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Abstract
Image-space occlusion culling is an useful approach to reduce the rendering load of large polygonal models in
scientific computing, mechanical engineering, or virtual medicine. Like most large model techniques, occlusion
culling trades overhead costs with the rendering costs of the possibly occluded geometry.
In this paper we present an occlusion culling toolkit for OpenSG. The toolkit includes three different image space
techniques utilizing graphics hardware. These techniques are supported by other software techniques to optimize
the occlusion culling queries. All techniques are conservative and usable with dynamic scenes, because no pre-
computing is necessary.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image Generation]: Viewing Algo-
rithms, Occlusion Culling; I.3.4 [Graphics Utilities]: Application Packages, Graphics Packages; I.3.7 [Three-
Dimensional Graphics and Realism]: Hidden Line/Surface Removal;

1. Introduction

Faster visualization of large datasets in scientific computing,
mechanical engineering, or virtual medicine are in the fo-
cus of several techniques. Most of them reduce the number
of polygons, others are using sampling techniques like point
sampling or ray tracing. To reduce the number of polygons,
level-of-detail 5 or impostor techniques can be used. Occlu-
sion culling is another approach for faster visualization of
large datasets. Hereby hidden parts of a scene are detected
and excluded from the rendering process. In this paper we
will present a toolkit for occlusion culling for OpenSG. We
will present the base techniques of the toolkit to calculate
occlusion and further approaches to enhance these base tech-
niques.

OpenSG13 is a portable scene graph toolkit with the fo-
cus on real time rendering. With the OpenSG PLUS project,
OpenSG will be enhanced with Large Scene Support, High
Level Primitives and High Level Shading. The presented oc-
clusion culling techniques are part of the Large Scene Sup-
port.

This paper is organized as follows; the next section
briefly reviews related toolkits for visualization and oc-
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clusion culling techniques. The third section describes the
toolkit and its features. Results are shown in Section 4, fol-
lowed by the conclusions.

2. Previous Work

Scene graph programming toolkits are widely available, e.g.
Open Inventor, IRIS Performer, Cosmo3D, but most of them
have no support for occlusion culling. One of the scene
graph programming toolkits, which have support for occlu-
sion culling is Jupiter8, 2. Jupiter focuses on large model
rendering and provides different concepts to manage large
amount of data. For occlusion culling Jupiter uses only the
HP Occlusion Flag7.

A lot of occlusion culling algorithms are available.
Cohen-Or et al.3 give a recent overview on the various oc-
clusion culling techniques. While they can be classified in
object-space4 and image-space techniques, we are focusing
on image space-techniques, but an object-space technique is
also available in the toolkit for OpenSG. Some of the oc-
clusion culling techniques need extensive preprocessing or
they need special scenes. These are not in the scope of this
paper. In the taxonomy of Cohen-Or et al.3 we are focus-
ing on conservative, from-point image-space approaches for
generic scenes and generic occluders with extra support for
object-space shadow frustra11.
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One of the well known image-space algorithm is the Hi-
erarchical z-Buffer6, which uses hierarchical data structures
for the depth buffer and the scene. Other image-space al-
gorithms are occlusion maps18 or virtual occlusion buffers1.
Many other algorithms are available, some of them are using
OpenGL to accelerate occlusion calculations, like the fol-
lowing discussed in the next section.

3. Our proposal in detail

3.1. Base Functionality

The base functionality provides some generic, image-space
algorithms to get visibility information of an given object.
All of them are using the hardware in some way to get visi-
bility information.

The approach is always the same. The occlusion test is
initialized (e.g. disabling z-buffer writes), then multiple oc-
clusion queries can be performed (each request gets an in-
dex) and after all queries the results can be requested with
the corresponding index. There is no restriction in the ge-
ometry of the bounding volume for the occlusion test, how-
ever we are using only the bounding boxes from the scene
graph for the tests. No precomputing to get a special hier-
archy or special data structures is needed, only the features
and data structures of the OpenSG scene graph are used, thus
dynamic scenes are also supported.

