
OpenSG Symposium (2003)
D. Reiners (Editor)

Parallel architecture of an interactive scientific visualization
system for large datasets

Sascha Schneider, Thorsten May†, Michael Schmidt

Fraunhofer Institut für Graphische Datenverarbeitung, Fraunhoferstr. 5, 64283 Darmstadt, Germany

Abstract
In this paper we describe a further development state of our system which is able to compute actual scientific and
realistic visualization methods in parallel. This paper is related to the basic work we presented in one of our pre-
vious articles18. Our system is capable to integrate easily in modern VR renderers like for exampleOpen Inventor
19, Coin 4 andOpenSG5. Our approach is designed for processing large datasets which usually are the result of
physically based simulation algorithms and programs. Using our techniques it is even more feasible to manage
similar visualization problems for other large amounts of data (e.g. medicinal CT-scans or large geometries) in
the context of displaying interactively.

1. Introduction

Besides of the simulation of physical phenomena their per-
formant and professional visualization comes more and
more into the focus of modern scientific applications. Nowa-
days there are several powerful physical based simulation
programs available on the software market (e.g.Fluent 9,
FemLab6, Flovent12, CFX 3, etc.) which allow the user and
developer to simulate and investigate nearly every kind of
physical problem in high quality and detail. In the realisa-
tion concepts of these products mostly parallel approaches
play an important role in the program architecture to gain
major increases in perfomance.

Empirically these simulation programs are producing
large amounts of result data which are often displayed only
roughly or inperformant using simple visualization tools.
These tools are mostly already integrated within the simu-
lation programs themselves. There are only few visualiza-
tion programs available which are completely independent
of the underlying simulation system and/or data format, grid
and glyph types (e.g.VTK 23). These independent tools offer
a good general approach for the visualization problem. On
the other hand they often lack in performance to process the
large amounts of simulation data in reasonable timeframes.

† Fraunhofer Institut für Graphische Datenverarbeitung, Tel. (+49)
6151 155-638, Fax (+49) 6151 155-139, eMail: tmay@igd.fhg.de

Very large data sets (i.e. datasets much larger than 2563

grid points) mainly cause problems due to

• data is too large to load into main storage completely
• loading data in the hierarchically ordered memory (hard

disk, cache, main memory) takes too much time for qual-
itative, quantitative and interactive rendering.

• costly calculations for some visualization methods.

For these reasons, techniques from the areas

• data compression (e.g. wavelet methods)
• parallelization of program code (e.g. multi threading,

OpenMP, MPI)
• hardware accelerated algorithms (e.g. 3D texturing)
• efficient algorithms / software design (e.g. object oriented

programming)
• utilization of efficient software development tools (e.g.

C/C++) and libraries (e.g. OpenSG, OpenGL, Qt)
• development of portable, functional, easy usable and ex-

tendible software

were developed and steadily enhanced up to this day.

2. Related work

There are many works (1, 13, 11, 21) in computer graphics
that use methods from some of the above areas. But to our
knowledge, there is no comparable and published work that
covers all of them. On the contrary, our approach to this topic

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org


Schneider et al. / ParallelVis

applies most advanced methods from all of these areas in
order to create a visualization tool for very large scientific
data that features high rendering quality in real time, a very
good functionality and an easy handling.

On the area of displaying simulation results many visual-
ization methods have established today, like for example iso-
surfaces, stream- and time-lines and volume rendering. But
compared to the massive parallel simulation program, the
corresponding available visualization software is still noti-
cable less performant. The reason for that is that it mostly
works either sequentially or it is implemented as a post pro-
cess which operates on the basis of an offline rendering con-
cept.

The transfer of the principle of parallel programming from
the simulation of physical problems to their interactive vi-
sualization lets the end user profit of significant accelera-
tions. This approach enables the applications to process even
larger amounts of data interactively. Interactive Visualization
of scientific data is a classical area of computer graphics that
is steadily and rapidly developing due to the increasing re-
quirements on data volume, display quality, program func-
tionality and usability.

