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Abstract
We present an API for adaptive subdivision schemes which is generic in the sense that it allows to define a com-
posite subdivision operator as a sequence of atomic splitting and averaging rules. The API encapsulates a mesh
data structure enhanced by additional temporary information which is necessary to enable the refinement of mesh
faces in random order while keeping the mesh structure consistent and avoiding redundant computations.

1. Introduction

Subdivision surfaces have become a standard representation
for smooth freeform surfaces in computer graphics. These
surfaces are defined by a subdivision operator that maps a
given control mesh to a uniformly refined one. Since the sub-
division operator additionally applies a special type of low-
pass filter to the vertex positions, it produces a sequence of
meshes that converge to a smooth surface in the limit.

By this technique it is very easy to define freeform sur-
faces that are globally smooth. The shape of these surfaces
can be modified by simply shifting control vertices of an un-
structured control mesh without having to take complicated
inter-patch continuity conditions into account.

Obviously, when visualizing a subdivision surface, it is
not necessary to exactly evaluate the limit surface for each
pixel. Instead one usually refines the given control mesh un-
til it provides a sufficiently close approximation of the limit
surface and then renders the control mesh rather than the
limit surface. The major problem with this approach is, how-
ever, that the number of faces in a uniformly refined control
mesh increases exponentially. Hence, one tries to refine the
control mesh only in those regions where the approximation
is not sufficient (usually regions with high curvature) and
uses a coarser surface approximation in regions with less ge-
ometric detail.

This adaptivesubdivision requires some administrative
overhead in the underlying mesh data structure. Vertices and
faces have to store their corresponding refinement level and
special care has to be taken to find the correct neighboring
vertices (from the same level) when locally applying a geo-
metric low-pass filter operation. Additional difficulties arise

from the fact that adaptive refinement may lead to topologi-
cal inconsistencies in the control mesh when faces from dif-
ferent refinement levels are adjacent to each other. Hence the
underlying mesh data structure has to be fixed temporarily
without causing any side effects to the subdivision scheme.

When designing an API for adaptive subdivision schemes
all these issues should be hidden behind the interface. The
ideal API should provide a single methodrefine( S,i)
which applies one refinement step with the subdivision op-
eratorS to the faceFi . The handling and updating of the
adaptively refined control mesh data structure should be
completely transparent to the application. In particular, if
refine( S,i) is applied to each faceFi of the mesh, we
in fact perform a uniform refinement step and the resulting
control mesh has to be identical to the mesh obtained by the
corresponding uniform operatorS.

As a consequence, in order to implement an API for adap-
tive subdivision we need to solve two problems:

• Find a generic representation of the subdivision operator
S that allows to describe a large variety of different sub-
division schemes.

• Make sure that for each application ofrefine( S,i)
the mesh data structure provides the necessary informa-
tion to locally update the control mesh. Ideally redundant
computations should be avoided wherever possible.

For the generic representation we use the subdivision op-
erator factorization proposed by Oswald and Schroeder1.
Their composite subdivision schemes cover a large class
of schemes including important special cases like the Loop
scheme2 or the

√
3 scheme3. A solution for the second prob-

lem is found by properly associating all intermediate results
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with the respective mesh objects (faces, edges, and vertices).
In particular, this requires that each mesh object stores its
subdivision history, i.e., the sequence of intermediate posi-
tions it had on the coarser refinement levels.

2. Composite Subdivision

The basic idea of composite subdivision schemes is to
decompose standard subdivision operators into "atomic"
rules 1. From a generic set of rules any combination can
be concatenated to build a subdivision operator with desired
properties. We call the concatenated set therule sequenceS.

While Seeger et al4 decompose subdivision into so-called
sub-atomic topological operations, the composite scheme
takes a different approach. First it separates the topological
from the geometrical part of the subdivision operator. The
topological operations are represented by thesplitting rules,
which simply upsample from a coarse into a refined topology
using well known split operators. The geometric operations
are uniformaveraging rules. The averaging can take place
in the primal or/and the dual mesh. The dual mesh can be
obtained by exchanging the faces of the primal mesh with
vertices and connecting them across the edges of the primal
mesh5. Hence the vertices become faces and vice versa. In-
stead of creating a dual mesh explicitly, it is sufficient to
associate a position with each face of the primal mesh.

