
OpenSG Symposium (2003)
D. Reiners (Editor)

TRIPS – A Scalable Spatial Sound Library for OpenSG

Tomas Neumann, Christoph Fünfzig and Dieter Fellner

Institute of Computer Graphics, Technical University of Braunschweig, Germany

Abstract
We present a Sound Library that is scalable on several computers and that brings the idea of a self-organized
scenegraph to the Sound Library’s interface. It supports the implementation of audio features right from the start
at a high productivity level for rapid prototypes as well as for professional applications in the immersive domain.
The system is built on top of OpenSG12 which offers a high level of functionality for visual applications and
research,but does not come with audio support. We show and compare the effort to implement audio in an OpenSG
application with and without TRIPS. Today’s audio systems only accept raw 3D-coordinates and are limited to
run on the same computer and the same operating system than the application runs on. Breaking these constraints
could give developersmore freedom and ease to add high-quality spatial sound to their software. Therefore, users
benefit from the promising potential OpenSG offers.

Categories and Subject Descriptors(according to ACM CCS): H.5.1 [Multimedia Information Systems]: Audio
input/output H.5.5 [Sound and Music Computing]: Systems I.3.7 [Computer Graphics]: Virtual Reality
Keywords: High quality spatial sound, 3D-audio, cluster system, sound API, FieldContainer, rapid prototyping,
game engine, immersive system

1. Introduction

Current developments on VR applications in general and of
OpenSG12 applications in particular demand a solution for
3D audio support, as positional sound is more important
to both developers and users than ever before2. The faster
software needs to be developed, the more efficient the inter-
faces need to be designed. And, the better soundcards get,
the more users want to deploy high-quality spatial sound.
Finally, if the visual system can benefit from the OpenSG
Cluster System13 then audio performance should also capi-
talize on it3.

To have sound within a graphical application in many
cases supports and intensifies the user’s experience1 with
that software. Simple background music, interface sounds,
ambience sounds or interaction-triggered sounds do not dis-
tract the user from the main focus, but makes it more real-
istic, impressive, and effective. Spatial sound improves the
user’s orientation and acceptance especially in immersive
systems and games.

There are some sound engines available and there are
some high-level APIs like DirectX for software develop-
ment on specific operating systems. Just as graphics applica-

tions and computer hardware rapidly developed in the last 10
years, so did the sound and multimedia field. But in a Unix-
based environment nearly all sound engines lack the ability
to benefit from today’s consumer soundboards, which have
heavily progressed over the last years as well. These sound
engines compute 3D sound calculation and mix audio chan-
nels in hardware. Modern 4G soundboards, which belong
to the so called 4th generation, support high samplerates of
96KHz and a bitrate of up to 24Bit and 8 sound outputs17.
Complex channel mixing and spatial positioning calcula-
tions, which are required to comply with I3DL29 specifica-
tions, can be supported by sound hardware.

Unix-based operation systems (OS) do not benefit from
today’s sound hardware because of poor driver support. In
that case, spatial sound needs to be calculated in software on
the host’s CPU. Especially in immersive VR environments,
like the DAVE10 in Braunschweig, the VR server should be
free from any unnecessary system load. The ideal solution
here would be a sound library that runs on both the VR server
as a dummy and a sound server that brings the audio to the
sound device. With OpenSG it is even possible to connect
computers with different OSs, so the sound server could run

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

Neumann et al / TRIPS

on Microsoft Windows and benefit from the newest drivers
and hardware support.

Another way to benefit from an OpenSG sound library
would be an optimized interface. Instead of dealing and cal-
culating with world-coordinates for the 3D-sound position
and updating them every frame, it would be convenient to
simply ‘glue’ a sound to a node in the scenegraph and let it
deal with updates. The TRIPS Library provides both features
in a comfortable way.

Here, we first give a glimpse into spatial sound techniques
and requirements and describe other libraries and their pros
and cons. Later, TRIPS is presented from concept to usage
and detailed implementation. We show results working with
TRIPS on a single PC and in a cluster system using differ-
ent sound hardware. We conclude with some thoughts and
further research.

