligned scans (b) before and (c) after using ICP.
(b) shows also the matched local voxelizer for the alignment.

(1) Accuracy of Alignment. To evaluate accuracy of our pair-
wise registration algorithm quantitatively, we compare the
transformation generated by our algorithm (without ICP re-
finement) with the ground truth transformation. In detail, for
each scan pair Si and Sj, the ground truth rotation matrix
(RiGT) and translation vector (tiGT) of Si with relative to
Sj were computed by manually positioning the scans for a
coarse alignment and then refining it using ICP. Next, the
transformation (i.e., Ri and ti) resulting from our pairwise
algorithm is compared to the ground truth transformation.
Using the similar criterion as in [MBO06], the error in the
two rotation matrices was calculated using Equation 1,

θie = arccos

(
trace(RiR

−1
iGT)−1

2

)
180
π

(1)

where θie is zero in the case of no rotational error. Similarly,
the translational error tie was calculated using Equation 2.

tie = ‖ti− tiGT ‖ (2)

We performed this experiment on the scans of four objects
in the UWA dataset. Figure 6(a) shows that all rotational er-
rors are less than 2 degree, and most of them are around 0.5
degree. Figure 6(b) shows that the translational errors are all
less than 0.01d, and most of them are around 0.003d, where
d is the average diagonal size of the scans. We also computed
accuracy for alignment examples of CHICKEN and T-REX

shown in Figure 5, which have rotational errors of 0.28 and
0.54 degree, and translational errors of 0.001d and 0.003d,
respectively.

Figure 6: Histograms of (a) rotational and (b) translational
errors of our pairwise registration algorithm on four models.
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(2) Required Amount of Scan Overlap. We also evaluated the
algorithm performance against varying amounts of overlap
between each pair of scans. We define the amount of overlap
between two scan meshes Si and S j using Equation 3,

overlap =
C(Si,Sj)

min(V(Si),V(Sj))
(3)

where V(S) denotes the number of vertices of scan S, and
C(Si,Sj) denotes the number of corresponding vertices of Si
and Sj. We calculated overlap between all possible L(L−
1)/2 pairs of scans, where L is the total number of scans per
object. Next, we used our pairwise algorithm to align each
scan pair. We categorized each alignment result as correct or
incorrect by measuring its accuracy, i.e., rotational error less
than 5 degree and translational error less than 0.02d.

Figure 7: Top: Histograms of correctly and incorrectly
aligned scan pairs with respect to the amount of overlap.
Bottom: two example alignments when the overlap is small.

We performed this experiment on two objects in the UWA
dataset. Figure 7(top) shows the histograms of correctly and
incorrectly aligned scan pairs, in which our method achieved
remarkable performance when the overlap is above 30%.

6. Conclusion

This paper proposes a novel local voxelizer descriptor for
pairwise surface registration. Local voxelizer is constructed
by defining a unique LRF for the support around a basis
point and performing local voxelization within the LRF. Two
scans can be aligned by finding a single pair of matched
points using the descriptor and aligning the corresponding
LRFs. Experiments show that our algorithm can align scan
pairs with 30% overlap or above, with acceptable accuracy.
Limitations. First, our algorithm may not be suitable for
registering very noisy scans since it requires surface normal.
Second, our algorithm needs to covert an input point cloud
into a mesh, in which useful information could be lost.
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