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Abstract
In this paper, we discuss the problem of decomposing complex and large Molecular Dynamics trajectory data into simple
low-resolution representation using Principal Component Analysis (PCA). Since applying standard PCA for such large data is
expensive in terms of space and time complexity, we propose a novel online PCA algorithm withO (1) complexity per new time-
step. Our approach is able to approximate the full dimensional eigenspace per new time-step of MD simulation. Experimental
results indicate that our technique provides an effective approximation to the original eigenspace computed using standard
PCA in batch mode.

1. Introduction

Eigenvalue problems were first officially introduced by Hilbert in
the 1920s (although they had been previously used under different
terminology). Since then, they have been widely used for modelling
many real-world problems and physical phenomena. Their impor-
tance is evidenced by the fact that no less than 20 Nobel prizes have
gone to physicists whose significant achievements are related to
eigenvalue problems [Tre11]. The Dirac and Schrödinger equations
which are central theories in Quantum Physics are both eigenvalue
problems that describe particle motion and properties over time.
For instance, the quantum states that an electron in an atom can
take (labeled as 1S, 2S, 2P etc) are actually time-dependent eigen-
functions [Smi10]. The main advantage that the eigenvalue model
provides is that most variations in complex phenomena can be ex-
pressed by having merely a selection of a few eigenfunctions and a
linear combination of such functions.

Before the computing era, finding eigenvectors and more gener-
ally finding eigenfunctions of a specific problem was done analyt-
ically, which is a challenging task in many cases. One of the best
known techniques for analyzing eigenspace in time-varying data is
Normal Mode Analysis (NMA) which approximates the behaviour
of the studied system using a combination of harmonic motions.
The problem with NMA is that it does not work well with sys-
tems of damped or driven oscillations. Principal Component Analy-
sis (PCA) provides an unsupervised non-parametric scheme which
finds the eigenspace of observational (or experimental) data auto-
matically. Unlike NMA, PCA can work with any type of dynamics
(including damped and driven oscillations) [DS10]. Despite the ele-
gance of PCA, in its standard form, it has large space and time com-
plexity with quadratic dependence on data size. This requires large
memory and processing speed. Nowadays machines are shown to

be more capable of handling such complexity thanks to larger avail-
able memory and faster CPU and GPU (Graphics Processing Unit)
capabilities. However, for a wide range of problems where the di-
mensionality of the data is massive (due to the size and number of
samples), extracting the principal components in the standard way
becomes infeasible. In addition, the standard approach to PCA is
a batch learning technique, meaning that the computation of the
eigenspace cannot be done in streaming data scenarios. Many al-
gorithms have been developed to find the most significant princi-
pal components incrementally with linear complexity dependence
on data size. However most of these approaches are stochastic and
are limited to extracting a small number of eigenvectors (principal
components).

The use of PCA in the visualization of biomolecular simulations
is long established in the literature. PCA is often employed in mod-
elling and visualizing the fundamental modes of motion in complex
biomolecule simulations, sometimes referred to as “Essential Dy-
namics” [ALB93, DJ14]. An example is shown in Figure 1, where
the first fundamental mode of motion for a relatively simple molec-
ular dataset, is visualized after it has been captured using PCA.
Essential Dynamics can be used, for instance, to capture dynamical
hinge-like opening and closing modes which are important to un-
derstand the functionality of biological nanomachines such as en-
zymes. Furthermore PCA has been used in the analysis of ion and
water flow in MD simulations, where it is important to understand
the distortion dynamics in the system and the transitions between
conformers [DS10].