2. Spatial Audio Overview

Spatial Audio is calculated for a discrete point in space
called the listener11. Just like a camera, the listener is defined
by a position, up- and lookat-vectors. 3D Sounds that have to
be mono sound files, are loaded into a channel of the sound
driver. 2D Sounds, like background music, may be stereo
and do not have a location in space. Higher samplerates re-
sult in better audio quality. The audible result of a 3D mix-
down depends on several sound parameters like the position,
volume, velocity and loudness. The position is used to cal-
culate the distance to the listener. The volume sets the peak
value of a sound. The listener’s and the sound’s velocity can
be used to obtain a Doppler-effect just like when a fire truck
drives by. The loudness is defined by minimum and maxi-
mum distance values where the volume peak is reached. The
newest sound systems also support geometry-related audio
calculation like obstruction and occlusion. For each frame,
the sound engine calculates the sounds, mixes the channels
and streams the audio result to the soundcard’sphysical line-
outs. Headphones still provide the best spatial quality as
calculated by the Head-Related Transfer Function (HRTF)6.
When headphonescannot be used, you get a better 3D audio
impression the more output the soundcard provides and the
more speakersare connected. Obviously a Dolby digital7 au-
dio setup (five satellite speakers and a subwoofer) performs
better than just a pair of stereo speakers.Figure1 shows how
spatial sounds within a virtual scene get approximated by a
speaker set in a real life scenario.

3. Previous Approaches

Typically until now, the audio implementation is the last
in the process of developing interactive visual applications8

(if at all). Often this approach ends with unsatisfying soft-
ware design, performance loss or poor audio ability. There
are some sound engines and high-level APIs that could be
used to add audio support to an OpenSG application, but

Figure 1: 3D sounds in a virtual scene with the listener and
the real life setup with a user in the middle of a 5.1 Dolby
digital speaker set.

some engines are OS- and hardware-dependent like EAX4

or DirectX. EAX is a hardware-based audio subsystem by
Creative in its third generation with positional, reverb and
geometric calculation. Creative did not allow licensing and
emulation of EAX3 in software, like Sensaura14 could do
with EAX1/2. The full features of EAX3 are only available
with the Windows OS. DirectSound is a part of Microsoft’s
DirectX which can be described as a standardized collec-
tion of APIs for multimedia usage. Other sound systems do
not take advantage of sound hardware or they simply de-
mand high license fees like $4,000 for a single Miles Sound
System. VRJuggler5 is a complex VR system with the abil-
ity to set up a cluster of render clients. Its sound module
Sonix offers a simple and generic interface and it is possible
to switch underlying sound engines like AudioWorks, Sub-
synth or OpenAL15 at runtime. There was no information
available whether a sound server can be set up on a con-
nected Windows PC. The advantage of VRJuggler to sit on
top of several graphical systems, even OpenSG, means that
Sonix needs to accept raw positional parameters when us-
ing lowlevel OpenGL in the rendering layer. All systems or
APIs listed do not benefit from the semantic structure of a
scenegraph or provide an optimized OpenSG interface.

It is hard to compare sound systems under a Unix-based
OS with those running on Windows. Pushed by industry
developments in driver architecture, consumer soundcard’s
abilities and innovative hardware, Windows sound systems
are always two steps ahead. Besides scattered soundcard
support, there is no Unix-based implementation for audio
obstruction and occlusion. The only two platform that offer
obstruction and occlusion with FMOD16 are Windows and
the Xbox. EAX2/3 and reverb effects are also only available
on Windows, Xbox, Sony’s Playstation 2 and Nintendo’s
GameCube. Even if spatial positioning calculation can be
done fast in software, Linux sound drivers, like OSS, still
lack the newest techniques for sufficiently mixing multiple
audio channels. The result is a poor spatial quality that could
be simply verified by the human user. We chose FMOD as

c© The Eurographics Association 2003.

Neumann et al / TRIPS

the underlying audio engine, because of the following ob-
vious reasons. FMOD is widely platform independent, cur-
rently supporting seven systems. Its free for noncommer-
cial use and it supports the most optimized sound APIs un-
der Windows like DirectX or EAX3. It also supports multi-
listeners, e.g. for split screen application, and multi dynamic
DLL linking, e.g. to support more than one soundcard at the
same time. Most consumer soundcards are not able to cas-
cade their driver models so still a cluster solution is needed.
FMOD is able to offer sufficient audio performance under
Linux for stereo output, because a Dolby digital output is
not yet possible with software calculation.