Approaches to interactive visualization in the past partly
based on completely (data pre-processing and rendering)
parallelization of existing visualization algorithms. By uti-
lizing modern graphics hardware (NVIDIA GeForce16, ATI
Radeon8) it’s possible to shift the rendering process to them.
The advantage is a faster rendering on standard PCs, that do
not provide many processors for parallel execution.

3. Architecture

The main target of the following paper is to present a general
concept for an interactive parallel visualization of scientific
simulation data making use of the sophisticated capabilities
of modern graphic cards. In this concept a generalized de-
scription of visualization methods is defined. Based on this
description an extension of the developed system with fur-
ther visualization methods is easily realizable every time.
For that reason the system can be supplemented rapidly with
new visualization methods as soon as they appear.

Furthermore our approach is realized platform indepen-
dently, to satisfy the need for software portability because of
different computer system architectures which are available
and in use nowadays. The used ingredients (C++, OpenGL
20, OpenSGandQT 2) allow us to fullfill this capability.

A rather new method in the field of scientific CFD visu-
alization is to render scientific CFD data (stream lines, iso
surfaces, ...) combined with detailed and textured geomet-
rical data. This could be, for instance, a 3D model of the
original scene that is used from the simulation side for gen-
erating the simulation mesh. Blending in original 3D mod-
els simplifies navigation for the user and is basis for another

technical innovation, the application of highly realistic vi-
sualization methods within the area of CFD visualization.
This means that in addition to visualization of abstract phys-
ical quantities like temperature, pressure, etc. with scientific
visualization algorithms (cutting plane, glyphs, iso surface,
...), realistic quantities like fluid, gas or fire and smoke can be
rendered as they appear in their natural form inside a photo
realistic rendered virtual (simulation) environment22.

4. Scenegraphs APIs

Scenegraphs APIs (e.g. Open Inventor / Coin, OpenSG) are
immediate APIs in which the objects and commands that are
going to be rendered are not sent directly to the graphics
processor (GPU) but are integrated in a (acyclic directed)
tree graph based description of the displayed scene. This
tree is then traversed and rendered separate from the applica-
tion that provides the geometry and what shall be rendered.
Therefore the scenegraph implements a kind of abstraction
layer between the application and the GPU. Typical Objects
in a scenegraph are normally derived from a base object
(„scene graph tree node“): Geometry node, material node,
transformation node, group node, light node.

Figure 1: Example scenegraph with multiple threads modif-
ing it.

Modern scenegraphs like OpenSG support parallel pro-
cessing (fig.1) natively so that it possible for the application
to modify parts or nodes of the scenegraph directly from sev-
eral threads at the same time. As long as every application
thread addresses a different node in the graph it is not neces-
sary to lock the whole graph each time a part of it is accessed.
In spite of this it is possible that every application thread can
work exclusively and in parallel on its part of the scenegraph
with no risk of creating an access conflict with other nodes
/ threads. These scenegraphs are called „thread safe“. Our
visualization system is capable to use arbitrary scenegraphs
for the rendering output because only the functions which
produce the scenegraph nodes and the initialisation of the

c© The Eurographics Association 2003.



Schneider et al. / ParallelVis

whole scene have to be adjusted. At the moment we are ex-
perimenting with the OpenSG scenegraph, the Open Inven-
tor / Coin scenegraph and a specialized scenegraph which
was developed by us.

Furthermore we store the geometry of the surrounding
scene (e.g. a car, an airplane or a tunnel) in the selected
scenegraph together with the data necessary for the render-
ing of the visualization methods. This information is render
geometry (triangles, textures, colors, etc.) as well after the
corresponding calculations have finished.

5. Visualization

As mentioned in the beginning nowadays many methods
for scientic visualization have established (e.g. iso-surfaces,
stream lines, time lines, etc. - (see fig.4 and fig.5))

As every 3D rendering, these methods can be created in
two ways: through ray tracing/casting on the one hand and
through direct rendering using the capabilities of modern
graphic cards (e.g. vertex and pixel shaders, shadowing, ...).
To provide a parallel approach for the second method it is
advisable to make use of thread safe scenegraphs in the first
place. By doing so the application can process the calcu-
lation for each visualization method in parallel. After the
calculation has finished each thread can store its calculated
render information in a separate node in the scenegraph.
Therefore it is easy to have several visualization methods
at the same time in one displayed scene and to process each
method in parallel. Furthermore each visualization method
itself can be computed in parallel. By doing so, it only has to
be assured, that the threaded calculations of one parallelized
method itself is brought together at the same time into the
scenegraph to avoid flickering effects.