The generality of this approach lies in the averaging rules
as they act on the primal and/or dual mesh, respectively. This
allows the composite scheme to re-build primal and/or dual
subdivision operators.

A side effect of doing so, is that the averaging rules can
be repeated,S = (S∅)n◦T, which leads to a higher smooth-
ness6, 7, 1 of the limit surface. Here,T is the splitting rule and
S∅ is a sequence of averaging rules. Furthermore a sequence
without a splitting rule works like a smoothing filter.

For easy reading we adopt the notation for the rules used
in 1 as follows. The mesh objects, vertex, edge, and face
will be denoted withV, E, andF , a mesh itself byM =
{V,E,F}. A splitting rule is denoted withT and might have
some subscripts to indicate input and output objects. E.g.
TVV takes vertices to generate new vertices. An averaging
rule is denoted by a combination ofV, E, andF . For ex-
ample ruleVF averages vertex positions to associate a dual
3D position with a face. Hence every object has a position
to support primal and dual averaging operations. An average
rule might have subscripts denoting a parameterization.

Additionally we denote an input object withI , the set of
input objects of a ruleR with MI (R), MI ⊂M, an output
object withO, and the set of output objects withMO(R),
MO ⊂ M. Note thatMI (R) is the stencil of the ruleR.
Since the rules are linked in such a way, that the output of
one rule is the input of the following rule, the stencil of the
complete sequence is the union over all required input ob-

jects. Finally we denote thekth rule in S with Rk and the
length ofS with ‖S‖, which is the number of rules inS.

3. Adaptive Subdivision

The major contribution of our work is the design and im-
plementation of an API that extends the concept of uniform
composite subdivision to adaptive refinement.

Naturally every object of the mesh has a position, as the
averaging rules move back and forth between the primal and
dual mesh. While this is sufficient in the uniform case, one
needs additional information in the adaptive setting.

In the adaptive setting the full sequenceS is applied on a
single object. But due to the nature of the rules the objects in
a certain neighborhood, in reach of the stencil of the object,
are affected. Hence the factorization of the subdivision oper-
ator implies that the mesh objects take on intermediatestates
s (fractional refinement levels). Thus we associate a states
with every objectX, and define a function state(X),X ∈M,
which returns the current state of an objectX. The applica-
tion of each atomic rule increases the state by one, i.e. all
input objects have to have the same statesand all output ob-
jects have states+ 1. The sequential ordering of the rules
generates a mapping between therth rule inS and state(x):

r = state(X) mod‖S‖

Thus each object automatically keeps track of the last rule
that has been applied to it.

Having this we can now define a precondition for every
rule: The state of all input objects must be one less than the
target statest of the output objects,

∀I ∈MI (R) : state(I) = st −1

This leads naturally to a recursive method, where each rule
checks first the precondition for the inputs. If necessary the
rule calls its predecessor to raise the inputs to the required
state. But the recursion can only work if the new objects had
been instantiated already. Hence the sequenceS has to be
processed in two phases on a selected objectXs to account
for the special role of the splitting rule:

1. Apply the splitting rule first onXs to create the new ob-
jects. Since all input objectsI ∈MI (T(Xs)) must satisfy
the precondition state(I) = state(Xs)− 1, the rule recur-
sively calls its predecessor first if necessary.

2. Apply the last rule inS. If necessary, it recursively calls
its predecessors first.

Fig. 1 shows the pseudo code of theraise method,
which is the main method of a rule. By using lazy
evaluation8 all preconditions are efficiently fulfilled and no
redundant computations are performed. This handling of the
atomic rules reduces the task of keeping the adaptively re-
fined mesh globally consistent to a simple checking of the
mesh object’s states in the stencil of each rule.
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raise( X , st )
r = st mod‖S‖ // rule index

for all I ∈MI (Rr (X))
if ( state(I) < st −1 )

raise( I , st −1)
apply( Rr , X)

Figure 1:Pseudo code for raising a mesh objectX to target
statest with a lazy evaluation strategy.

Figure2f shows the assignment of states for the rule se-
quenceS = FV ◦FF ◦VF ◦TVV,3. Note that only the final
output object of the sequence, namely the vertex at the cen-
ter, has been raised to states= 4 = ‖S‖. Moving away from
the new vertex the object states decrease towards the bound-
ary of the stencil of the sequence.
From this behavior we can deduce that each object must keep
a history of its positions in different states. When applying
another subdivision step, the stencils of the current step and
a previous one might overlap and some of the input objects
might have already a higher state than necessary. Therefore
each object keeps an individualposition mapfrom state in-
dices to the position at that state.

