
OpenSG Symposium (2003)
D. Reiners (Editor)

Parallel Stereo Visualization For Clusters With
OpenInventor:

A Case Study For The Automotive Industry

Fernando Vega�†, Gerd Sußner�†, Thomas Reuding�‡ and Günther Greiner�

�Computer Graphics Group
University of Erlangen-Nuremberg, Germany

�BMW AG

Abstract
Stereo visualization is an area which can greatly benefit from cluster computing due to the parallelizable nature of
the rendering task. In order to implement this idea, we have developed a novel software architecture which allows
the construction of parallel OpenInventor-based stereo applications. As a result of this work, we present the Open-
Inventor Stereo Library for Clusters. The library provides tools to port transparently OpenInventor applications
to stereo cluster-based OpenInventor applications. The distribution of the rendering tasks is encapsulated, and
the developer does not have to take care of non-graphics-related tasks. Evaluation was carried out on a prototype
cluster consisting of a master and two slave rendering Linux PCs. The resulting pair of stereo images was visual-
ized with polarization-filter projector and glasses. A standard X desktopis available and multiple OpenInventor
based windowed applications can be used simultaneously. The value of the present work was demonstrated with
an example 3D-visualization application for the automotive industry.

Categories and Subject Descriptors(according to ACM
CCS): I.3.2 [Computer Graphics]: Graphics SystemsDis-
tributed Network Graphics; I.3.2 [Computer Graphics]:
Three Dimensional Graphics and RealismVirtual Reality;
C.2.4 [Computer-Communication Networks]: Distributed
SystemsClient/Server;

1. Introduction

Application of 3D stereo visualization is a must in the Com-
puted Aided Design (CAD) process within the industry
nowadays. Visual correctness of a new car body model must
be evaluated during its design phase and while standard 3D
visualization provides some depth cues5, the designer does

† Lehrstuhl für Graphische Datenverarbeitung,
Am Weichselgarten 9,91058 Erlangen, Germany,
Email:Fernando.Vega.Higuera@informatik.uni-erlangen.de

‡ Forschungs und Innovationszentrum (FIZ) BMW Group,
Knorrstraße 147, 80788 München, Germany,
Email: Thomas.Reuding@bmw.de

not get a complete impression of how the model is going to
look as a finished product. This is where stereo visualization
comes into play, giving the user the possibility of an immer-
sive experience, in which it is possible to acquire a more
accurate idea of the final result. Within this concept, appli-
cations like theCAVE 2 and thePower Wall 11 are extensively
used within the industry and have demonstrated the impor-
tance of virtual reality systems. Nevertheless, those applica-
tions are based on high-end graphics workstations and their
use imposes high costs. On the other hand, the mentioned
systems are optimized for use with multipipe-aware applica-
tions and support for a desktop environment is limited and
restricted by severe performance penalties9.
Application of consumer hardware for high-performance in-
teractive visualization has recently been recognized as an al-
ternative to traditional workstation-based visualization sys-
tems. PC-Clusters have proved to be a powerful tool in
the field of scientific computing, and lately, projects like
WireGL 6 from the Stanford University, have explored the
feasibility of cluster application for the construction of very
high resolution tiled-display systems. Muraki et al7 have

c� The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

Vega et al / Parallel Stereo with OpenInventor

constructed a high resolution volume-visualization system
using PC-clusters equipped with volume-rendering graphics
cards and additional image compositing hardware.

In the context of stereo graphics, OpenInventor10 is
a widespread standard for the development of interactive
3D visualization applications; its backbone is thescene-
graph, which is the database containing the objects that com-
pose the scene. OpenInventor provides stereo rendering by
creating two images from the scene; the camera is placed
at the right and left eye positions alternately. This means,
that in order to produce the pair of stereo images (so called
stereo pair) the same scene must be processed and rendered
twice. We introduce a novel approach by parallelizing this
task: each one of these images is created on a node of a
prototype PC-cluster; that is, the computers have to work
independently and synchronously in order to produce a con-
sistentstereo pair (see Fig1). Prior work on collaborative

Figure 1: Parallelizing Stereo Rendering

virtual reality environments, like the DIV4 and the SGAB12

have focused on a distributed approach forscene-graph data
sharing, and show the feasibility of constructing a system
with interactive rendering capabilities.