Despite the established importance of PCA to MD analysis and
visualization, the inherent computational cost is prohibitive for
large time-varying datasets that are often found in this field. Thus,
the main contribution of this paper is to provide a novel accel-
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Figure 1: Superposition of the first eigenvector motion of a molec-
ular simulation dataset using our approach. The spherical nodes
represent position of molecules, and colour encodes time: red rep-
resents the earliest time-steps and blue corresponds the last time-
steps.

erated variant of PCA that will enable the interactive modelling
and visualization of such datasets with minimal loss of quality in
the reduced model. In addition, such a solution allows visualiza-
tion of streaming data, such as in the case of in-situ visualiza-
tion [NMM∗98,SMSS16], interactive simulation [SGS01] or when
the full dataset cannot be cached in memory due to hardware lim-
itations. Our technique provides lower computational complexity
compared to other recent accelerated PCA algorithms. We test this
algorithm on a number of Molecular Dynamics (MD) simulations.
We compare the performance of our algorithm with the standard
PCA applied in batch-mode and show that our approach provides
a very close approximation to the standard approach with a much
lower number of computations.

2. Concepts

The standard approach to PCA is as follows. Given data samples
X = [x1 x2 · · ·xn] ∈ Rd×n, where each sample is in column vector
format, the covariance matrix is defined as

C =
1

n−1

n

∑
i=1

(xi− x̄)(xi− x̄)T , (1)

where x̄ is the sample mean. In the rest of this paper, we will as-
sume that all samples are centered and hence there is no need to
subtract the sample mean explicitly. After that, we can find the op-
timal low-dimensional bases that cover most of the data variance
by extracting the most significant eigenvectors of the covariance

matrix C. Eigenvectors are extracted by solving the following char-
acteristic equation

(C−λI)v = 0; vT v = 1, (2)

where v ∈ Rd is the eigenvector and λ is its correspond-
ing eigenvalue. Eigenvalues describe the variance maintained by
the corresponding eigenvectors. Hence, we are interested in the
subset of eigenvectors that have the highest eigenvalues, V =
[v1 v2 · · ·vp]; p� n. Then we encode a given sample x using its
p-dimensional projection values (referred to as scores) as follows

W =V T x. (3)

We can then reconstruct the sample as follows

xreconstructed =VW. (4)

One advantage of PCA is the low computational complexity when
it comes to encoding and reconstructing samples.

2.1. Duality in PCA

Since in the case of n� d, C will be of rank n−1 and hence there
are only n− 1 eigenvectors that can be extracted from Eq. (2) and
since C is of size d× d, solving Eq. (2) becomes computationally
expensive. We can find such eigenvectors from the dual eigenspace
by computing the n×n matrix XT X and then solving the eigenvalue
problem (

XT X− (n−1)λI
)

vdual = 0 (5)

⇒ XT Xvdual = (n−1)λvdual ; vT
dualvdual = 1. (6)

Here, for simplicity, we assumed that the sample mean of X is the
zero vector. After extracting the dual eigenvectors, one can note
that by multiplying each side of Eq. (6) by X , we have

XXT Xvdual = (n−1)λXvdual

⇒ 1
n−1

XXT (Xvdual) = λ(Xvdual)

⇒C (Xvdual) = λ(Xvdual)

⇒ (C−λI)(Xvdual) = 0

which implies that

v = Xvdual . (7)

Thus, when n� d, we only need to extract the dual eigenvectors
using Eq. (6) and then compute the real eigenvectors using Eq. (7).
Only the first few eigenvectors Vp = [v1 v2 . . .vp], p� n� d will
be chosen to represent the eigenspace, those with larger eigenval-
ues.

2.2. PCA for Modelling Dynamics in Time-Varying Data

Considering time-varying data X = [xt1 , xt2 , . . . , xtn ] ∈ Rd×n where
d is the total number of attributes. One can think of the time-varying
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attributes as a network of springs interconnecting particles of un-
known masses and unknown settings. In such a case, a negative at-
tribute value indicates a compressed spring and a positive attribute
value indicates a stretched one. In this case, the time dependent
behaviour of each spring (attribute) can be expressed as follows

∂
2

∂t2 A− 1
c2 HA = 0, (8)

where A(x0; t)∈Rd is a vector function describing the state of each
spring at time t and x0 ∈ Rd are some initial conditions and H is
the hessian matrix of all possible second order partial derivatives.
By using separation of variables and considering the eigenmode
assumption, one can write the solution as follows

A(x; t) = F (x)T (t) = Fe−iwt . (9)

According to [DPR91] the Hessian matrix can be approximated us-
ing the negative inverse of the covariance matrix H '−C−1. This
is also related to Cramer-Rao lower bound (CRLB). By plugging
these into eq. 8 we get(

C−
( c

w

)2
I
)

A = 0, (10)

which is precisely the PCA eigenvalue problem. The interesting
part is that the frequency of each eigenvector provides many impor-
tant physical aspects of the system such as the kinetic and potential
energies which are key parts for understanding any MD simulation.