Besides the state and the position map, the splitting
rules require information about the topological configura-
tion of the objects (especially faces). For instance they
must deal with temporary configurations as in red-green-
triangulation9, the adaptive variant of primal 1-4 splitting.
Therefore each object has a flag indicating whether it isfi-
nal. Before applying a splitting rule, we check whether all
the input objects are final.

In summary the adaptive composite subdivider needs the
following information for each objects:

1. an object state indicating the last rule that has been ap-
plied to it

2. a map from states to positions
3. a final flag indicating, whether all topological changes

have been done or if the object is just temporary.

For a detailed analysis of the rules and how to compose a
scheme for a given subdivider we refer to1.

3.1. Modified
√

3 Example

A modified
√

3 subdivision scheme can be constructed with
the rule sequenceS = FV ◦FF ◦VF ◦TVV,3 (see Fig.3 and
for details about the rules see1, 3). Since

√
3 subdivision has

4 atomic factors and inserts new vertices on oldfaces, the
goal is to raise the new vertexvnew to state state(vnew) =
state(Fold) + 4. The example starts with the initial config-
uration (Fig.2a), i.e. every mesh object has the state zero.
Thus the target state isst = 4 = ‖S‖.

The first ruleTVV,3 does the 1-3 split and the edge flip,
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Figure 2:Modified
√

3 subdivision example.

if the direct neighborhood of the face is finalized. The new
vertex and the incident faces then have states= 1 (Fig.2b).

Now the last ruleFV is called for the new vertexvnewwith
the target statest = 4. Since

state(F) = 1 < st −1, ∀F ∈MI (FV(vnew))

the faces F have to be raised first with the previous ruleFF
to the required statest − 1. For FF the situation is similar
and it recursively calls the preceding rule in the same fash-
ion. Every rule can be applied on any object. Depending on
the object, the rule either only updates the state of the ob-
ject, or actually modifies it. The example rule sequence will
find its first valid state configuration when last ruleVF is
called forvnew (base case of the recursion). The state can be
increased by one as all direct neighbors already have state
state(vnew)− 1 (Fig. 2c). As VF computes a face position,
it only raises the state ofvnew. The rule is also applied on
the incident edges, hence a call toTVV,3 raises the state of
the vertices of the one-ring ofvnew. Next the faces incident
to vnew are raised to states= 2, which is necessary to raise
vnew to states= 3. Fig.2d shows the resulting mesh. Since
the faces were not final and the adjacent faces had a state
two lower than the requested one, they had to be splitted by
TVV,3. After the edgeflips all incident triangles are final and
the state can be set. Thus the state ofvnew can be increased
as well.
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To complete the subdivision step, the vertices of the one-
ring of vnew must be raised to states= 2, before the faces of
the one-ring are raised to states= 3, which is the precondi-
tion for the application of the last ruleFV. This requires the
incident faces of the one-ring vertices to have the states= 1,
hence they are splitted as well (Fig.2e). Finally all objects
in the neighborhood ofvnew have the right state, to lift it to
it’s final state (Fig.2f).

Notice that all these recursive calls and tests are triggered
by a simple state-check that is performed in the atomic aver-
aging rules (Lazy Evaluation). No global consistency check
is necessary. Hence the structure of the API remains simple.

1/31/3

1/3

VFTVV,3

0

*3

*3*3

FVFF

1/3
1/3

1/3

1/n
1/n

1/n
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Figure 3:Rules for
√

3: Splitting ruleTVV,3 and three aver-
aging rulesVF, FF andFV (weightc and valencen) 1.

4. The Framework

This section gives an overview of the API based on the pre-
sented factorization technique. We show the fundamental
data structures, and how they are related to each other.

Note: The adaptive subdivision framework is part of the
OpenMesh10 software. Hence the framework makes heavily
use of template programming. For the sake of simplicity all
namespaces have been omitted. Therefore the code examples
are only given for demonstration purposes.