In this work, a multi-layer architecture has been devel-
oped over theX-Windows system and OpenInventor mak-
ing use of adistributed-scene-graph scheme. A master node
does not render but it is only responsible for X event han-
dling and slave coordination. AtX-Windows level, synchro-
nization is realized through X-event replication at the slaves.
Synchronization at OpenInventor level is achieved trough
scene-graph replication. The rendering slaves in the cluster
run a local copy of the visualization application with its cor-
responding scene data. A slave is designed as primary and is
the only one to process Inventor interaction. Its copy of the
scene-graph is used as reference and changes made to scene
are recreated by the other slave. In contrast to other multi-
pipe approaches, this system provides a standardX desktop
and multiple windowed stereo applications can be used con-
currently.

The present work has been developed and evaluated over
a HelpVR8 node, which consists of amaster and twoslave
Linux PCs. The slaves are equipped with consumer ori-
ented high-performance graphics hardware (NVidia Quadro
4 XGL 900), and the network connection between them con-
sists of 100 Mbit Ethernet cards and a hub. A CAD visual-

ization application was ported and its output is displayed on
a polarization-filter stereo projector.

After presenting an overview of the architecture in sec-
tion 2, implementation of the OpenInventor Stereo Library
for Clusters (OISLC) is reviewed in section3. Finally, the
results achieved with a visualization application for the auto-
motive industry show the value of our approach and further
developments of the system are discussed.

2. Architecture

We have created a system where the user perceives the PC-
cluster as a stereo rendering machine and not as a computer
network. User interaction is performed at the master while
the slaves react accordingly. One of the clients create the left
eye image, while the other one creates the image that corre-
sponds to the right eye. These images are to be combined and
viewed with standard VR visualization techniques (active or
passive stereo visualization). Since those images correspond
to aX Windows desktop (see Fig2), areas which do not cor-
respond to stereo rendered images must be identical. Other

Figure 2: A 2D desktop with multiple 3D-stereo applications

aspect to be taken into accountis scalability. It was required
to develop an architecture that can be used in the construc-
tion of systems with a higher count of rendering pipes in
order to provide multiple concurrent views (ie. CAVE), but
maintaining the performance level by adding slaves to the
cluster. With this constraint in mind we keep the rendering
slaves as free as possible from non-rendering tasks; synchro-
nization tasks are delegated to the server keeping rendering
performance unaffected by the growth of the system.

In order to achieve synchronization of theX Windows sys-
tem and OpenInventor applications, realization of the system
is accomplished at two different levels (See Fig3). At a first
stage, the X Windows interface of the slaves is synchronized
with the X events generated at the master. In a second phase,
additional synchronization of the OpenInventor scene-graph
is performed.

Since the slave desktops are identical, keyboard and
mouse events produce the same behavior at both slaves. The
user can start OpenInventor applications in parallel over the

c� The Eurographics Association 2003.

8

Vega et al / Parallel Stereo with OpenInventor

cluster by normal desktop interaction. OpenInventor syn-
chronization becomes simpler, since tasks such as object
creation and deleting are performed simultaneously by all
the slaves and do not need to be shared. OpenInventor syn-
chronization is restricted to changes made by the user on the
scene-graph through direct interaction over the scene.

Figure 3: Software Architecture

2.1. X11 Synchronization

Synchronization of theX11 system was achieved through the
specialization of an existing X-based software application
(x2x). This application makes it possible to control different
client X servers from a master X server. Some of the orig-
inal flexibility was sacrificed in order to optimize the soft-
ware for our architecture. A modified approach was used in
oder to reduce network traffic and in this manner improve
responsiveness of the system to user interaction. Thex2x ap-
plication allows the user to send mouse and keyboard events
from a masterX server to different slaveX servers. Events
captured on the master are forwarded to the slaves through
calls toFakeEvent functions which are part of the Xlib li-
brary 1. X sends these events over the network making use
of theX protocol. We have taken advantage of the cluster ar-
chitecture in order to customize and optimize thex2x appli-
cation. Since only mouse and keyboard events are sent, the
use of theX protocol between different hosts is a suboptimal
approach. This step was eliminated and only the required in-
formation to recreate the X events at the slaves’ side is sent.
Size of the data packets is reduced from the 32 Bytes used by
the X protocol, to the 9 Bytes required by our synchroniza-
tion protocol. A reduction of 35 % in network throughput
was achieved and a decrease in the response time to user in-
teraction was clearly perceptible.

2.2. OpenInventor Synchronization

After synchronization at X Windows level it became clear
that this was not enough to achieve scene-graph replication.
Interaction on Open Inventor applications executed simul-
taneously on the slaves produced different results although
the X events registered on both machines were identical.
Further testing revealed that Inventor dropped mouse events
triggered on the render area, depending on the instantaneous
work load of the system. Inventor synchronization was im-
plemented in order to ensure scene consistency at the slaves.