The following techniques build the base occlusion test
techniques16 for the toolkit.

3.1.1. OpenGL Extensions for Occlusion Culling
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Figure 1: Latency for the HP Occlusion Flag on an In-
tel P4@2400MHz with a NVidia GeForce4Ti 4600 running
Linux.

The HP Occlusion Flag7 is a hardware extension, which
returns information of the visibility of an object. The idea
is, to render a bounding volume through the pipeline with
disabled color- and z-buffer writes. If at least one pixel of
the bounding volume triggers a z-buffer write, the HP Oc-
clusion Flag is set to true otherwise to false. If the result is

true (at least one pixel of the bounding volume is visible), the
content of the bounding volume has to be rendered. The HP
Occlusion Flag provides a very easy and one of the fastest
ways for doing occlusion culling, but has the drawback, that
each request to the HP Occlusion Flag is synchronous. A
new request can only be started after the finish of the pre-
vious one. This problem is adressed by the HP Visibility
Extension9 and by the more well known NVidia Occlusion
Query12. Both extensions support multiple queries at once.
Additionally, the NVidia extension returns the amount of
visible pixels of each tested bounding volume instead of a
simple flag. This can be used for Level-of-detail selection or
screen space culling.

The HP Occlusion Flag was introduced with the HP Visu-
alize fx15 graphics subsystem. It is also available beside the
NVidia Occlusion Query extension on NVidia Geforce3/4Ti
or newer graphics subsystems. Modern OpenGL 2.0 or Di-
rectX 9.0 capable systems like the ATI Radeon 9700 or the
NVidia Geforce fx have to support the occlusion extensions.
Both extensions, NVidia and HP, are now supported by the
toolkit for OpenSG.

The performance of the hardware extensions depends on
the fillrate of the z-buffer. Larger bounding volumes need
more time for the test, because the whole bounding volume
passes always the z-buffer stage of the rendering pipeline.
Figure 1 shows the correlation between the size of a bound-
ing volume in screen-space and the latency for an occlu-
sion test request. With enabled backface culling the test
is almost twice as fast as without, because with backface
culling only one scan through the z-buffer for the front-face
is done. The graphics hardware rasters always the complete
bounding volume, but the rasterization could be stopped af-
ter the first visible pixel, when using the HP extension. With
the NVidia extension, the hardware has to raster always
the whole bounding volume to determine the full amount
of visible pixels. This is a drawback, especially for large
bounding volume. We address this problem with the soft-
ware depth buffer (Section 3.2.2) and the Occupancy Map
(Section 3.2.1.)

3.1.2. Using the Stencil Buffer

Bartz et al.1 described a technique that the stencil-buffer can
be used to compute visibility informations. During rasteriza-
tion writing to the frame- and z-buffer is disabled. For each
pixel of the bounding volume the z-buffer test is applied. If
the pixel would be visible, a value is written to the stencil-
buffer (see Figure 2) by using glStencilOp(). After ras-
terizing the bounding volume, the stencil-buffer is read and
sampled in software. Occluded bounding volumes will not
contribute to the z-buffer, hence will not cause a respective
entry in the stencil-buffer.

The actual implementation reads the whole region of the
covered zone by the bounding volume. This could be opti-
mized like the fragments in Section 3.1.3 or with the inter-
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Figure 2: Occlusion test with the stencil-buffer.

leaving scanning scheme from Bartz et al.1. Multiple queries
are possible, if the stencil buffer supports more than one bit.
Also the amount of visible pixels can be counted, but usu-
ally the test is stopped after the first or a necessary amount
of visible pixels.

3.1.3. Hardware Depth Buffer

The OpenGL z-buffer can be used to get the visibility in-
formation of an bounding volume, since it always holds
the correct depth-value for every pixel. To test occlusion,
the depth-values of the bounding volume are computed and
tested against the values of a z-buffer maintained in soft-
ware. A glReadPixels() to read the OpenGL z-buffer
is quite expensive, hence this operation is split in fragments.
Each fragment has the same size, which is a multiple of the
databus width to exploit memory alignment on the graphics
subsystem. A fragment is only read, if it is necessary for a
pixel test10. The test stopps after at least one or a necessary
amount of visible pixel.

