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Abstract

For many applications, it is crucial to decide if a dataset possesses cluster structures. This property is called clusterability and
is usually investigated with the usage of statistical testing. Here, it is proposed to extend statistical testing with the Mirrored-
Density plot (MDplot). The MDplot allows investigating the distributions of many variables with automatic sampling in case
of large datasets. Statistical testing of clusterability is compared with MDplots of the st principal component and the distance
distribution of data. Contradicting results are evaluated with topographic maps of cluster structures derived from planar pro-
Jections using the generalized U-Matrix technique. A collection of artificial and natural datasets is used for the comparison.
This collection is specially designed to have a variety of clustering problems that any algorithm should be able to handle.
The results demonstrate that the MDplot improves statistical testing but, even then, almost touching cluster structures of low
intercluster distances without a predominant direction of variance remain challenging.
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1. Introduction

One type of cluster analysis can be desribed as the search for sub-
sets of objects such that the members of each subset look like
each other but do not look much like objects outside the clus-
ter [Bon64], [BHV12]. Then the question arises if a dataset has the
appropriate tendency for such clustering. A clustering algorithm
may provide a result in which the grouping is also homogenous
between the clusters meaning the objects were arbitrarily mapped
into different groups. The dataset in the shape of an empty sphere
called GolfBall [UltO5a] serves as an example because a hierarchi-
cal clustering algorithm will provide a dendrogram that proposes
a clustering that does not reflect the entirely homogenous struc-
ture of the data [Thr18]. In such a case, the dataset does not pos-
sess cluster structures, and the clustering is potentially misleading
for many applications [AAB19]. The property of a dataset hav-
ing cluster structures is sometimes called clusterability [AAB19].
Typically, clusterability can be investigated visually with projec-
tions methods (e.g. [Sam70] [VPN*10], heatmaps (e.g. [HB11]),
or cluster structure dependent with dendrograms (c.f. [Mur0O4]).
This work investigates the clusterability on several datasets with
well-known cluster structures that depict typical challenges aris-
ing in cluster analysis. The investigation is performed with statisti-
cal testing procedures for clusterability evaluated by [AAB19]. The
two most-promising statistical tests evaluated are the multimodal-
ity tests for either distance distributions [KL12] or the 1st principal
component [AW12]. In this work, the investigation of clusterablity
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is extended by the adaption of the visualization technique called
Mirrored-Density plot [TGU20] to either distance distributions or
the 1st principal component of data. The clusterability of contra-
dicting results is evaluated further using the generalized Umatrix
technique [UT17] resulting in topographic maps [TLLU16] of clus-
ter structures.

2. Clusterability

This section describes the statistical testing procedures, the MD-
plot and the datasets used. Statistical testing for clusterability is
performed with the R package ‘clusterability’ available on CRAN.
The package provides statistical testing in order to investigate if a
dataset possesses cluster structures [AAB19]. Dimensionality re-
duction with PCA (optionally scaled and standardized) can be per-
formed for the datasets and then the 1st component is statisti-
cally tested for unimodality with either dip test [Hartigan/Hartigan,
1985] or Silverman test [Sil81]. Here, Hartigans’ dip test is used
because it has the highest sensitivity in distinguishing unimodality
from non-unimodality compared to other approaches [FD13]. If a
distance matrix is given, then the dip test is applied to the vector of
distances [KL12].

2.1. Mirrored-Density plot (MDplot)

The Mirrored-Density plot (MDplot) introduced in [TGU20] vi-
sualizes a density estimation in a similar way to the violin plot
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[HNO8]. The MDplot uses for density estimation the Pareto den-
sity estimation (PDE) approach [UltO5b]. It can be shown that
comparable methods have difficulties in visualizing the probabil-
ity density function in case of uniform, multimodal, skewed, and
clipped data if density estimation parameters remain in a default
setting [TGU20]. In contrast, the MDplot is particularly designed to
discover interesting structures in continuous features and can out-
perform conventional methods [TGU20]. The MDplot does not re-
quire any adjustments of parameters of density estimation, which
makes the usage compelling for non-experts. In this work, the MD-
plot technique is adapted in the R package "FCPS" on CRAN with
the goal to either visualize the 1st principal component of PCA or
the vector consists of the elements of the upper triangle of the dis-
tance matrix. No prior knowledge or assumptions about the data are
necessary. If multimodalities are visible, it can be assumed that the
data possesses cluster structures suitable for conventional cluster-
ing algorithms [AAB19]. As an alternative to the investigation of
clusterability, the unsupervised projection and visualization method
of the Databionic swarm (DBS) [TU20Db] is used to evaluate the
datasets for which MDplot contradicts statistical testing. The first
two modules of the parameter-free swarm algorithm require either
a distance matrix or a data matrix and result in the topographic
map [TLLU16] of the generalized U-Matrix [UT17] of projected
points. Cluster analysis is performed in the third module. If valleys
are visible, then the data possess cluster structures and the number
of clusters is the number of valleys. However, in the third mod-
ule, the purpose of DBS to provide a clustering is not relevant for
this work. The algorithm is available in the R package "Databion-
icSwarm" on CRAN.