There are stringent rules how and where to implement au-
dio within an application. First, the sound engine has to be
initialized, then sounds are loaded. Changes of their sound
parameters and playback commands are often completely
spread over the code. Whenever a sound moves its new posi-
tion has to be delivered in world coordinates to the sound en-
gine. When all changes in a frame are done the sound engine
is forced to update and calculate the sound. The correspond-
ing call often is located at the end of the display routine. Four
issues need to be pointed out in this context:

1. The listener and each sound position needs to be calcu-
lated into world coordinates and passed to the sound en-
gine’s interface.

2. The sound engine generates commands, which are di-
rectly conducted to the sound driver and then to the
soundcard. The sound and the spatial quality depend on
the computer’s soundcardand OS the application runs on.

3. Currently, Linux is not a prevailing sound platform.
4. Cascading most consumer soundcards can currently only

be achieved with cluster systems.

4. TRIPS Concept

The TRIPS sound library consists of two different OpenSG
FieldContainers: The first is a TRIPS Audio Node, which
holds the full audio context with the listener’s position and
depends from the camera, samplerate and other audio fields.
And secondly a TRIPS Sound Object, which holds specific
sound properties, like the sound file and a beacon to a scene-
graph node, which is used for the spatial sound positioning
and velocity. All TRIPS Sounds are organized in a soundlist
multifield within the audio node. Figure2 shows the differ-
ent TRIPS FieldContainers and how they are bound to the
OpenSG scenegraph. The TRIPS audio node does not have
to be a child of the root node. It may sit next to it. The TRIPS
sound objects also do not interfere with the scenegraph, but
each of them is linked to a node with a beacon singlefield.
The fact that they are part of OpenSG is important to benefit
from the OpenSG cluster system, which is described later.

Most of the TRIPS internals are hidden from the user
without limiting the flexibility for specific applications. So,
with minimal additional code TRIPS adds complex sound to
an OpenSG application.

Figure 2: Diagram of TRIPS FieldContainer and how they
connect to the nodes in the scenegraph.

4.1. TRIPS Usage

TRIPS provides an easy-to-use OpenSG interface for basic
spatial sound support. With just a few lines of code the au-
dio context is created and updated while sounds are being
loaded and subsequently played. A TRIPS sound object is
able to calculate its own world coordinates and velocity with
the help of the node referenced by the beacon field. If that
node moves within the scene or even in the scenegraph, the
TRIPS sound object keeps track of its updated position and
velocity. The example in Figure3 demonstrates how a 3D
sound of a car horn is bound to a moving car node in the
scene, and 2D background music moving with the Listener.
Only the Camera pointer is passed to the TRIPS audio node
to calculate the correct listener vectors and update the au-
dio engine. The sample code in Figure3 shows what is only
needed to have background music and a fully working spa-
tial sound with the OpenSG SimpleSceneManager class.

TRIPS can be run in several settings. The PC that the ap-
plication runs on can generate the sound locally, can be con-
nected to a dedicatedsound server with the cluster system, or
both. Depending on the host’s OS and the sound device both
speaker settings and used sound drivers can be changed. Dif-
ferent configurations can be set through environment vari-
ables such as audio type, audio mode, driver selection or
connected speakersetup. By changing just two variables, the
same application can first generate local stereo sound on a
Linux PC and then trigger a Windows sound server, which
can produce full quality spatial soundat the connectedDolby
digital speakers.

4.2. TRIPS Details

The TRIPS Audio Node (see Figure4) holds the complete
audio context and all other data that affects the sound en-
gine or the usage of the cluster system. The listener position,

c© The Eurographics Association 2003.

