
OpenSG Symposium (2003)
D. Reiners (Editor)

Adaptive Tesselation of Subdivision Surfaces in OpenSG

Volker Settgast, Kerstin Müller, Christoph Fünfzig and Dieter Fellner

Institute of ComputerGraphics,
Technical University of Braunschweig, Germany

Abstract

The need for realistic models especially in virtual reality environments leads us to freeform shapes like subdivision
surfaces. Based on a standard polygonal mesh, the modeller can build various kinds of shapes using an arbitrary
topology and special geometrical features like creases. Nowadays, it also is a part of most standard modelling
packages like Maya and 3DStudio Max. However, the interactive display of subdivision surfaces in current scene-
graph systems as static level-of-details is unpractical, because of the exponentially increasing number of polygons
during the subdivision steps. Therefore an adaptive algorithm, choosing only the necessary quads and triangles,
is required to obtain good looking images at high framerates.
In this paper we present a rendering algorithm considering the static surface properties like curvature as well
as viewdependent properties like silhouette location and projection size. Without modifying the basis mesh, the
method works patchwise and tesselates each patch recursively using a new datastructure, called Slate. We show
that the algorithm can be implemented efficiently using direct OpenGL. In comparison we consider the algorithm’s
integration into the scenegraph system OpenSG, where the scenegraph node feeds into an indexed-face-set node.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling: Curve, surface, solid, and object representations I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism: Virtual reality

1. Introduction

Subdivision surfaces and their interactive rendering have be-
come an important issue in computer graphics. The need for
realistic models especially in virtual reality environments
leads us to freeform shapes to which subdivision surfaces
converge. With this surface type the modeller has a lot of
possibilities at hand, e.g. an arbitrary topology and special
geometrical features like creases. It is now part of most stan-
dard modelling packages (for example Maya and 3DStudio
Max).

However, the interactive display of subdivision surfaces
poses hard problems because of the exponentially increasing
number of polygons during the subdivision steps. Thus an
adaptive algorithm, choosing only the necessary quads and
triangles, is required to obtain good looking images at high
framerates. There are some proposals for such algorithms
in the literature, which can basically be grouped into two
classes.

The first class evaluates basis functions for each valence
(and configuration of special features). For the tesselation
only linear combinations of basis function values with con-
trol points have to be computed. In7 the basis functions are
fetched from precomputed tables.

The second class employs the recursive nature of the sub-
division schemes in the algorithm. Pulli and Segal5 evaluate
Loop subdivision by pairing triangles and tesselating them
using the sliding window method. This work was refined by
Müller and Havemann4 to prevent cracks between adjacent
patches with different tesselation depths. For Catmull-Clark
subdivision surfaces a recursive approach was given in8.
Bischoff et al9 proposed a hardware solution for Loop sur-
face tesselation.

This work aims at an adaptive tesselation algorithm which
recursively subdivides a patch using two static sizedSlates.
By its nature the algorithm is easy to implement, local in its
memory references and does not require any precomputa-
tion. Subdivision rules for special features can be integrated

c
 The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

Settgast et al / Adaptive Tesselation of Subdivision Surfaces in OpenSG

without changing the algorithm. During execution the basis
mesh is left unmodified, which is an essential feature for its
use in a scenegraph system. With OpenSG there are mainly
two possibilities how to integrate such an adaptive tessela-
tion algorithm. The simple one deposits OpenGL-commands
directly from a single scenegraph node, which contains the
basis mesh and all quality parameters. A second, layered
possibility is to feed one or several indexed-face-set nodes
out of theSubdivisionSurface-node. This allows to control
and change the primitive output in the indexed-face-set node
implementation independently. We show the impacts of the
two possibilities on the basis of some example models.

2. Preliminary Remarks

The following presentation is based on the Catmull-Clark
subdivision scheme. Nevertheless, the technique can easily
be transfered to other subdivision schemes based on triangle
or quad meshes.