3. Review of Accelerated PCA algorithms

With regard to previous works in the area of PCA complexity opti-
mization, the power iteration remains one of the most popular tech-
niques for finding the top p eigenvectors [GVL12]. In the recent lit-
erature, Shamir proposed a stochastic PCA algorithm that is proven
to converge faster than the power iteration method [Sha15]. Both
techniques have a lower bound complexity ofO

(
n log

(
1
ε

))
where

ε is the precision of convergence. In addition, both techniques were
experimentally tested to extract only a limited number of significant
eigenvectors. Arora and De Sa et al. [ACLS12, ACS13, DSOR14]
proposed stochastic techniques that are based on the gradient-
descent learning rule. The slow convergence rate of the gradient-
descent rule is one main limitation of these techniques.

Many algorithms have been developed to find eigenvectors in-
crementally per new number of time-steps. Such techniques are re-
ferred to as incremental PCA algorithms. The update schemes pro-
posed by Krasulina [Kra69] and Oja [Oja82, OJE83] are the most
popular incremental PCA techniques which are based on the Heb-
bian Learning rule. Given a new time-step xn+1 and a significant
eigenvector v for previous samples, the general update rule accord-
ing to Hebbian Learning is

vn+1 = vn +α
〈
xn+1,v

n〉xn+1; vn+1 =
vn+1∥∥vn+1

∥∥ , (11)

where α is the learning rate. This process will keep updating un-
til it converges to a stable state. The speed of convergence of
this technique is a matter of ongoing research. Balsubramani et
al. [BDF13] found that speed of convergence depends on the learn-
ing rate α. Another problem with this technique is that it does not

consider change in weightings of previous time-steps. Mitiagkas
et al. proposed an incremental PCA algorithm for streaming data
with computational complexity of O (n log(n)) [MCJ13]. Skocaj
et al. [SL03] proposed a spatio-temporal weighting scheme to in-
crementally adapt top eigenvectors. However, the proposed scheme
suffers the problem of error propagation.

In terms of online PCA, Feng et al. [FXY12] proposed an on-
line PCA scheme based on the Principal Component Pursuit (PCP)
algorithm. The proposed method involves an optimization problem
for each new time step of O

(
d p2
)

arithmetic operations per new
time-step where p is the number of distinct eigenvectors used and d
is number of dimensions per time-step. The algorithm was tested on
time-steps drawn from normal distribution with sparse corruption
noise. Nie et al. [NKW16] compared the Gradient Descent (GD)
and Memory Exponential Gradient (MEG) learning schemes when
minimizing the PCA regret function in online settings. They found
that both techniques reach the optimal lower bound of the regret
function (as a function of time). However when expressing the re-
gret function in terms of a “loss budget” factor, the MEG outper-
forms the GD algorithm. Karnin et al. [KL15, BGKL15] proposed
an online PCA algorithm ofO

(
np/ε

2
)

total time complexity. It is
worth mentioning that many of these studies did not include any ex-
perimental results to demonstrate performance in practical settings.
In addition, most of the recent studies require some regularization
parameters for which performance and quality for a change in such
values might significantly differ.

4. Our Algorithm

In this section, we will define our learning scheme. Our scheme
adapts eigenvectors according to a new time-step with fixed arith-
metic operations per new time-step. The main premise of our algo-
rithm is based on the fact that an eigenvector is actually a weighted
sum of the input samples. One can show this by rewriting the PCA
eigenvalue equation as follows(

1
n−1

n

∑
i=1

xix
T
i −λI

)
v = 0

⇒ v =
1

λ(n−1)

n

∑
i=1
〈xi,v〉xi.