2.2. Datasets

To investigate the clusterability of statistical and visualization
methods, datasets are used which exploit fundamental clustering
problems [TU20a]. Table 1 gives an overview of the challenges.
Detailed descriptions and displays of the datasets and their chal-
lenges are presented in [TU20a], projections of datasets are inves-
tigated in [Thr18]. Additionally, 500 random 3D points are uni-
formly drawn between zero and one for which the Euclidean dis-
tance is computed. This last dataset is called “UnitSquare”.

3. Results

In the first part, all thirteen datasets are compared to statistical test-
ing. In the second subsection the Euclidean distance distributions
of artificial datasets are investigated. Selected datasets are evalu-
ated with planar projections using the topographic map [TLLU16]
based on the generalized U-Matrix [UT17].

3.1. Combining Statistical Testing with adapted MDplots

The MDplot of Clusterability is presented in Figure 1 and 2. On
the x-axis, the name of each dataset and the p-value of statistical
testing for each dataset are displayed. On the y-axis, the range of
the mirrored density is shown. If multimodality is detected via sta-
tistical testing, then a dataset possesses cluster structures [AAB19].
The density is either estimated for the upper triangle of the distance
matrix or the 1st component of the PCA (c.f. [AAB19]) which in

Name of Dataset ~ Challenge
Atom(1)* Completely overlapping convex hull
Chainlink(1) Linear nonseparable entanglements
EngyTime(1) Overlapping clusters separable

only by density
GolfBall(1)* No distance-based cluster structures
Hepta(1)* Nonoverlapping convex hulls

with varying intracluster distances
Lsun3D(1) Varying geometric shapes

with noise defined by outliers
Target(1)* Overlapping convex hulls combined

with noise defined by four groups of outliers
Tetra(1)* Low intercluster distances
TwoDiamonds(1)  Identification of the weak link

in chain-like connected clusters
WingNut(1)* Low intercluster distances versus

large intracluster distances
Tetragonula Smooth transition between

clusters and outliers
Leukemia Highly unbalanced cluster sizes

Table 1: Summary of the challenges of the 12 datasets for cluster
analysis [TU20a]. (1) Low-dimensional datasets were generated
under the hypothesis that humans are most often able to group ob-
jects in two- or three-dimensional plots by eye [TU20a]. (*) without
predominant direction of variance.

this section was neither centered nor scaled. Nine out of thirteen
datasets have either a significant p-value indicating cluster struc-
tures or a p-value near 1 indicating no cluster structures (Golf-
Balll data, UnitSquare distances). Statistical testing for clusterabil-
ity shows a not significant p-value for Target, Hepta, Wingnut, Tetra
in Figure 2. These datasets have no predominant direction of vari-
ance. The MDplot show mulitmodalities in the 1st principal com-
ponent of Target and Hepta in Figure 2. The MDplot shows slight
multimodalities in WingNut but agrees with statistical testing for
Tetra, meaning that at least the cluster structures of Tetra are unde-
tectable through the MDplot or statistical testing.

MDplot of Clusterability for Multiple Datasets

139E14T6

1

S S S S S S S "
o o o o o o o a
v v v v " v v
Q Q Q Q Q Q Q o
: ; - ; - ; : ]
) Y, @ o
o ° 9, c g £ [a] 5]
I} S 2 = 2 = K] 2
H c S
£ £ 2 © = 2 ]
S 4 < =) S =
e & & 2 S c
E a ii] & =]
= Q b=
3 [
= [

Probability that data has no cluster structure

Figure 1: Adapted MDplot for Clusterability visualize the density
estimation of either the 1st principal componentif data matrices are
given or the upper triangle of the distance matrix. Congruent p-
values of statistical testing [AAB19] and the names of the datasets
are written on the x-axis. Abrr.: D. = Distances
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MDplot of Clusterability for Multiple Datasets
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Figure 2: Adapted MDplot for Clusterability visualize the density

estimation of the Ist principal component and the names of the
datasets are written on the x-axis. Statistical testing does not agree
with the MDplot.