2.1. Notations

We use capital letters to denote faces and patches. Normali-
sation of a vector is written askvk. We assume that normal
vectors are always normalised. The superscript describes the
subdivision depth, e.g.,cpl

n, whereas the subscript indicates
the numeration. For clarity of presentation, we use, e.g.,M
instead ofMl , if the indexl is not essential for the explana-
tion. Also for this reason the figures are schematic.

2.2. Subdivision Surfaces

A subdivision surface is defined by acontrol mesh M0. By
applying the subdivision rules to the meshM0, we get a finer
meshM1. The sequence of control meshes converges against
the limit surface L(M0).

The vertices of a control meshMl are calledcontrol points
cpl

i . The1-neighbourhood of cpl
i includes each control point

lying on an edge incident oncpl
i . The1-neighbourhood of a

face F = 2cpl
1cpl

2cpl
3cpl

4 includes all faces adjacent to any
vertex ofF and is denoted byNl(F). Theedge neighbours
of F are the faces having a shared edge withF.

The Catmull-Clark scheme provides three kinds of sub-
division rules (see Fig.1). One rule creates a vertexcpl+1

i

in the refined meshMl+1 for each vertexcpl
i of Ml as an

affine combination of the 1-neighbourhood ofcpl
i . A further

rule creates a vertexcpl+1
j in Ml+1 for each edge ofMl as

an affine combination of the vertices of the two faces adja-
cent to that edge. And the last rule generates a new vertex
for each faceF = 2cpl

1cpl
2cpl

3cpl
4 from the average of all

of the points defining the face. The weights for the rules can
be found, e.g., in1,6.

By applying alternative subdivision rules special features
like creases, corners or semi-sharp edges10 can be created on
the surface.

l p4

ln2

l p1

l p2

l p3

ln3
ln4

cp1
1

cp1
2

cp1
3

cp1
4

ln1

F
cp0

2

cp0
8

cp0
9

cp0
10

cp0
12cp0

15

Q(N0
(F))

cp0
1

cp0
3cp0

4

cp0
6

cp0
7

cp0
11

cp0
13cp0

14

cp0
18

cp0
20=n

cp0
19

cp0
17

cp0
16

cp0
5

N0(F)

L(N0(F))

Figure 1: Example Catmull-Clark subdivision

A limit point is defined asl pi := liml!1 cpl
i . The limit

normal lni denotes the surface normal ofL(M) at the point
l pi. Calculating the limit point of a control pointcpi can be
performed via an affine combination of the 1-neighbourhood
of cpi. The computation is similar to the vertex subdivision
rule with different weights. The limit normal of a control
point cpi can be calculated by taking the cross product of
two tangent vectors built from a weighted sum of the 1-
neighbourhood ofcpi. The weights for the limit points and
limit normals can be found in14, 15.

The 1-neighbourhood of a face,N(F), which is a part of
M, contains the control pointscp1; : : :;cpn. The limit sur-
face L(N(F)) = L(cp1; : : :;cpn) is called thepatch corre-
sponding to F. This patch is a part of the limit surfaceL(M).
Q(cp1; : : :;cpn) = Q(N(F)) = 2l p1l p2l p3l p4 is thechord
quadrangle of F. The normal of a faceF =2cp1cp2cp3cp4
is in general not unique, where thecpi; i = 1; ::;4 are or-
dered counter clockwise. Therefore, we define the normal
n of F referable to one of its vertex points, e.g.,cp0 as
n = k(r1� r3)� r2k with r1 = cp2� cp1, r2 = cp3� cp1,
r3 = cp4� cp1.

l p1

l p2

l p3

l p4

Figure 2: Inner (white) and outer (grey) subpatches of a
patch S after two subdivision steps. The four outer border
curves of S are drawn dashed.

Let L(cp1; : : :;cpn) be thestarting patchS to be tesse-

c
 The Eurographics Association 2003.