The API provides several classes which have to be used
with OpenMesh (or any structure providing the same inter-
face as OpenMesh). The section describes the main parts
and gives an example at the end. The building blocks of the
framework are

1. classTraits
Definition of the mesh information as described in Sec-
tion 3. Listing 1 shows for example the traits for a vertex.

2. classOpenMesh<Traits>
The enhanced mesh data structure. OpenMesh10 is a tem-
plate based polygonal mesh data structure.

3. classCompositeT< OpenMesh<Traits> >
This is the actual subdivider class. It keeps the rule se-
quenceS, and a reference to the meshM. It initializes

the rules and the necessary traits. Furthermore it provides
the methodrefine() to subdivide objects as explained
in Section3.

4. template classRuleInterfaceT<>
Defines the interface between rules and the subdi-
vider. The subdivider keeps a linked list of rules,
which represents the rule sequence. The main method
is raise(Someobject, targetstate) , which
raises the supplied object to the target state. Inter-
nally the rule interface stores a pointer to the previ-
ous rule in the sequence and provides the methodup-
date(Someobject) , which does topological checks
and raises allI ∈MI to the required level.
All rules are derived from this class.

The current implementation supports closed meshes as
well as meshes with boundary. The boundary handling is
performed locally by the atomic rules.

Parameterized versions of the averaging rules are nec-
cessary to allow an optimimal weighting for the averaging.
Therefore most of the averaging rules have parameterized
variants. For instanceFVc considers the valence of the ver-
tex by using an appropriate weight3 c. Hence the rule se-
quence for the original

√
3 subdivision scheme would be

S = FVc ◦FF ◦VF ◦TVV,3.

4.1. Example

Listing 2 sketches the implementation of an adaptive
√

3
scheme with this framework.

First the data types are defined. These are the enhanced
mesh and the subdivider. At some point in the application
the mesh and the subdivider have to be created. While the
instantiation of the mesh is straightforward, the subdivider
needs more actions. The rule sequence is defined by con-
catenating the rules. The order of insertion defines the order
in which the rules are executed. Once the sequence is ready
it has to be passed to the subdivider. Hereafter the subdivider
is initialized.

Since the
√

3 operator refines faces by splitting them, the
input element to the subdividing methodrefine must be a
face handle. (In OpenMesh all elements are represented by
handles) It is in the applications responsibility to select the
appropriate objects for refinement.

5. Results

Fig.4 shows a decimated Stanford bunny with boundary and
its adaptively refined counterparts after 400 local subdivi-
sion steps. Here the refinement criterion is a weighted aver-
age angle between the normal of a face and the normals of
its adjacent faces. The figures clearly show how the compos-
ite operator locally refines the selected areas, i.e. areas with
high curvature.

Table 1 shows the runtimes for uniformly subdividing
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a decimated Stanford bunny (130 faces) with the standard
schemes for Loop and

√
3 and their uniform and adaptive

composite siblings. As all variants are used uniformly, we
can compare the times that uniform and adaptive composite
scheme need to fulfill the same task. Due to the factoriza-
tion of the subdivision step into simple rules, the composite
schemes have increased runtimes. The uniform composite is
roughly three times slower than the standard schemes. The
adaptive version is again five to seven times slower than the
uniform composite, due to the bookkeeping of the intermedi-
ate positions in the adaptive case and the overhead produced
by the recursive calls.

However, in real applications an adaptive subdivider will
not perform as many subdivision operations as an uniform
one since only some regions of the mesh are refined. Asymp-
totically adaptivity will always balance the computational
overhead because we no longer have exponential growth in
the mesh complexity. For example, if a standard uniform
Loop operator and its adaptive composite variant are applied
3 times, than the break even point is reached, when 33%
of the faces are used for adaptive refinement, supposing the
adaptive one is 16 (≈ 30.21/1.91) times slower per face than
the uniform one, which is the worst case according to the
table 1. If less faces are used than the adaptive composite
operator will be faster.

All experiments have been done on a commodity PC with
a Intel PIII-866 MHz processor and 1 GB SDRAM.

Table2 show the memory consumption of each object, if
the mesh is enhanced with the composite traits. The vertex
and edge size increase by 20 bytes because of oneint (4
bytes) forstate , another one for the booleanfinal , and
12 bytes for the map. The face size increases by 24 bytes
instead of 20 because it keeps additional info for the splitting
operatorTVV,4, which is the primal 1-4 split.