Every fragment holds two flags, an invalid and an unused
flag. At the beginning of every frame all the unused flags are
true and a tested pixel against this fragments leads always
to a visible pixel without reading the OpenGL z-buffer. If
a pixel is visible, the invalid bits of the corresponding frag-
ments are enabled, because the geometry of the bounding
volume will be rendered and the content of the z-buffer may
change. For pixels inside fragments with a true invalid bit,
we read the z-buffer and disable the invalid bit.

In many scenes it is not necessary to render every detail.
For this approach a minimum of visible pixels for a bound-
ing box can be set. Only if at least this minimum of pixels
is visible, the complete bounding box is set as visible. This
leads to a speed-up with a miner reduction in rendering qual-
ity.

3.1.4. Traversal and Depth Sorting

All of our presented image space techniques are using the
hardware z-buffer in some way for the occlusion test, thus
accurate z-buffer values are needed to get correct occlusion
results. To ensure accurate values, we are using a front-to-
back sorted rendering of the geometry objects of the scene
graph. Front-to-back sorting is not really necessary, but one

of the simplest ways to render occluders first. The front-to-
back sorting is done by the front-most corner of the object’s
bounding box, which leads to an adequate sorting for occlu-
sion culling.

2

1

4

3

2 341
Result

Viewpoint

Viewplane
z

Scene graph

1 2 3
4

Figure 3: Front-to-back sorted traversal.16

For this paper we used our own traversal and depth sort-
ing scheme due to the lack of depth-sorted traversal in first
OpenSG releases, but this will change14 in future releases.
The traversal, sorting and rendering is realized in a pipelined
fashion. First, the scene graph is traversed and the geome-
try nodes are collected. While they are collected, the depth
sorting is realized with a hash function. After the traversal
and sorting, the geometry nodes are rendered or occlusion
culled in an interleaved step. Our traversal and depth sorting
is a bottle neck in large scene graphs due to the use of the
OSG::DrawAction and has space for a lot of optimiza-
tions, which is discussed in a later section.

3.2. Extensions

To optimize the use of the base functionality and to exploit
occlusion information, we developed further techniques:

3.2.1. Occupancy Map

One problem of the approaches is, that they always have
to read the hardware z-buffer in some way, but from view-
points with low occlusion a lot of occlusion tests are unnec-
essary, because they return a visible result, so that the ren-
dering of the corresponding geometry gets more expensive.
The Occupancy Map17 is a small data structure which man-
ages occupied regions of the screen space. Only in regions
with already rendered (occupied) geometry, an occlusion test
makes sense. In not occupied regions an occlusion test will
always return visible pixels due to the lack of occluding pix-
els. The Occupancy Map saves these unnecessary accesses
to the hardware z-buffer.

The Occupancy Map is realized only as a small bit field.
Each bit represents an occupied or unoccupied region. Stor-
ing depth values or other information is not necessary, be-
cause the requests occur in a depth sorted order. The Occu-
pancy Map is updated with the bounding boxes of the ren-
dered objects, which is not exact, but conservative.
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Figure 4: Occlusion test with the software depth buffer; (A)
visible geometry, (B) tested with an OpenGL test, (C) tested
by the software approach.

3.2.2. Software Depth Buffer

For scenes with high depth complexity, occlusion tests can
be saved by a software implementation of a depth buffer.
Rendering of the scene geometry in software is too expen-
sive, but hidden bounding boxes can be used as an approxi-
mation. Thus we are rendering the bounding boxes of previ-
ous hardware occlusion tests into the software depth buffer.
Before another bounding box is tested by the hardware tests,
it can be tested with the software depth buffer. Fillrate for
the software depth buffer can be saved by a lower resolution
than the hardware depth buffer. If the application knows oc-
cluder, they can be rendered into the software depth buffer
before starting any other tests.