Settgast et al / Adaptive Tesselation of Subdivision Surfaces in OpenSG

lated. Afterl subdivision steps ofS, we obtain 4l subpatches
S j. The border curves ofSj which are part of the border
curves of thestarting patch are calledouter border curves.
SubpatchesSj without outer border curves are calledinner
patches (see Fig.2). Similarly subpatches with outer border
curves areouter patches. In subdivision depthl we get 4�2l

outer border curves, 4�2l �4 outer patches and 4l�4�2l +4
inner patches.

Consider two neighbouring facesA and B of meshMl

and the subfacesB1;B2;B3;B4 of B where B1;B2;B3;B4
are parts of the meshMl+1 (see Fig.3). Q(N(B1)) and
Q(N(B2)) do in general not lie at the border ofQ(N(A)).
Thus agap may occur between the differently tesselated
limit surfaces ofA and B. To obtain a gap-less surface, in
spite of different subdivision depths ofA andB, the tessela-
tion of A – with the lower depth – must be fit to the higher
one. We consider this topic more precisely in section3.4.

��
��
��
��

��
��
��
��

N(A) Q(N(A))
N(B) N(B1)

N(B2)
N(B3)
N(B4)

Q(N(B1))
Q(N(B2))
Q(N(B3))
Q(N(B4))

A

B

B4

B1

B2

B3

Figure 3: Two neighbouring tesselated patches at differ-
ent subdivision depths: a gap (hatched triangle) occurrs be-
tween the two surfaces. So it is necessary to modify the tes-
selation of A to obtain a closed surface. The dashed curves
on the right side describe the patches A and B1;B2;B3;B4.

3. Tesselation on the fly with two Slates

3.1. Basic Idea

In order to utilise existing computing power and memory
optimally, each face of the basis mesh receives a reasonable
subdivision depth (Section3.2): The parts of the mesh with a
big curvature and at the silhouette obtain a high subdivision
depth as well as faces with a small distance to the camera.
Back faces are not subdivided at all. After this subdivision
depth assignment, each face of the mesh together with its
1-neighbourhood is fetched from the mesh and given to a
dedicated tesselation thread. The subdivision is done down
to the assigned depth and the proper limit points and nor-
mals are computed (Section3.3). If the edge neighbours of
the considered basis face have a higher subdivision depth,
the tesselation at the border is adapted to the neighbour to

avoid gaps (Section3.4). The drawing of the resulting shape
chunks is described in detail in Sections4 and5.

Because we use a static sized data structure, we must
choose a maximum subdivision depthmaxsd that can be ap-
plied by our tesselation algorithm. Settingmaxsd = 5 is suf-
ficient for common models.maxval is the maximum valence
of a vertex that can occur in a mesh. In practical cases the
valences are smaller than 50.

3.2. Finding the Subdivision Depth

For high quality images at an acceptable frame rate the fol-
lowing items are combined to assign a subdivision depth to
each patch:

� curvature
� visibility
� membership to the silhouette
� projected size of the patch

The curvature is considered only once for a new or changed
basis mesh. All other items are evaluated per frame. Most
items are not evaluated exactly. Instead we use fast approxi-
mations to find a suitable subdivision depth for each patch.

As an approximation for the curvature we use the normal
cone technique2 for each vertex. Consider vertexcp0

0 with
valenceval, its limit normal ln and the normalsnl

i of the
neighbour facesi= 1; ::;val at subdivision depthl. We place
a normal cone aroundln with a given aperture angleα. Then
we search for the minimall, so that

8i = 1; ::;val : ln �nl
i < cosα

For this subdivision depthl all normal vectors of the
neighbour faces are inside the normal cone (see Fig4).
So l is a subdivision depth guaranteeing a maximum
curvature in the considered vertex by an user defined
NormalConeAperture = α .

ln

n2
1

cp2
4

cp2
5

cp2
6

n1
1 n1

3

ln

cp1
6

ln

α
n0

3

cp0
1

cp0
2

n2
3

cp1
3 cp1

4

cp1
5

n0
1

cp0
5

cp0
7

cp2
7

cp2
3

cp2
2

cp2
1

cp1
2

cp1
1

cp1
7

cp0
3 cp0

4
cp0

6

cp0
0

cp1
0

cp2
0

Figure 4: The normal cone with angle α at subdivision depth
0;1 and 2: In subdivision depth 2 the depicted normals of the
neighbour faces are inside the normal cone.

c
 The Eurographics Association 2003.