A first guess for an update formula given new time-step xn+1 would
be

vt+1 = vt +
〈
xn+1,v

t〉xn+1; vt+1 =
vt+1∥∥vt+1

∥∥ .
This is similar to Oja’s update scheme [Oja82] as discusssed in
Section 3. The problem with this formula is that it assumes the
weightings of previous samples are fixed. As the eigenvector is
updated for each new time-step, the weights of previous samples
should also be adjusted according to their projections on the up-
dated eigenvector. The change in weights will be proportional to
the correlations between previous samples and the new time-step.
In particular, the new eigenvector should be updated towards the di-
rection where sample correlations are maximized. In other words,
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the eigenvector direction is led by time-steps that have higher corre-
lations with other samples. In our algorithm we used the following
update rule

vt+1 = vt +

(
∑

j∈indices

〈
vt ,x j

〉〈
x j,xn+1

〉2 x j

)

+
〈
vt ,xn+1

〉(
∑

j∈indices∪{n+1}

〈
x j,xn+1

〉)2

xn+1. (12)

where indices = rand(n, processing_limit) is a sample population
of processing_limit previous time-steps chosen at random. Unlike
Oja’s method, this is an online scheme that adapts weightings of
previous samples based on the squared dot product with the new
time-step. In this way, the change in weights will be higher for sam-
ples that have higher correlations with the new time-step. In addi-
tion, the new time-step is weighted based on the sum of all second
order dot products multiplied by new time-step’s score

〈
vt ,xn+1

〉
.

The full pseudo-code of our algorithm is shown in Algorithm 1.
There are two parameters used in our algorithm: space_limit which
specifies the maximal number of significant eigenvectors to com-
pute and processing_limit which specifies the maximal number of
dot products to compute per new time-step per eigenvector. As we
mentioned earlier, our algorithm is capable of finding all eigenvec-
tors of the data. In its full-dimensional mode, our algorithm starts
with two time-steps with x2−x1

‖x2−x1‖ as the initial eigenvector and ends
with the full-dimensional eigenspace of the data. Line 10 of the al-
gorithm includes the general update rule. Line 11 is used to bal-
ance magnitudes of vt and vt+1. Line 13 performs Gram-Schmidt
process to ensure that following update terms will be orthogonal
to updated eigenvector. After finishing the loop, X̃ will constitute
the least significant eigenvector since it will be perpendicular to all
updated components.

Algorithm 1: Online PCA

1 for each new time-step xn+1 do
2 X = [X , xn+1];
3 X̃ = X ;
4 if n > processing_limit then
5 indices = rand (n, processing_limit);
6 else
7 indices = 1 : n;
8 end
9 for i = 1 : (min (n, space_limit)−1) do

10 ṽ = vi +
(

∑ j=indices 〈vi, x̃ j〉〈x̃ j, x̃n+1〉2 x̃ j

)
+

〈vi, x̃n+1〉
(

∑ j=indices∪{n+1} 〈x̃ j, x̃n+1〉
)2

x̃n+1;

11 vi = ṽ+ 〈ṽ,vi〉vi;
12 vi =

vi
‖vi‖

;

13 X̃indices∪{n+1} = X̃indices∪{n+1}− vi
(
vT

i X̃indices∪{n+1}
)
;

14 end
15 vmin(n,space_limit) = ∑ j=indices∪{n+1} x̃ j;
16 n = n+1;
17 end

4.1. Edge Case Analysis

We show the soundness of our algorithm by assuming that all pre-
vious samples are included in the sample population. We study the
following two edge cases:

1. xn+1 gives max∑
n
i=1 〈xi,xn+1〉2.