OpenInventor bases its architecture around thescene-
graph 10, which is the database containing the objects

(callednodes) that describe the scene to be rendered (geom-
etry, lights, transformations, cameras, etc.). The properties
describing those objects are stored in their corresponding
data members known asfields. In order to obtain a consis-
tentstereo pair, synchronized copies of thescene-graph are
kept at the slaves. One of the slaves act as reference for in-
teraction, and its copy of thescene-graph is replicated by the
second slave. The primary slave is the only one to process the

Figure 4: Scene-graph Synchronization

X events generated over the render area. This guarantees that
its copy of thescene-graph is the only one that is modified
by user interaction. The primary slave is in charge of trans-
mitting those changes to the master; then the master broad-
casts the information to the second slave. This architecture
enables the addition of new slaves to the cluster without in-
creasing the complexity of the non-rendering related tasks
for them (see Fig.4) since their work load is independent
from the cluster’s node count.

The master does not hold a copy of the scene-graph and
its in charge of synchronization only. This makes it possible
to avoid the need of a 3D graphics-card at the master.

2.2.1. Node Synchronization

Primary slave data is sent only when changes to thescene-
graph have been made; OpenInventor provides a mechanism
to sense modifications made to the nodes and it allows the in-
stallation of callbacks functions in order to respond properly
to those events. This mechanism was used and a callback
function is in charge of storing changes made to the corre-
sponding node. Sending every single change proved to be
unnecessary and too expensive in terms of communication.
An independent thread sends the stored changes at regular
time intervals and only when there is new data.

At the secondary slave’s side the modifications are re-
ceived and applied to thescene-graph. Since the Open
Source implementations of OpenInventor are non thread-
safe, changes to the nodes are made from within the render-
ing thread. A communication thread stores the received data
in memory, and a timer-object peeks those changes at regu-
lar time intervals and applies the required modifications. (see
Fig. 5)

2.2.2. Stereo Camera

A virtual monoscopic camera-object is employed for peek-
ing. This object is synchronized through the normal node-

c� The Eurographics Association 2003.

9

Vega et al / Parallel Stereo with OpenInventor

Figure 5: Nodes’ Synchronization

synchronization mechanism. Each slave sets its camera at
the corresponding stereo-position (left or right eye) before
rendering the scene. The implemented approach does not
prevent the user from making use of OpenGL extensions
such as vertex and pixel shaders. A particular rendering code
can be introduced without worrying about the stereo tasks.

2.2.3. Frame Synchronization

According to the work from Cruz-Neira et al2, frame re-
freshing for the different displays must occur within a time
window of 8 ms in order to avoid artifacts. The double
buffering mechanism from OpenGL was used to control the
simultaneous frame refreshing; whenever a slave is ready to
perform a swap buffer operation, it sends a request to the
master and enters a wait state. The server checks whether all
the slaves are ready, and then issues a swap-buffer command
to all the rendering nodes (as shown in Fig6). If the redraw

Figure 6: Frame Synchronization

request has not been completed after a given time (i.e. not all
the slaves need to swap buffers), the server issues the redraw
command; this will allow the blocked slave to continue and
won’t have any effect on the other slave.

3. The OISLC

The functionality of the architecture has been encapsulated
in a set of classes that we named theOpenInventor Stereo
Library for Clusters (OISLC). Users have to introduce a
minimal amount of modifications in order to port their ap-
plications to the system. These will run as clients to the
OISLC and the server application does not need to be modi-
fied to suit any particular client. The server provides a simple
graphical interface allowing the user to select between four
different rendering modes (convergent cameras-variable eye
separation-, fixed convergent cameras, parallel cameras and
monoscopic), and adjust stereo settings.

At the clients’ side, event processing and frame synchro-
nization is carried out by the viewers. A full hierarchy of
SoXt viewer classes is provided. Camera positioning is in-
tegrated in a specializedrender action. The viewer classes
of the application to be converted must be replaced by one
of the mentioned stereo viewer classes, and a stereo render
action must be provided.
Finally, the most important component of the library is the
main client class:ClientOISLC. It provides the interface for
connecting to the server and node sharing.The user needs to
interact only through two functions:

� ShareNode(SoNode* node);
� RemoveNode(SoNode* node);

We have based our approach on a concept from Hesina et
al 4, where the library checks for the type of the node being
shared and creates the necessary underlying classes for syn-
chronization. The first function creates and registers the cor-
responding node-sharing classes, and the second one makes
a clean up, and has to be called when the node in ques-
tion needs no longer to be synchronized. The provided set
of classes allows for almost transparent porting of OpenIn-
ventor applications in order to take full advantage of the de-
veloped architecture.