Settgast et al / Adaptive Tesselation of Subdivision Surfaces in OpenSG

The following steps are done per frame. First, we
classify11 each vertexcp of the basis mesh with limit point
l p and limit normalln into

Back vertex : ε < ln � camray
Front vertex : �ε > ln � camray
Silhouette vertex : �ε � ln � camray � ε

with camray = kl p� camerapositionk and a user defined
VertexClassi f ier = ε. Afterwards, we traverse each faceF
of the basis mesh and decide ifF belongs to:

back : all its vertices are back vertices,
front : all its vertices are front vertices,
silhouette : otherwise

Back faces will not be subdivided at all. Front faces obtain
as subdivision depth the maximum of their vertex depths,
assigned by curvature. Silhouette faces get the average of
maxsd and the maximum of their vertex depths, assigned by
curvature.

Lastly, we estimate the projected size of each front face
and each silhouette face and adapt their subdivision depths
respectively. This ensures that no unnecessary refinement
will be done and prevents the presentation from being too
coarse, e.g., visible in the highlight. We use a bounding
sphere around the considered patch and estimate the radius
of the projected sphere onto the image plane. For user de-
fined Pro jectedSizeMin and Pro jectedSizeMax, the max-
imum and minimum radiusRmin and Rmax of the desired
subpatches are computed dependent on the distance to the
camera, the field-of-view of the camera and the image reso-
lution. If the radiusR according to subdivision depthl, that
meansR � 1=2l , is greater thanRmax, s further refinements
are neccessary untilR �1=2l+s � Rmax. We obtainl+ s as the
new subdivision depth. If in contrastR �1=2l

< Rmin, then a
smaller subdivision depth is sufficient. We search the min-
imum s so thatR � 1=2l�s � Rmin and obtainl � s as the
new subdivision depth. In the caseRmax � R � 1=2l � Rmin
no change of the depth is necessary.

3.3. Subdivision Work with Slates

For each face of the basis mesh, we now tesselate the corre-
sponding patch with the chosen subdivision depth. Thereby
the basis mesh is not modified, instead we use a separate data
structure consisting of twoSlates. A Slate is composed of a
two-dimensional arrayTable of size(2maxsd +3)2 and four
one-dimensional arrayscorner1;2;3;4 of size(maxval�4) �2.
The Slates are allocated statically and can be reused for each
face that has to be tesselated.

Firstly, the 1-neighbourhood of the considered faceF is
collected into the Slate (see Fig.5). The vertices ofF and the
vertices of its edge neighbour faces are stored in the table. If
one of the vertices ofF hasvalence > 4, then the remaining
vertices ofN(F) are stored in the dedicated corner arrays.

Table

corner array 3

corner array 2corner array 1

corner array 4

F
cp0

2

cp0
8

cp0
9

cp0
10

cp0
12cp0

15

cp0
1

cp0
3cp0

4

cp0
6

cp0
7

cp0
11

cp0
13cp0

14

cp0
18

cp0
20=n

cp0
19

cp0
17

cp0
16

N0(F)

cp0
5

cp0
18 cp0

17 cp0
16 cp0

11cp0
12

cp0
8

cp0
9

Slate

cp0
19 cp0

14

cp0
20=n cp0

4 cp0
3

cp0
10cp0

13

cp0
5

cp0
6 cp0

7

cp0
1 cp0

2

cp0
15

Figure 5: Collecting the 1-neighbourhood of F from the ba-
sis mesh into a Slate.