By theory, this is the case where xn+1 corresponds to the most
significant eigenvector xn+1 = vt . By plugging this into eq. 12,
we get

vt+1 = vt +

(
n

∑
j=1

〈
vt ,x j

〉3
x j

)
+ γvt , (13)

where γ is a scalar value. Now, we need to show that
n

∑
j=1

〈
vt ,x j

〉3
x j = αvt , (14)

for a scalar value α. This can be demonstrated as follows
n

∑
j=1

〈
vt ,x j

〉3
x j =

n

∑
j=1

x j

(
xT

j vt
)3

=
n

∑
j=1

x jx
T
j vt (vt)T

x jx
T
j vt

=
n

∑
j=1

λvt (vt)T
λvt

=
n

∑
j=1

λ
2vt (vt)T

vt

= nλ
2vt . (15)

Here we used the orthonormality condition and the the fact that
E
(

xxT v
)
= λv. Hence vt+1 =

(
1+nλ

2 + γ

)
vt and since mul-

tiplying a vector with a scalar will not change its direction, the
first significant eigenvector will not be changed according to Al-
gorithm 1 and xn+1 will be eliminated int the first iteration by
the Gram-Schmidt process in Line 13. As a result, the remaining
eigenvectors will also not be changed.

2. xn+1 is orthogonal to all previous samples.
This is the case where xn+1 corresponds to the least significant
eigenvector. In such a case, neither one of the n− 1 eigenvec-
tors in the inner loop of Algorithm 1 will be changed, nor will
xn+1 be eliminated by the Gram-Schmidt process in Line 13.
Hence, xn+1 will be left to the newly formed nth eigenvector as
in Line 15.

4.2. Computational Complexity Analysis

For convenience, we will denote p = space_limit and k =
processing_limit. By looking at Algorithm 1, one can note that for
each new time-step the inner loop (Line 9) will have a maximum
of p iterations. Each iteration performs 2(k+ 1) dot products of d
multiplications. Since the two parameters are fixed throughout the
execution, this requires 2(k+1)× p =O(p× k) =O(1) dot prod-
ucts per new time-step. This means that the number of dot products
per new time-step is independent of the total number of samples.
Table 1 shows the total time complexity of our algorithm (after
processing all samples) compared to recent studies. Our algorithm
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has linear dependence to number of eigenvectors unlike [FXY13]
which has quadratic dependence. Another important advantage of
our approach is that it can be implemented in pipeline settings since
the computation of vt+1

i does not depend on vt
i+1 leading to a re-

duced cost of O(dk(n+ p)).

Table 1: Time complexity comparison between our approach and
recent accelerated PCA algorithms.

Algorithm Total time complexity

Our approach O(nd pk), k� p

Robust Online PCA [FXY13] O(nd p2)

OPCA [KL15] O(nd p/ε
3), ε� 1

Incremental approaches [Sha15] O(n(d + 1
λ2 )p log(1/ε)), λ is the eigengap

5. Experimental Results

In this section we evaluate the application of our technique to three
Molecular Dynamics datasets, as listed in Table 2, that are cho-
sen to represent low, medium and high-complexity datasets en-
countered in the field. We compare our results with standard PCA
results, which we generated using the pcacov function in MAT-
LAB [Mat17]. The choice of processing_limit value is driven by
the required processing time per eigenvector update. Larger val-
ues lead to better quality at the expense of increased run-time. In
scenarios where the data needs to be streamed, such as in-situ vi-
sualization, it is important to process the eigenvector before receiv-
ing the next time-step, and it is such highly demanding applications
that our solution is particular catered to support. Thus, in the results
shown in this paper, we chose a processing_limit of 20, which was
proven by trial-and-error to provide high quality, whilst guarantee-
ing high processing rates.