Neumann et al / TRIPS

// audio globals
TRIPSAudioNodePtr audio;
TRIPSSoundPtr music, car;

int main(int argc, char **argv){
[..]

osgInit(argc,argv);
audio = TRIPSAudioNode::create();
// creates global AudioNode "audio"
audio->init(false);
addRefCP(audio);
// raises Ref-Counter of audio

music = audio->addSound(
"background.wav"); // 2D filename

// start playback looped
music->setVolume(100);
music->play(TRIPSSound::LOOP);

car = audio->addSound(
"media/horn.wav", // 3D filename
carnode, // Beacon
TRUE); // automatic velocity

// start playback every 10 seconds
car->play(TRIPSSound::EVERY, 10);

[..]
}

void display (void){ // each frame
[..]

// get camera from SimpleSceneManager
CameraPtr cam = ((mgr->getWindow())

->getPort()[0])->getCamera();

audio->update(cam); // TRIPS Update
}

void key(unsigned char k, int x, int y){
switch(k){

case 27:
subRefCP(audio);
exit(1);

}
}

Figure 3: Complete Sample Code to setup TRIPS with a
looped 2D- and a moving 3D-Sound

the listener lookat- and up-vectors and velocity are private
member variables and can only be changed by calling the
Update()-method with a camera pointer. The addsound() and
subSound() methods change the soundlist multifield. Info()
gives some details about available sound devices and lists
the number of hardware voices. The Audiomode can be set
via an environment variable to either be ACTIVE or MUTE.
This switches the local sound processing. If a cluster sys-
tem is running, the important fields get synchronized, as ex-
plained later in more detail.

Figure 4: TRIPSAudioNode FieldContainer.

A TRIPS Sound object (see Figure5) offers methods to
control the playbackof a sound. A soundcan be played once,
in a loop, every discrete seconds, or randomly within limits,
as triggered all by the Play()-method and playmodes like:
ONCE, LOOP, EVERY or RANDOM (see also Fig. 3). It
can be paused and un-paused using Pause() and may also
be stopped. This is done with a sound-to-play field, a play-
mode and two additional parameter fields, which all get syn-
chronized the same way a cluster system works and then get
parsed in the changed()-method. The method setVolume()
changes the peak volume and setMinMax() changes the dis-
tance this peak is reached and where the sound fades out.

4.3. TRIPS changed()-Method

In OpenSG, changes to data fields must be encapsulate be-
tween beginEditCP() and endEditCP() to mark them as ma-
nipulated. On a cluster system but also on a single host
OpenSG calls a changed()-method, which can then trigger
special behavior somewhere else, both on the same PC but
also on a connected PC. The TRIPS play command does not
call the sound engine directly but it triggers the changed()-
method on the same host and on connected PCs. This way
the play command travels from the application server to the
sound server and starts the playback there on its local sound-
board. This way not just a single, but several sound servers
can be added to the cluster. Each of these sound servers can
have a different listener position as specified through an off-
set to the camera position.

5. Results

High-quality spatial sound can be achieved with some costs.
Often the sound driver performs additional calculations. In

c© The Eurographics Association 2003.

Neumann et al / TRIPS

Figure 5: TRIPSSound FieldContainer.

order to quantify how they affect the system as a whole,
the overall performance was measured in a number of test
runs. An interesting question is the impact of the sound’s
referenced node depth within the scenegraph and calls to the
sound engine on the results.

Figure 6: Example how the play()-command triggers the
changed()-method locally and on a cluster PC.

5.1. Benchmark Scene

The benchmark scene is composed of 64 spheres, randomly
falling through a cubic volume, whose tessellation contains
about 330,000 triangles. Each sphere node, which moves ev-
ery frame, can have a TRIPS sound bound to it. The spheres
can be inserted in the scenegraph at two different depths, to
test the cost of additional matrix multiplications. The idle
function and any GLUT interaction were disabled and the
test went on for 3,000 frames. The tests were run on three
different systems and on two different platforms.

As a first result, we found that sound calculation with and
without specific hardware support cannot be compared be-
cause of the limited speaker output. It is not really adequate
to compare a TRIPS hardware Dolby digital sound setup
with six channels to a stereo output computed in software
under Linux. There is a remarkable difference in audio qual-
ity that no benchmark can show, and further more the OSS
sound driver blocked the start of the application for up to 30
seconds.