The algorithmtesselate starts with the chosen subdivision
depth and Slate 1 as arguments (see Fig.6).

tesselate (subdivision depth, Slate i)
if subdivision depth > 0 then

perform one subdivision step and
save the new points in Slate j = (i+1) mod 2;
tesselate (subdivision depth - 1 , Slate j);

else
compute limit points and normals
from Slate i;

end if;

3.4. Gap prevention

Due to the fact that we use an adaptive presentation of the
surface, neighbour patches can have different subdivision
depths. An example is shown in figure7, six patches with
different depths are illustrated schematically. Gaps can occur
between the differently tesselated patches depicted as dashed
lines. To avoid these gaps, the tesselation of the patches with
lower subdivision depth must be modified. For this purpose,
we replace the outer chord quadrangles lying at the border
to a further subdivided patch (grey marked in Fig.7) with
suitable triangle fans (see Fig.8).

Such a triangle fan is built from the limit point of the new
face point of the next subdivision step (marked by a small
circle in Fig.8), the vertices of the quads and the points ly-

c
 The Eurographics Association 2003.

Settgast et al / Adaptive Tesselation of Subdivision Surfaces in OpenSG

corner array 3

corner array 2corner array 1

corner array 4

Table

corner array 3

corner array 2corner array 1

corner array 4

Table

corner array 2corner array 1

corner array 4

Table

corner array 3

subdivision

subdivision

subdivision

subdivide

subdivide

depth 0

depth 1

depth 2

Slate 1 : Slate 2 :

Figure 6: Subdivision process with Slates.

Figure 7: Schematical presentation of 6 patches at different
subdivision depths: Gaps can occur at the dashed lines, so
the grey marked quadrangles must be replaced by a suitable
tesselation.

ing at the border to the deeper tesselated neighbour. If neigh-
bour quadrangles of the same patch are replaced like this,
the shared edge is subdivided and the resulting limit points
(marked by a small box in Fig.8) are added to the triangle
fan. The additional subdivision step is essential to prevent
undesired sharp bends on the tesselated surface. The sug-
gested gap prevention method guarantees an adequate ge-
ometry for good looking images.

4. Rendering directly to OpenGL

We use the OpenGL API to compare to the performance of
OpenSG. At a given depth the limit points and normals are

Figure 8: Schematical presentation of 6 patches at different
subdivision depths after the gap prevention: No gaps occur.

calculated into a single vertex array. For good performance
quad strips are used where possible. For each two lines of the
tesselation a quad strip is sent to OpenGL. The first and the
last two lines and the first and the last quad of every other
line have to be handled separately when a finer tesselation
is present in the neighbour patch. In that case a triangle fan
is used as described in Section3.4. The glDrawElements-
function allows to use indices into the limit point and normal
array for defining the primitives.

To increase the performance, the limit points and limit
normals are cached. They can be reused as long as the subdi-
vision depth is not increased. With these cached limit points
and normals at subdivision deptht we have all limit points
and normals from subdivision depth 0 tot without further
effort.

5. Rendering with OpenSG

5.1. Structure

A scenegraph node in OpenSG consists of the tree struc-
ture in theNode class and the functionality in theNodeCore
fieldcontainer. In order to execute the adaptive tesselation,
we need a derived NodeCore class:DynamicCCSubdivision.
The fieldcontainer DynamicCCSubdivision consists of the
following fields

Mesh
Singlefield of pointer type to an OpenMesh13 object. The
user sets this field to the basis mesh to be rendered.

Tesselator
Singlefield of pointer type to a tesselator object. This tes-
selator object is created internally in thechanged-method
in response to the user’s assignment of a new basis mesh.

User Parameters
NormalConeAperture, ProjectedSizeMin/Max, Vertex-
Classifier

A natural scenegraph structure for the implementation of
the adaptive, patchwise algorithm with gap prevention would
be to create twoGeometry-nodes per patch as childs of the

c
 The Eurographics Association 2003.

Settgast et al / Adaptive Tesselation of Subdivision Surfaces in OpenSG

DynamicCCSubdivision-node. One node would be assigned
to the inner part of a patch and the other to the border part to
differently tesselated neighbours (see Fig.8). In this struc-
tureDynamicCCSubdivision would be derived from theMa-
terialGroup-fieldcontainer, which would specify an overall
material for the subdivision surface object. Unfortunately
this structure consumes a large amount of memory and adds
a considerable runtime overhead, especially for practical
models with more than 2000 patches.