Table 2: Summary of each MD dataset.

dataset name No. of atoms No. of time-steps Publication

Alanin 66 100 VMD Development Team

gp45 clamps 10,602 2,000 [Oak16]

Ca2+ binding 50,805 5,000 [GBS∗17]

Firstly, we compare the quality of our results with the standard
PCA approach in terms of explained variance curves, which show
the percentage of variance maintained up to a certain number of
significant eigenvectors. The reason we use explained variance is
because the PCA optimization problem aims to maximize variance
using a minimal number of dimensions. Figure 2 shows the ex-
plained variance curve using each technique for each dataset. For
the Alanin dataset both approaches cover 97% of the variability
using 20 eigenvectors. For the gp45 data, almost 98% variance is
maintained by 100 out of 2,000 eigenvectors. For Ca2+ data, our
technique covers 87% of variance using 300 out of 5,000 eigen-
vectors while the standard approach was able to capture 91%. The
scores of time-steps on the first three eigenvectors are shown in
Figure 3. It is clear that our technique is quite consistent with the
standard PCA. One can also note that lower significant eigenvec-
tors have higher frequency with lower amplitude than significant

Figure 2: Explained variance curves of standard PCA and our
approach for each dataset.

ones, which is consistent with our analysis and the theory of nor-
mal modes.

In addition, we compared PCA and our method by computing
the Peak Signal to Noise Ratio (PSNR), which is a commonly used
metric for measuring the quality of reconstructions of signals. Table
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3 shows a comparison between the reconstructed frames in terms
of mean PSNR value in relation to the original time-steps. Higher
PSNR values indicated better reconstruction quality. For the on-
line approach we found that the PSNR values exhibited an oscil-
lating behaviour with many frames being approximated better than
the standard approach, however the mean PSNR for the online ap-
proach was lower by 1-2 dB than standard PCA. The standard PCA,
on the other hand, is more consistent, maintaining a relatively sta-
ble value for all frames. Figure 4 shows visualizations of some re-
constructed samples of the three datasets using each technique in
comparison with the original time-steps. It can be seen that the re-
constructed samples using both techniques are very similar to the
original ones. It should be noted however that a per-frame visual
match is not really the goal, instead our objective is to ensure that
the temporal behaviour (or animation) preserves the important be-
havioural features of the original data. However, the visual similar-
ities seen in this figure along with the explained variance and PSNR
results suggest that our technique provides very close results to the
standard PCA alternative.

Table 3: Mean PSNR values for each datast.

Alanin gp45 Ca2+

our approach 15.4 dB 6.5 dB 7.5 dB

standard PCA 16.6 dB 7.8 dB 8.2 dB

Finally, we recorded the run-time measurements of the perfor-
mance of both techniques on a MS Windows PC equipped with an
Intel Xeon 3.5GHz CPU and 16GB RAM. The processing times
for Alanin, gp45 and Ca2+ respectively were 0.01s, 6.5s and 2069s
using standard PCA. In comparison, the online PCA measure-
ments were 3.5ms, 12s and 165s where a single eigenvector update
took 0.035ms, 6ms and 33ms respectively. Although the standard
PCA is faster for smaller size datasets, as the number of samples
grows (especially with samples of large ambient size) computing
the eigenvectors using the standard approach becomes infeasible
while the online approach remains efficient by maintaining linear
time growth.

6. Conclusion

In this paper, we proposed an online PCA scheme for learning tra-
jectories in MD simulations. Our method performs a fixed num-
ber of arithmetic operations per new time-step and hence hasO (1)
complexity. Our approach is a generalization of Oja’s learning rule
which considers the change in weightings for previous time-steps
after each update operation. In comparison to the standard PCA,
our technique provides an incremental low-computational learning
platform with similar quality performance in terms of explained
variance curves. Our technique serves as a robust tool for decompo-
sition of complex time-dependent systems. This is a valuable com-
ponent in the visualization and analysis of the behaviour of MD
simulations.
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Figure 3: Scores on the first three eigenvectors using each technique for Alanin dataset (top), gp45 clams (middle) and Ca2+ bindings
(bottom). One can note how scores of both techniques are consistent.
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Figure 4: Original frames from three MD datasets (left) compared to reconstructed frames using standard PCA (middle) and our technique
(right). The top two rows are frames from the Alanin dataset, the third and fourth rows are frames from the gp45 bindings dataset and the
bottom two rows are from the Ca2+ dataset. There are small differences in fine details however both PCA and our solution capture the overall
behaviour of the system quite effectively.
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