5.1. Probe Concept

To allow the user to restrict visualization methods to certain
areas of the datafield/scene we implemented the probe con-
cept13. The user can create as many of these probes (fig.6)
and place them in the scene as he wants. Each probe is asso-
ciated with a cube in VR. In this cube only one certain visu-
alization method is calculated. These probes can be placed
arbitrarily and resized within the scene so that it is possi-
ble to let the system render the desired visualization method
at every place in the dataset where the user wants it to be.
To have two or more visualization methods displayed at the
same location at the same time it is only necessary to place
the corresponding probes together at the same coordinates in
VR space.

5.2. Inheritance

To allow an easy extension of the system afterwards we im-
plemented a basic class of a visualization method. Based

on this generalized description we implemented all visual-
ization methods we needed. If the user wants to introduce
a new (specialised) visualization method to the system, the
only thing he has to do, is to inherit from the base (=„root“ )
class and implement its basic functions (calculation, node
generation function, ...). Afterwards he only has to make sure
to register his new visualization method within the system.
Then he can start right off using his new method.

Additionally each visualization method introduces a user
interface („panel-window“) to the system together with a
list of corresponding actions / commands. Every time a fea-
ture of the visualization method is changed (e.g. the user
moves a slider in the interface for the color distribution of
the method) an action transporting the changed parameters
is send through the inter-thread communication framework
(by generating events which are collected in queues) to the
central scheduler (see section6.3). Furthermore it is possible
to generate these kind of parameter changes not just by hand
but by automated control over time for example („display a
movie of visualization method parameter changed“).

6. Parallel Concept

In this section the basic system layout (fig.2) of the parallel
visualization system is introduced showing how the differ-
ent central parts of the software work together. The system is
designed so that it is capable to check the capabilities of the
hardware platform it is running on (e.g. count the number of
available CPUs or the amount of memory). Each visualiza-
tion method is implemented fully scalable so that is possible
to adjust the number of used calculation threads automati-
cally by the system.

6.1. System Layout

As one can see in fig.2 user interacts with the scene and
changes the parameters of the visualization. He has influ-
ence on the view of the scene (i.e. which part of the scene is
rendered from which perspective). Additionally he can cre-
ate and modify probes each carrying one certain visualiza-
tion method. On the other side we have the kernel - we call
it „central scheduler“, which collects all incoming actions /
events and processes them (see fig.3).

6.2. General Visualization Method Object

As mentioned in section5.2 each visualization method is
derived from a basic class which introduces all system nec-
essary functions for the calculation (and the rendering) as
virtual functions. The calculation part of the visualization
method is implemented using multiple threads to support the
intended parallel processing of the system. Every time the
calculation part is finished an event is generated and sent to
the kernel. For the prototype, we implemented that each vi-
sualization method can define individually how many paral-
lel processes/threads it starts for its computation. This can be

c© The Eurographics Association 2003.



Schneider et al. / ParallelVis

Figure 2: The basic system layout.

decided at runtime, which allows us to test the effects of dif-
ferent scalability realizations for each visualization method
individually.

6.3. Central Scheduler

The central scheduler is responsible for processing all nec-
essary reactions of incoming user and / or calculation events.
Every time a parameter change is generated, by user interac-
tion or by a timer function modifying it for example, this
scheduler receives a corresponding event in his incoming
event queue. Being a normal thread it is then activated by
the operating system having a look at his„incoming queue“.
Afterwards the scheduler is responsible for initiating and
controlling the necessary calculations triggered by the cor-
responding event. At the end the calculation-threads inform
the central scheduler, again using inter-thread event com-
munication, that the calculations have finished. The sched-
uler then initiates a scenegraph node generation of the corre-
sponding visualization method and controls the exchange of
the old node(s) in the current scene description with the new
one(s).