3.2.3. Shadow Frustra
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Figure 5: Occlusion test with Shadow Frustra. (A) Visible
geometry, (B) tested with an OpenGL test, (C) tested by the
software approach.

Shadow Frustra are presented by Hudson et al.11. In con-
trast to the other used techniques in OpenSG, Shadow Frus-
tra are working in object space. The technique can be used
in two different ways. Usually the application defines some
shadow frustra of known (virtual) occluders. The shadow
frustrum itself is defined by multiple sets of planes. Each
set defines an inner or outer region. The bounding box of an

occludee has to be complete inside an inner region, other-
wise it is not occluded. Another way is to define the shadow
frustra automatically. We are using shadow frustra of hidden
bounding boxes (see Figure 5) from previous image space
occlusion tests. This is a very simple approach and not as
powerful as the software depth buffer because of the lack of
occluder fusion, but a lot of fillrate can be saved, if the appli-
cation knows large occluders. See Figure 13 for such a scene
with a large occluder in the front.

3.2.4. The Toolkit
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Figure 6: Architecture of the occlusion culling process.

The occlusion culling toolkit provides an abstract, object-
oriented access to the before described occlusion culling ap-
proaches. Multiple queries are available through the meth-
ods, however they are internally synchronized if the under-
lying technique doesn’t support multiple queries, like the HP
Occlusion Flag. The access to an occlusion test class looks
as follows:

A. Setup of global configurations for all tests and frames,
like used viewport, resolution of buffers. . .

B.1 Frame initialization of special values for each frame,
e.g. software z-buffer clear or setting of flags for internal
data structures.

B.1.1 Occlusion test initialization - state changes for oc-
clusion test, e.g. disabling of z-buffer writes, stencil-
buffer setup. . .

B.1.2 Occlusion test perform for a given bounding volume
assigned to index i.

B.1.3 Occlusion test result returns the visibility informa-
tion of bounding volume i.

B.1.4 Occlusion test exit restores state changes from B.1.1,
update flags for next tests. . .

B.2 Frame exit - memory cleanups. . .

All techniques can be combined and used at the same
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time. Not every combination makes sense. E.g. the hardware
z-buffer algorithm does not benefit very much from a soft-
ware z-buffer, because both use almost the same data struc-
ture and tests would be redundant. Also automatically gener-
ated shadow frustra from hidden bounding boxes in conjunc-
tion with the software depth buffer do not make sense, be-
cause both solve the same problem, but shadow frustra have
no occluder fusion. However, shadow frustra defined by the
application can work together with the software depth buffer.

Due to the very different characteristic of the available
graphics boards and the data sets, the application has to de-
cide, which approaches are used.

4. Results

For all our tests we used the OSGViewer application16 with a
cotton picker model (see Figure 14) and a camera path with
80 different frames. All frames were rendered at a high res-
olution of 1480 × 1016 with 24 bits color depth and three
light sources.

In some frames, some parts of the scenes are view frus-
trum culled by the internal OpenSG view frustrum culler.
The cotton picker is a large model with over 13,000 geom-
etry nodes containing almost 11mio of polygons. We used
a medium class PC with Intel P4@2.4 GHz and a NVidia
Geforce4Ti 4600 running Linux for our measurements.

4.1. Traversal and Sorting
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Figure 7: Visible/hidden polygons of our camera path.

First we analysed our traversal and sorting scheme. Due
to the two step approach, first traversal and sorting, second
rendering and occlusion culling, we can simply distinguish
the time for traversal and sorting, and the time for rendering
and occlusion culling. Figure 9 shows, that in many frames
the rendering with occlusion culling needs less time than the
traversal. An average time of 325 ms was measured for the
cotton picker, this is equivalent to a limit of 3 frames per sec-
ond without rendering. OpenSG can travers and render faster
with the OSG::RenderAction, but it was not possible

to use this class for occlusion culling without modifications
to the OpenSG code base. The change to a better traversal
scheme in the next OpenSG releases will close this problem
in the future.
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Figure 8: Visible/hidden nodes of our camera path.