The following example demonstrates creation of a
StereoExaminerViewer with the corresponding stereo
camera and a point light:

// Create the StereoExaminerViewer
SoXtStereoExaminerViewer* stereoViewer = new
SoXtStereoExaminerViewer(TheWindow,

"Server OISLC");

// Create the StereoRenderAction
SoStereoRenderAction* stereoRA = new
SoStereoRenderAction((*stereoViewer).

getViewportRegion());

// Create the OISLC client
ClientOISLC* clientOISLC = new
ClientOISLC(serverPort, clientPort);

// Initializate the Stereo library.
(*clientOISLC).Start(stereoViewer,

stereoRA);

// Share the camera
(*clientOISLC).ShareNode(stereoViewer->

getCamera());

// Share a point light manipulator
(*clientOISLC).ShareNode(pointLight);

4. Results

A cubing application (the process of checking the visual cor-
rectness of a CAD design is known as cubing process) devel-
oped by BMW with OpenInventor, was ported to our archi-
tecture. This tool provides standard features such as lights

c� The Eurographics Association 2003.

10

Vega et al / Parallel Stereo with OpenInventor

and textures, clipping, markers, etc. It is used extensively
during the development of car parts, up to car bodies within
the engineering department. Initial evaluations of the sys-
tem were carried out by connecting the graphic outputs of
the slaves to standard PC-monitors in order to check con-
sistency of the obtainedstereo pair (see Fig8). Once satis-
factory results were achieved, the video signals of the slaves
were used as input for a stereo projector. In this manner visu-
alization with polarization-filter glasses is possible (passive
stereo) (see Fig9). This proved the effectiveness of the ap-
proach to create a consistentstereo desktop in parallel. The
system was evaluated in a work environment, through cub-
ing of CAD car body models at different mesh resolutions.
Additional performance benchmarks were performed. Time
delay between redraws at different slaves was evaluated (see
Table1). Although a maximum value of 12 ms was recorded,
almost no frames are beyond the 8 ms mark and the average
time is smaller than 1,5 ms. We have to note that frames
with timeout created some visual discomfort, nevertheless,
the percentage of frames with timeout did not reach 1 %.

Frames Max. Avg. Pct. under 8 ms Timeouts

10.158 12 ms 1,45 ms 99,9705 % 0,423 %

Table 1: Time needed for frame synchronization

The graphics performance of the cluster was measured with
the cubing tool; a spin animation is performed with a polyg-
onal model of a car body at different resolutions, using
a light source and OpenGL lighting activated. Graphics-
performance loss due to synchronization was measured (see
Table2).

Triangle
Count Tri/sec Mono Tri/sec Stereo Graph. load

700.398 4.146.356 3.172.109 89,52 %

350.199 4.188.380 2.917.157 69,64 %

66.137 2.702.357 1.693.107 62,65 %

Table 2: Stand alone vs. Stereo performance

It can be seen that synchronization costs for low complex-
ity models turns out to be significant. Nevertheless, it is low
for higher resolutions. Software tests with our library on ma-
chines running IRIX shown minimal performance loss due
to synchronization, in contrast to our LINUX system. This
problem seems to be related to the accuracy of the operat-
ing system task scheduler under LINUX. Work in this area
is being carried out in order to use real-time scheduling.

It should be noted also, that the given numbers correspond
to frame rates measured on each rendering machine, and in
consequence the performance numbers must be multiplied

by two in order to measure the overall performance of the
system (see Table3).

Triangle
Count Tri/sec Octane2 Tri/sec 3-PC-cluster

700.398 2.661.512 7.424.218

350.199 2.591.472 5.834.314

66.137 1.587.288 3.386.214

Table 3: Octane2 / Quadro-cluster comparison

Performance drops due to communication load were not
detected while running multiplestereo applications simul-
taneously. This is a very interesting feature, since multipipe
virtual reality systems such as the Onyx2 recently introduced
the use of windowed single-pipe applications only through
the OpenGL multipipe library9. These suffer severe perfor-
mance drops which increase with the complexity of the ren-
dered models. This limitation is also apparent inWireGL,
due to the overhead created by catching graphic primitives
and forwarding them to the independent pipes. Our approach
is better suited, for applications such as CAD visualization
where graphical data is static, and only changes in the scene
must be shared. Nevertheless, our system is not suited for
visualization of large-scale data, since neither object-space
nor image-space parallelization is carried out.