7. Datasource Management

In order to adapt the data source management to the re-
sources of the system used, we developed data structures

Figure 3: The central scheduler.

c© The Eurographics Association 2003.



Schneider et al. / ParallelVis

which allow us to trade off accuracy, quality and render-
ing performance: theprogressive grids14. The progressive
grids are a special kind ofhierarchically structured grids10,
which originate from the field of computer graphics. There
they are used to spatially arrange large amounts of geom-
etry data. Progressive grids make use of the technology of
progressive data formats which are closely related to digi-
tal image processing (e.g.Wavelet-, JPEG-Compression). In
these format the data is ordered by its level of detail. So the
data associated with a given arbitrary resolution can be ex-
tracted efficiently. As a result the amount of data that has
to be transmitted and/or processed can be freely adapted to
variable system resources or user requirements. Geometry
data, for example, can be transmitted and displayed simul-
tanously in incremental granularity levels thus the viewer
gets an impression of the geometry already with beginning
of the transmission7. While using progressive data formats
in the context of CFD simulation data, we take advantage of
these properties. It makes sense to arrange the data with re-
spect to the information it contains. According to this align-
ment we built a hierarchy consisting of a spatial partitioning
scheme17 that has so far been used in computer graphics or
geometry.

With our work we introduce the principle of progressive
data processing to CFD-data. This efficient grid class is able
to replace the current unoptimized grid classes used in sci-
entific visualization systems (see fig.7) completely15. Ac-
tually no grid used in numerical simulation is able to han-
dle its data progressively. So these grids have to be con-
verted into the progressive format to make use of them in
our visualization system. For this conversion we are free to
choose which cell types, partitioning schemes or error esti-
mation schemes are used in concrete. All these parameters
can be selected independently from each other and this of-
fers a rich repertoire of possibilities. According to this, the
converter is divided in two parts: A fixed one and a plug-in,
which manages cell type information, its topology, interpo-
lation schemes etc. The plug-in part can be replaced in order
to implement different progressive grids (i.e. grids which use
different cell types, partitioning schemes etc.).

The conversion itself works in the following way: The
bounding box of the original simulation grid becomes the
root cell of our progressive grid. Using the predefined de-
composition scheme, a hierarchy of grid cells is then built
up through spatial partitioning. An approximation error is
computed through comparision of values interpolated within
the current cell and the original grid. (This approximation is
independent from the topology of the original grid.) A cell
will be further partitioned, if its approximation error is the
worst compared to all other currently unpartitioned cells .
The new cells generated in this way, represent a„better“
approximation of the original grid. The whole partitioning
process stops if a certain error tolerance has been reached.

The progressive grid generated in this way has a number

of advantages. The maximum error within the leaf-cells in
the hierarchy decreases fast. This minimizes the number of
cells to be loaded at a given error tolerance. Furthermore
these cells constitute a single block, because they are written
in the same order their parent cells have been partitioned.
The hierarchical structure of the grid can be exploited for
compression in areas where low-frequency portions of the
scalar fields predominate. We converted a number of datasets
of fire simulations and are able to zoom through the lev-
els of detail in real time, without making concession to per-
formance. A visualization of streamlines (involving 200.000
vertices) using the progressive grid was comparable in speed
to the one on the original, equidistant grid.

8. Summary

We presented a new concept of a visualization system which
is able to make use of the capabilities of modern graphic
cards. This system is scalable and can be easily adjusted to
different hardware conditions. Furthermore it is portable and
can be easily extended with new visualization methods. To-
gether with its capability to display scientific visualization
methods together with realistic rendered it is very attractive
to the end user, because he is able to investigate his simual-
tion results within a realistic looking virtual environment.
The parallel approach of our system makes it very attrac-
tive for processing very large amounts of (simulation) data.
Based on the progressive approach it becomes possible to
visualise even large datasets on machines which have only
little performance only at the cost of losing details in the
loaded and displayed data.

For the future it is planned to have a kind of automatic
adjustment of how many processes/threads should be started
for each visualization method („profiler“) depending on the
used hardware capabilities. This idea is well supported by
our system design (see section6.2).