Because of this we chose a leaner structure, where
DynamicCCSubdivision is derived from theGeometry-
fieldcontainer and does not require any further nodes. The
fieldcontainer for storing indexed-face-sets in OpenSG12 is
calledGeometry. BesidesMaterial it has several fields ref-
erencing geometry attribute multifields like

Positions
Normals
Colors
TexCoords

The remaining fields are used for the definition of OpenGL
primitives

Types
OpenGL primitive types

Lengths
Length of the Indices sections, defining one primitive.

Indices
Index sequences into the attribute multifields.

With Indices and an additional multifieldIndexMapping
the Geometry-fieldcontainer can be switched between three
different modesNon-Indexed, Single-Indexed and Multi-
Indexed. For subdivision surfaces with a limit normal per
limit vertex and a small number of sharp crease edges we
use theGeometry-nodes in theSingle-Indexed mode. In
this mode the output implementation in OpenSG employs
OpenGL vertex arrays.

5.2. Updating the Geometry-Node

DynamicCCSubdivision does a preprocess every time the
basis mesh is altered. The OpenSG fields Positions, Nor-
mals, Types, Lengths and Indices are assigned in theGeom-
etry-object. The Positions and Normals multifields, to which
the limitpoints and normals are written, are resized to a static
size sufficient for the maximum subdivision depthmaxsd.
In this preprocess the curvature information (Section3.2) is
collected by the tesselator object. The Indices, Types and
Lengths fields have to be updated every frame. The inner
part of the surface is built out of quad strips only. For the
outer part a mixture of quad strips and triangle fans is used
depending on the gap prevention process.

In summary, the Indices multifield is the concatenation of
the indexarrays used in Section4 and the resulting OpenGL
command sequence is nearly the same. Similarly we use
caching of limit points and limit normals like in Section4.

6. Analysis of Memory Consumption and Runtime

Let us investigate the memory consumption during the tes-
selation process. As mentioned before, we use two statically
allocated structures, named Slate 1 and Slate 2, to perform
all subdivision. We choose the size of the used Slates in de-
pendence ofmaxsd andmaxval:

(2maxsd +3)2+4 � ca

where(2maxsd +3)2 is the size of the 2D array named by Ta-
ble, andca = (maxval�4) �2 is the size of the corner array,
of which four are used in one Slate. Two of this Slates are
sufficient to calculate all subdivisions, so the total number of
3D vectors necessary to compute all subdivisions are:

2 � (2maxsd +3)2+16�maxval�64

To obtain a tesselation for a given patch at subdivision
depthl n = (2l + 1)2 limit points and the same number of
normals have to be computed. In the following, we consider
the time to calculate this points and normals. Assuming the
time required to compute a vertex as constant (exactly it de-
pends on the valence of the 4 possible extraordinary points),
the number of calculationsCN is:

CN = SN+LN

with SN being the number of calculations during the subdi-
vision steps andLN is the number of computations to ob-
tain the limit points and normals,C is the number of vertices
in the four corner arrays of the Slate (maximal size ofC is
4 � (maxval�4) �2):

SN =
l

∑
i=1

(2i +3)2+C

LN = 2 � (2l +1)2

So we obtain:

CN =
10
3
�22l +16�2l + l � (9+C)� 34

3

This is linear in the number of limit points:

O(
10
3
� (pn�1)2

+16� (pn�1)+ (9+C) � ln(pn�1)� 34
3
)

= O(n)

7. Results

Figure14and15demonstrate the correctness of the adaptive
refinement. To show the effect of the backface culling heuris-
tic, we use a ‘second’ camera and have a look at the back
parts (see Figure15). The correct assignment of subdivision
depths is visible in the wireframe in Figure14: Patches that
are members of the silhouette have the highest subdivision
depth, highly curved parts also have a finer tesselation. Gap

c
 The Eurographics Association 2003.