5. Conclusions and Future Work

We have presented an architecture forparallel OpenInventor
stereo rendering over clusters. A prototype Linux PC-cluster
was built, where two slaves are in charge of rendering, and a
server performs synchronization tasks. The presented work
introduces a new approach for stereo rendering with user-
oriented graphics hardware. Practical application for a vir-
tual reality CAD environment inside the automotive industry
was demonstrated. The scalability of our architecture allows
us to think of further applications like the construction of a
PC-based high resolution stereo desktop.
Further additions to the system are required in order to im-
plement this idea. The current camera synchronization is

Figure 7: Off axis projections in a multi-display system

based on the SoCamera classes from OpenInventor, which
implement symmetric projection frustums; nevertheless, for
a multi-screen display, where the stereo image is conformed
by complementary segments, off-axis projections must be
implemented2 (Fig. 7). This can be achieved adding a new
OpenInventor node class without affecting the structure of

c� The Eurographics Association 2003.

11

Vega et al / Parallel Stereo with OpenInventor

our architecture, since a new PC-pair would render each im-
age segment. Research is currently under way in order to
combine ideas from the Distributed Multihead Project3 with
our system.
Synchronization penalties of the system are neglectable for
high complexity models and this feature makes it attractive
for OpenInventor applications that require high performance
rendering of static CAD data. Existing OpenInventor appli-
cations can be ported to our system with a minimal effort
from the programmer, thanks to the simplified interface that
OISLC offers. The user can make use of multiple stereo ap-
plications over a desktop without performance drops due to
communication.
An architecture for PC-clusters was developed, which
achieves stereo rendering performance levels comparable to
those from graphics-workstations, making possible the con-
struction of low-cost high-performance virtual reality solu-
tions based on OpenInventor.

Acknowledgements

We would like to thank BMW AG which kindly provided
the necessary computing equipment for this project, as well
as CAD datasets.

References

1. H. Abdel-Wahab and K. Jeffay. Issues, problems and
solutions in sharing X clients on multiple displays.
Journal of Internetworking research and experience,
5:1–15, 1994.3

2. C. Cruz-Neira, D. Sandin, and T. DeFanti. Surround-
Screen Projection-Based Virtual Reality: The design
and implementation of the CAVE. InProceedings SIG-
GRAPH, pages 135–142. ACM, 1993.1, 4, 5

3. DMX. Distributed multihead x project.
http://http://dmx.sourceforge.net, 2001. Accessed in
February 2003.6

4. G. Hesina, D. Schmalstieg, A. Furhmann, and W. Pur-
gathofer. Distributed OpenInventor: a practical ap-
proach to distributed 3D graphics. InProceedings of the
ACM symposium on Virtual reality software and tech-
nology, pages 74–81. ACM, December 1999.2, 4

5. H. Hu, A. Gooch, and W. Thompson. Visual Cues for
Imminent Object Contact in Realistic Virtual Environ-
ments. InProceedings of the conference on Visualiza-
tion 2000. ACM, October 2000.1

6. G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Ev-
erett, and P. Hanrahan. WireGL: A Scalable Graph-
ics System for Clusters. InProceedings of SIGGRAPH
2001. ACM, August 2001. 1

7. S. Muraki, M. Ogata, K.-L. Ma, K. Koshizuka, K. Kaji-
hara, X. Liu, Y. Nagano, and K. Shimokawa. Next gen-
eration supercomputing using pc clusters with volume

graphics hardware devices. InProceedings of Super-
computing 2001 Conference, pages 10–16, November
2001. 1

8. Siemens AG. High end low price vir-
tual reality HELPVR. http://www.tu-
bs.de/rz/software/graphik/Onyx/HELP_flyer_eng3.pdf,
2000. Accessed in February 2003.2

9. Silicon Graphics Inc. OpenGL multipipe.
http://www.sgi.com/software/multipipe, 2001. Accessed in
February 2003.1, 5

10. P. Strauss and R. Carey. An Object-Oriented 3D Graph-
ics Toolkit. InProceedings of SIGGRAPH 1992, pages
341–349. ACM, August 1992.2, 3

11. University of Minessota. Power wall.
http://www.lcse.umn.edu/research/powerwall/powerwall.html,
1994. Accessed in February 2003.1

12. B. Zeleznik, L. Holden, M. Capps, H. Abrams, and
T. Miller. Scene-Graph-As-Bus: Collaboration Be-
tween Heterogenous Stand-alone 3-D Graphical Appli-
cations.EUROGRAPHICS 2000, 19:91–98, 2000.2

c� The Eurographics Association 2003.

12

Vega et al / Parallel Stereo with OpenInventor

Figure 8: Stereo pair displayed on PC-monitors

Figure 9: Stereo cluster application within BMW

c� The Eurographics Association 2003.

13