In Figure 7 the amount of visible and hidden polygons
(detected by a bounding box occlusion test) for each frame
is shown. Approximately between frame 25 and frame 50
the view frustrum culler removes some nodes. An average
of almost 880,000 polygons in 905 nodes are visible and
8,670,000 polygons in 11,000 nodes are hidden in our cam-
era path. Frame 30 has the lowest complexity with 34,611
visible and 2,022,003 hidden polygons.

4.2. Rendering and Occlusion Culling
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Figure 9: Performance timings of the rendering with differ-
ent techniques.

Because of the slow traversal, we only timed rendering
and occlusion culling to show the difference between the ap-
proaches:

We used a software z-buffer with a quarter resolution of
the viewport for the tests. The performance of the z-buffer
read depends strongly on the depth complexity because of
the high cost of the read of the OpenGL z-buffer. The HP
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Rendering
time Speedup

No occlusion culling 654 ms 0%

With z-buffer read 374 ms 75%

With HP Flag test 212 ms 208%

With HP Flag + soft z-buffer 162 ms 304%

Table 1: Comparison of the average performance timings.

Occlusion Flag or the NVidia Occlusion Query with support
from the software z-buffer gaves best results for the used
camera path.

4.3. Occupancy Map and Software z-Buffer

Figure 10 shows the percentage of the savings of the Occu-
pancy Map and the software z-buffer from all occlusion tests
in the frames of our camera path. The Occupancy Map saves
19% of occlusion tests with a visible result and only 1% of
all occlusion tests. In scenes with lower occlusion density,
these values are higher. The software z-buffer saves 80% of
occlusion tests with a hidden result and 75% of all occlusion
tests. Of course, these values are lower in scenes with lower
depth complexity.
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Figure 10: Savings of extra occlusion tests by the Occu-
pancy Map and the software z-buffer.

5. Conclusions

In this paper we have presented the occlusion culling toolkit
for OpenSG with the different approaches for doing occlu-
sion culling. Different approaches are necessary to support
the wide range of graphics subsystems. Momentary is the
fastest way for doing occlusion culling the HP Occlusion
Flag or the NVidia Occlusion Query in combination with
the software z-buffer (above 300% speed-up.) Using these

extensions without special assistance can be fast, but not as
fast as with software z-buffer. However to support a lot of
very different hardware platforms, all of the other techniques
have their account.

5.1. Future Work
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Figure 11: Future architecture of the toolkit.

Traversal and sorting has to be optimized, especially for
very large scene graphs. In this paper we used our own, slow
implementation. Future versions will use a more powerful
and faster strategy of OpenSG. This will also enable hierar-
chical occlusion culling, which is not possible with the cur-
rent scheme. Also state changes of the graphics pipeline have
to be minimized to get further speed-ups.

Temporal coherence could also improve the rendering
speed and could be easily integrated in the actual toolkit.
This will be a major point of further development (see Fig-
ure 11).

Precomputing was out of the focus, because dynamic
scenes without assumptions on the scene graph have to work.
In further releases this could become a more interesting point
to speed-up rendering of static or special scenes.

The tests are working in a serial fashion, but could eas-
ily be parallelized, so that the software techniques, like the
shadow frustra or the software depth buffer are working par-
allel to the NVidia Occlusion Query or the HP Occlusion
Flag. This would result in a better load balancing between
the main processor and the graphics subsystem and thus, to
higher frame rates.
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An automatic selection of the techniques, so that the ap-
plication do not have to take care about occlusion culling
will be developed.
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Figure 12: Z-buffer with marked fragments.

Figure 13: Shadow Frustra test scene. The red boxes
tested by the HP Occlusion Flag and the green ones with
the shadow frustrum of the front box.

Figure 14: Cotton picker from different viewpoints of
the camera path.
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