Settgast et al / Adaptive Tesselation of Subdivision Surfaces in OpenSG

0

100000

200000

300000

400000

500000

0 50 100 150 200 250 300 350

tr
ia

ng
le

s
pe

r
fr

am
e

framenumber

adaptive
uniform l=2
uniform l=3

without gap prevention

Figure 9: Resulting triangle counts for adaptive and uni-
form tesselation of testscene II.

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300 350

of

 q
ua

ds
 o

f a
 c

er
ta

in
 d

ep
th

framenumber

l <= 4
l <= 3
l <= 2
l <= 1
l = 0

Figure 10: Distribution of the resulting quadrangles (with-
out gap prevention) to certain subdivision depths for
testscene II.

prevention is also done between the differently tesselated
patches.

For the next tests with the results illustrated in the figures
9 – 12 we choose a scene of a spacestation (see Figures16
and17) with a variable number of spacecrafts. The camera
eye performs a double rotation around the y–axis, facing the
model center. Benchmarks were performed on a standard PC
with Intel P4 1.7 GHz, 512 MB main memory and a GeForce
4 TI 4600 graphics board.

Figure9 shows the resulting triangle counts for the adap-
tive and uniform tesselation. The adaptive algorithm selects
only those triangles which are necessary for a high quality
image. In contrast, the uniform tesselation takes all triangles
at a given depth, unfortunately also the non-visibles. The
curve of the adaptive tesselation varies, because the number
of drawn triangles changes during the framesequence.

Considering the framerate, the direct rendering with
OpenGL is faster than the OpenSG version because of
the missing administrative overhead. But both solutions are

faster than a comparable uniform tesselation. During the first
round of the rotation the framerates increase because the
limit point and normal caches get successively filled.

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

fp
s

framenumber

OSG adaptive
OGL adaptive

OGL l=4
OGL l=5

Figure 11: Framerates for testscene I. The adaptive algo-
rithm uses depths 1 – 5

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

fp
s

framenumber

OGL l=4
OGL l=3

OSG adaptive
OGL adaptive

Figure 12: Framerates for testscene II. The adaptive algo-
rithm uses depths 0 – 4

8. Further work

The tesselation algorithm presented here can easily be
adapted to other kinds of subdivision surfaces based on
quad meshes. For subdivision schemes using a triangle mesh
(e.g. Loop3), an additional step is necessary to work opti-
mally with the Slate structure. If the mesh is new or has
changed, it is partitioned into triangle pairs by, e.g., a greedy
algorithm4,5. In practice, very few singletons remain that ob-
tain a dummy partner. The resulting triangle pairs are treated
like the quadrangles described before: Each triangle pair gets
a joint subdivision depth, is collected into a Slate with their
1-neighbourhood and tesselated in the same way.

To achieve a nearly constant framerate, an estimation of
runtime must be done. If the estimated time for the next
frame composed of the calculation time for new points and

c
 The Eurographics Association 2003.

Settgast et al / Adaptive Tesselation of Subdivision Surfaces in OpenSG

the time to draw the cached and new computed quads and tri-
angles is too high, the quality of the image must be adapted
to the available time to keep the framerate.

9. Conclusion

We have shown that an adaptive tesselation algorithm us-
ing two static sizedSlates performs very good in practice.
A classification scheme detects visually important parts of
the surface for additional refinements to obtain high quality
images. As a data structure for the basis mesh, we use the
OpenMesh developed in the OpenSG PLUS project. But the
algorithm can also be adapted to another mesh with the func-
tionality to collect the 1-neighbourhood and to store special
feature information for vertices and edges like sharpness,
weights etc. We have compared two kinds of integration into
OpenSG. The simple one deposits OpenGL-commands di-
rectly from a single scenegraph node. The second one uses
a layered approach, where theDynamicCCSubdivision-node
feeds one (or several) Geometry-nodes. Despite it is some-
what slower, the output implementation can be changed in-
dependently and the updates per frame can be done in a ded-
icated thread assisted by OpenSG.