5.2. Overall Performance

Figure7 shows the render time to produce the 3,000 frames
with a Creative Audigy soundcard with 0 to 64 3D sounds.
The quality spatial sounds have a negative impact, while the
stereo mix in software shows a quite stable performance.
Both tests were run on a Windows AMD Athlon-XP 1.4Ghz
system.

40

45

50

55

60

65

0 10 20 30 40 50 60

R
en

de
r

T
im

e
[s

ec
]

Number of Sounds

Dolby Digital
Software Stereo

Figure 7: Performance of Dolby digital sound with hard-
ware support versus software calculated stereo.

5.3. Update Test

Figure8 shows the time needed in the 3,000 frames sequence
to calculate the new positions for all sounds and the calls
to FMOD for updating the listener position and all sounds
managed by the TRIPS library. The sound position is de-
rived from the world volume of the beaconnode. Calculation
of this world volume requires the to-world matrix, which is

c© The Eurographics Association 2003.

Neumann et al / TRIPS

the product of all transformation matrices above. In this test
the spheres hang in a depth of 3 and 9 in the scenegraph.
The sound calculation in software scales linear to the num-
ber of sounds. The FMOD calls for hardware support take
longer and deviate at 32 sounds because the Audigy sound-
card only supports 32 true hardware sounds. Note that in
software mode only stereo output is produced. All tests ran
on a Windows AMD Athlon-XP 1.4 system.

0

1

2

3

4

5

6

0 10 20 30 40 50 60

U
pd

at
e

T
im

e
S

ec
.

Number of Sounds

Software stereo / depth9
Dolbydigital / depth9

Software stereo / depth3
Dolbydigital / depth3

Figure 8: The Update Test shows different scenegraph
depths and extra load for hardware support.

5.4. Cluster Test

Figure9 again shows the render time of 3,000 frames. This
time it is a Linux DualP3 1Ghz that normally hosts the
OpenSG cluster system for a VR system of eight render
servers to run the DAVE. In both tests one dedicated sound-
server running on Windows was connected. Even with the
low load that stereo software mode generates, as seen in Fig-
ure8, the render time is slightly better with no local sound
and a connected sound server. To clear any nonessential load
from the cluster host is a good argument for a dedicated
sound server. The host then does not calculate any transform
matrices for the sounds or sets any calls to the sound engine.

6. Conclusion and Future Work

It has been shown how easy it is to add audio and spa-
tial sound to an OpenSG application using TRIPS. Load-
ing, playing and binding a sound to a scene node is sim-
ple. The developer does not have to worry about updates to
the listener or sound positions and velocities, but one sin-
gle TRIPS code line can take care of this. This was possible
only by bringing the sound interface to a higher semantic
level by defining sound positions with beacon nodes. TRIPS
also ensureshigh-quality spatial sound on a local PC running
on Windows and it offers the same quality when a dedicated
sound server is connected to the OpenSG cluster system. But
high-quality spatial sound like Dolby digital does not come
for free. The sound driver can consume considerable time

208

208.5

209

209.5

210

210.5

211

211.5

212

0 10 20 30 40 50 60

R
en

de
r

T
im

e
S

ec
.

Number of Sounds

Linux muted / Win sound
Linux sound / Win muted

Figure 9: The Cluster test shows a slight performance ad-
vantage with a dedicated sound server.

which has negative effects on the overall performance. If the
future brings even more realistic and complex spatial sound
calculations, this will cause more load on both the CPU and
the system. The effect of different node depths in the scene
can be clearly seen. This effect could be easily remedied by
an optimization where a flag is set when a node has changed
its position. This would save a to-world matrix calculation
per sound as well as the corresponding call to the sound en-
gine.

It is a remarkable result that using the OpenSG cluster
system the additional load to run stereo spatial audio in soft-
ware is marginal. A cluster system running on Windows
would experience more performance loss when producing
high-quality spatial sound. Still the combination of TRIPS
and OpenSG offers to move this load transparently to a ded-
icated sound server.