References

1. R. M. Aaron Trott and J. McGinley. Wavelets ap-
plied to lossless compression and progressive transmis-
sion of floating point data in 3-d curvilinear grids. In
Proceedings IEEE Visualization ’96, pages 385–388.
IEEE, 1996. 1

2. T. AS. Qt, c++ toolkit for application development.
http://www.trolltech.com/products/qt/.2

3. CFX. Cfx, cfd software package.
http://www.software.aeat.com/cfx/.1

4. Coin3D. Coin, scenegraph based 3d graphics library.
http://www.coin3d.org/.1

5. J. B. Dirk Reiners, Gerrit Voß. Opensg - basic concepts.
http://www.opensg.org/OpenSGPLUS/symposium/
Papers2002/.1

c© The Eurographics Association 2003.



Schneider et al. / ParallelVis

6. Femlab. Femlab, pde solver package.
http://www.femlab.com/femlab/.1

7. H. Hoppe. Progressive meshes. InSIGGRAPH ’96:
Proceedings, 1996. 5

8. A. T. Inc. Ati radeon, graphic board.
http://www.ati.com/. 2

9. F. Inc. Fluent, cfd software package.
http://www.fluent.com/software/fluent/.1

10. A. v. G. J. Wilhelms. Octrees for faster isosurface gen-
eration.ACM Transactions on Graphics (TOG), 11(3),
1992. 5

11. R. M. L. Lori A. Freitag. Adaptive, multiresolution vi-
sualization of large data sets using a distributed mem-
ory octree. InProceedings of SC99: High Performance
Networking and Computing, 1999. 1

12. F. Ltd. Flovent, cfd based software.
http://www.flovent.com/.1

13. W. B. M. Schulz, F. Reck and T. Ertl. Interactive visual-
ization of fluid dynamics simulations in locally refined
cartesian grids. InProceedings IEEE Visualization ’99,
pages 413–553. IEEE, 1999.1, 3

14. T. May, S. Schneider, M. Schmidt, and V. Luckas. Fast
scalar- & vectorfield visualization using a new progres-
sive grid class. Into be published at the High Perfor-
mance Computing Conference (HPC), 2003. 5

15. T. May, S. Schneider, M. Schmidt, and V. Luckas. The
progressive grid: Introducing a new grid class for effi-
cient cfd visualization. Into be published at the Simu-
lation and Visualization Conference (SimVis), 2003. 5

16. NVIDIA. Geforce, graphic processing unit.
http://www.nvidia.com/.2

17. H. Samet. The quadtree and related hierarchical data
structures. ACM Computing Surveys (CSUR), 16(2),
June 1984.5

18. S. Schneider, T. May, and M. Schmidt. Rendering large
(volume) datasets: A new parallel visualization system.
In Journal of WSCG, pages 418–424, February 2003.
1

19. SGI. Open inventor, object oriented 3d graphics api.
http://www.sgi.com/software/inventor/.1

20. SGI. Opengl, 3d rendering api. http://www.opengl.org/.
2

21. M. L. Szymon Rusinkiewicz. Qsplat: A multiresolution
point rendering system for large meshes. InSiggraph
2000: Computer Graphics Proceedings, 2000. 1

22. V. L. Thorsten May, Sascha Schneider. Parallel real
time fluid simulation and animation with fractal opti-
cal refinements. InESM ´02: Proceedings of the 16th

European Simulation Multiconference, Modelling and
Simulation 2002, pages 224–228, 2002.2

23. K. M. M. William J. Schroeder and W. E. Lorensen.
The design and implementation of an object-oriented
toolkit for 3d graphics and visualization.IEEE Visu-
alization ’96, http://public.kitware.com/VTK/:93–100,
1996. 1

c© The Eurographics Association 2003.



Schneider et al. / ParallelVis

Figure 4: Visualization method: Iso-surfaces. Figure 5: Visualization method: (Shaded) stream lines.

Figure 6: Iso-surface probe (small cube) placed in the scene
(big cube).

Figure 7: A Progressive Grid together with a correspondig
streamline visualization.

Figure 8: Screenshot of the running application

c© The Eurographics Association 2003.