In conclusion the algorithm is simple and efficient, easy
to implement and also easy to extend to other subdivision
rules.

Acknowledgements

This work has been supported by the OpenSG PLUS project
funded by the German Federal Ministry of Education and
Science (bmb+f) under grant 01 IRA 02G and by the Mod-
Nav3D project funded by the German Research Council
(DFG) under grant Fe-431/4-3.

References

1. E. Catmull and J. Clark. Recursively generated B-
spline surfaces on arbitrary topological meshes.Com-
puter Aided Design, 10(6):350–355, 1978.2

2. Leon A. Shirman and Salim S. Abi-Ezzi. The Cone
of Normals Technique for Fast Processing of Curved
Patches.Proc. of Eurographics, 12(3):261–272, 1993.
3

3. C. Loop. Smooth subdivision surfaces based on trian-
gles.Master thesis, University of Utah, 1987. 7

4. K. Müller and S. Havemann. Subdivision Surface Tes-
selation on the Fly using a versatile Mesh Data Struc-
ture. Computer Graphics Forum (Eurographics 2000
Proc.), 19(3):151–159, 2000.1, 7

5. K. Pulli and M. Segal. Fast Rendering of Subdivision
Surfaces.Technical report, University of Washington,
1996. 1, 7

6. D. Zorin and P. Schröder. Subdivision for modeling and
animation.SIGGRAPH 99 Course Notes, 1999. 2

7. J. Bolz and P. Schröder. Rapid Evaluation of Catmull-
Clark Subdivision Surfaces.Web3D’02 Conference
Proceedings, pp. 11–17, 2002.1

8. S. Havemann. Interactive rendering of Catmull/Clark
surfaces with crease edges.The Visual Computer,
18:286–298, 2002.1

9. S. Bischoff, L. Kobbelt and H. P. Seidel. Towards Hard-
ware Implementation of Loop Subdivision.Eurograph-
ics Workshop on Graphics Hardware, pp. 41–50, 2000.
1

10. T. DeRose, M. Kass and T. Truong. Subdivision Sur-
faces in Character Animation.SIGGRAPH 98 Confer-
ence Proceedings, Annual Conference Series, pp. 85–
94, 1998 2

11. D. Luebke and C. Erikson. View-dependent simplifica-
tion of arbitrary polygonal environments.SIGGRAPH
97 Conference Proceedings, Annual Conference Series,
pp. 199–208, 19974

12. Dirk Reiners, Gerrit Voß and Johannes Behr. OpenSG
- Basic Concepts.Proc. OpenSG Symposium 2002 6

13. Mario Botsch, Stephan Steinberg, Stephan Bischoff and
Leif Kobbelt. OpenMesh - a generic and efficient poly-
gon mesh data structure.Proc. OpenSG Symposium
2002 5

14. H. Biermann, A. Levin and D. Zorin. Piecewise Smooth
Subdivision Surfaces with Normal Control. SIG-
GRAPH 2000 Conference Proceedings, Annual Confer-
ence Series, pp. 113–120, 20002

15. H. Halstead, M. Kass and T. DeRose. Efficient, Fair
Interpolation using Catmull–Clark Surfaces.COM-
PUTER GRAPHICS Proceedings, Annual Conference
Series, pp. 35–44, 19932

Figure 13: Subdivision Surface with sharp edges.

c
 The Eurographics Association 2003.

Settgast et al / Adaptive Tesselation of Subdivision Surfaces in OpenSG

Figure 14: Wireframe view to show the adaptive tes-
selation.

Figure 15: Effect of the backface culling heuristic:
The camera is in front of the spaceship.

Figure 16: Testscene I for framerate (104 basis faces
with depths 1 – 5).

Figure 17: Testscene II for framerate (3932 basis
faces with depths 0 – 4).

Figure 18: Cup model with 70 basis faces, subdivided
using depths 1 – 5.

Figure 19: Tree model with 1434 basis faces, sub-
divided using depths 1 – 3 (Model by the CHARIS-
MATIC team).

c
 The Eurographics Association 2003.