The developer can create quite complex audio sceneswith
the very lean interface of TRIPS. If desired, more features
can easily be used by simply adding FMOD commands di-
rectly to the application, if TRIPS runs actively on the local
host. Another possibility is to create trigger fields in order
to let them get synchronized with the help of the changed()-
method and to execute the FMOD calls on a remote PC.

In the future, TRIPS will be extended by adding more
sound features, hopefully without losing the advantage of
easy usage. But new sound hardware will bring new bene-
fits to the user and offers more realistic audio processing, by
taking into account the 3D geometry of the scene for mixing
the audio or by mixing together different sound rooms with
different reverb effects.

A DAVE setup or a powerwall-like setup bring an im-
mersive graphical impression of a virtual scene to the user.
With TRIPS both setups can be transferred to the audio field.
Several sound servers with different listener positions could
present an immersive sound impression to the user, because
several sets of Dolby digital speakers could be used. This

c© The Eurographics Association 2003.

Neumann et al / TRIPS

would then be done in a parallel setup, with two or three
speaker sets ordered vertically. Alternatively a set can be ro-
tated by 90 degrees in order to have the sets ordered hori-
zontally and a vertically. In analogy to a visual powerwall,
an audible powerwall is possible by placing several sound
servers and their speakers next to each other with the correct
listener offset thereby creating a continuous sound impres-
sion.

Acknowledgements

We gratefully acknowledge the support by the German Fed-
eral Ministry of Education and Science (BMB+F) in the
OpenSG PLUS project under grant 01 IRA 02G and the
hardware support byCreative andTerratec.

References

1. Durand R. Begault. 3-d sound for virtual reality and
multimedia. Technical Report NASA/TM-2000-0000,
NASA, 2000. 1

2. NVIDIA Technical Brief. NVIDIA nForce plat-
form processors audio processing unit, 2002.
http://www.nvidia.com/docs/lo/2027/SUPP/APU-
_TechBrief_71502.pdf.1

3. David A. Burgess and Jouke C. Verlinden. An architec-
ture for spatial audio servers. Technical Report 93-34,
GVU Center, 1993.1

4. Creative. EAX, 2000.
http://eax.creative.com/developers/.2

5. Carolina Cruz-Neira. VRJuggler, 2001.
http://www.vrjuggler.org.2

6. Gastier D. J. and F. L. Wightman. A model of
head-related transfer functions based on principal com-
ponents analysis and minimum-phase reconstruction.
Journal of Acous. Soc. Am., 91(2):1637–1647, 1992.2

7. Dolby. Dolby-Digital technical information, 2003.
http://www.dolby.com/digital.2

8. V. Gal, C. Le Prado, J.B. Merland, S.Natkin, and
L. Vega. Processes and tools for sound de-
sign in computer games. InProceedings In-
ternational Computer Music Conference, Septem-
ber 2002. http://deptinfo.cnam.fr/Enseignement-
/DESSJEUX/infoeleves/ICMC20025.pdf.2

9. Interactive Audio Interest Group. Interactive 3d au-
dio rendering guidelines level 2.0, September 1999.
http://www.iasig.org.1

10. Sven Havemann. Höhlenzeitalter.iX Magazin für
professionelle Informationstechnik, Heise-Verlag, (11),
November 2002. http://www.graphics.tu-bs.de/dave.1

11. Juriaan D. Mulder and Edoh H. Dooijes. Spatial audio
in graphical applications. Technical Report CS-R9434,
CWI Netherlands, 1994.2

12. Dirk Reiners, Gerrit Voß, and Johannes Behr. OpenSG
- basic concepts. InProc. of OpenSG Symposium 2002,
2002. http://www.opensg.org.1

13. Markus Roth. Integration paralleler rendering-
verfahren für lose gekoppelte systeme in OpenSG.
In Proc. of OpenSG Symposium 2002, 2002.
http://www.opensg.org.1

14. Sensaura. Sensaura website, 2001.
http://www.sensaura.com.2

15. Loki Software. OpenAL specification and reference,
2001. http://www.openal.org/info.2

16. Firelight Technologies. FMOD, 2003.
http://www.fmod.org. 2

17. VIA. VIA Envy audiochip, 2003.
http://www.viatech.com/en/Digital1

c© The Eurographics Association 2003.