Subdivision-Steps 4 5 6

Loop [s] 0.13 0.50 1.91
Loop Composite [s] 0.38 1.53 5.99

√
3 [s] 0.04 0.12 0.35√

3 Composite [s] 0.10 0.35 1.11

Loop Composite (uniform) [s] 0.38 1.53 5.99
Loop Composite (adaptive) [s] 1.88 7.54 30.21
√

3 Composite (uniform) [s] 0.10 0.35 1.11√
3 Composite (adaptive) [s] 0.71 2.34 7.62

Table 1: Runtimes for standard, composite and adaptive
composite versions of Loop and

√
3 subdivision.

6. Conclusions and Discussion

In this paper we presented an API for adaptive subdivision
schemes. Based on uniform composite subdivision we ana-
lyzed the steps towards an adaptive composite scheme and

Default Composite

Face 4 28(+24)

Vertex 16 36(+20)

Edge 24 44(+20)

Table 2:Object size in bytes for the default traits (minimum
size) and enhanced for usage with the adaptive composite
framework.

Figure 4:A decimated Stanford bunny (top; 136 faces) sub-
divided 400 times with Loop (middle; 54000 faces) and

√
3

(bottom; 46000 faces).

presented the necessary data structures and algorithms. By
using the composite scheme we achieved greatest possible
generality, as it supports several subdivision schemes. Fur-
thermore the API allows to create new schemes fairly easy.
Either by concatenation of the supplied rules or by devel-
oping customized rules. Both characteristics are big advan-
tages, when developing and exploring new and old schemes.

On the downside, we pay this increased flexibility with an
increased stencil size and increased runtimes. Due to the cas-
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cade of recursive calls of the rules, a lot more objects are re-
quired than in a standard implementation. The performance
loss is mainly a memory access problem due to the book-
keeping of the individual state-to-position pairs and the re-
cursion. Hence the API only pays off if the number of spared
refinement operations balances the computational overhead.

Future work lies in optimizing and extending the API with
respect to runtime and memory usage and research on the
relationship between stencil size the cascaded rules to keep
the stencil more compact. A further research topic is to re-
engineer a compact representation from a composite subdi-
vider, i.e. to automatically generate a compact and optimized
representation with a "compiler for subdivision schemes"
once a suitable rule sequence has been engineered.
Addressing memory consumption two improvements can be
done. First the individual maps can be replaced by a global
one mapping pair(object, state) to a 3D position. Secondly
the object size can be reduced, if the sign bit of the state
variable is used for the final flag. An interesting extension is
going to be scriptable rules, which allows the user to build
rules via a simple scripting language.
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Listing 1: VertexTraits as a representative for object traits

V e r t e x T r a i t s
{

s t a t e _ t s t a t e _ ; / / uns igned i n t
bool f i n a l _ ;
map< s t a t e _ t , Po in t > pos_map_ ;

} ;

Listing 2: Building a
√

3-Subdivider

[ . . . ]

t ypede f
Tr iMesh_ArrayKernelT < T r a i t s > Mesh ;

t ypede f
CompositeT <Mesh > Sub ;

i n t main ( )
{

/ / c r e a t e mesh , s u b d i v i d e r
Mesh mesh ;
Sub s u b d i v i d e r ( mesh ) ;

/ / s e l e c t t h e wanted r u l e s
Tvv3<MyMesh> r u l e 1 ( mesh ) ;
VF<MyMesh> r u l e 2 ( mesh ) ;
FF<MyMesh> r u l e 3 ( mesh ) ;
FVc<MyMesh> r u l e 4 ( mesh ) ;

/ / c r e a t e r u l e sequence
Sub : : RuleSequence r u l e s ;
r u l e s . push_back ( r u l e 1 ) ;
r u l e s . push_back ( r u l e 2 ) ;
r u l e s . push_back ( r u l e 3 ) ;
r u l e s . push_back ( r u l e 4 ) ;

/ / pass r u l e s t o s u b d i v i d e r
s u b d i v i d e r . i n i t i a l i z e ( r u l e s ) ;

/ / f i l l t h e mesh
[ . . . ]

/ / choose a f a c e and s u b d i v i d e i t
MyMesh : : FaceHandle fh = . . . ;
s u b d i v i d e r . r e f i n e ( fh ) ;

/ / o u t p u t mesh
[ . . . ]

}
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