Dataset PCA (2) Distances Multimodality Visible
Atom p=045 p=0.01 Yes, Yes
Chainlink p=0.03 p=0.01 Yes, Yes
EngyTime p=002 p=1 Yes, No
GolfBall p<0.01l p=0.01 No,No
Hepta p<0.01 p=0.01 Yes, Yes
Lsun3D p<0.01l p=0.01 Yes, Yes
Target p=0.06 p=0.01 Yes, Yes
Tetra p=099 p=0.63 No, Slightly
TwoDiamonds p=0.99 p=0.07 No, Yes
WingNut p=027 p=0.11 No,No

Table 2: Results of the dip test for the centered and scaled PCA
(2) as well as the distribution of euclidean distances for artificial
datasets. MDplots are only described due to space restrictions.

3.2. Variants of of Statistical Testing Compared to MDplot

Table 2 presents the alternative approaches of testing for cluster-
ability. Here, the data is centered and scaled prior to the PCA or
the multimodality of the Euclidean distance distributions is tested
with the dip-test. Descriptions of MDplots are in the same order
as statistical testing. Results for Tetragonula, Leukemia, and Unit-
Square are presented in the subsection above because only distance
matrices were available for these three datasets.

3.3. Investigating Selected Cases with Planar Projections

In the second part, the cluster structures of the datasets Target,
Hepta, Tetra, Wingnut are examined with planar projections of
DBS, and compared to the reference of the GolfBall dataset, which
does not possess cluster structures. The visualizatons presented
here are topographic maps with hypsometric tints which corre-
spond to high-dimensional distance and density structures. Hyp-
sometric tints are surface colors that represent ranges of elevation.
The contour lines are combined with a specific color scale. The
colour scale is chosen to display various valleys, ridges, and basins:
blue colours indicate small distances (sea level), green and brown
colours indicate middle distances (low hills), and shades of white
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colours indicate vast distances (high mountains covered with snow
and ice). Valleys and basins represent clusters, and the watersheds
of hills and mountains represent the borders between clusters. In
this 3D landscape, the borders of the visualisation are cyclically
connected with a periodicity. Here, projected points are depicted in
magenta. The topographic map of the generalized U-Matrix show
clear cluster structures for Hepta, Target and Tetra because a num-
ber of valleys is presented in Figures 3, 4, 5. Still, the topographic
only indicates cluster structures for WingNut in Figure 6, contrary
to GolfBall for which no cluster structures are visible in Figure 7.

Figure 3: Topographic map of the Hepta dataset visualizes clear
cluster structures because several valleys are visible. The more
dense cluster with smaller intracluster distances lies in a blue see.

Figure 4: Topographic map of the Target dataset visualizes clear
cluster structures because two valleys are visible. Outliers are vi-
sualized on top of mountains or in vulcanos.

4. Discussion

The results compared statistical testing to visualization approaches
for clusterability. In many cases, statistical testing of multimodal-
ity of the 1st principal component seems to clearly distinct datasets
that have cluster structures to datasets that have none reproducing
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Figure 5: Topographic map of the Tetra dataset visualizes clear
cluster structures because several valleys are visible. Low inter-
cluster distances are not challenging if the intracluster distances
remain small.

Figure 6: Topographic map of the WingNut dataset indicates val-
leys and, thus, a cluster structure. Low intercluster distances be-
come challenging for the topograpgic map if the intracluster dis-
tances get too large.

the results of [AAB19]. Surprisingly, a 1D representation of data
variance provides enough information to investigate the existence
of a wide variety of cluster structures because the first two or three
principal components usually do not define a subspace that is most
informative about the cluster structure in data [Cha83], [DSC94],
[VKO1] and [AH94], if the task of clustering is defined as the
grouping of similar objects. Topographic maps of planar projec-
tions were used in this work to evaluate datasets for which statisti-
cal testing contradicted the MDplot because they are a good alterna-
tive for the detection of clusterability [TU20b]. In every contradic-
tory case, the topographic maps demonstrated that the visualized
MDplot was more sensitive to the detection of clusterability than
statistical testing. One of the reasons for the improvement lies in the
usage of the PDE. Prior works demonstrated that the PDE is par-

Figure 7: Topographic map of the GolfBall dataset does not show
valleys, indicating that the dataset has no cluster structures.

ticularly suitable for the discovery of structures in continuous data
and allows the discovery of mixtures of Gaussians [UTHGL15].
However, using topographic maps has the following disadvantage
besides being computationally expensive. The topographic map is
based on the generalized U-Matrix, which is computed toroidal for
a planar projection meaning that the borders of the map are cycli-
cally connected. The advantage is that cluster structures are not
disrupted by boundaries [Thr18]. However, the usage of a toroidal
map necessitates a tiled landscape display, which means every pro-
jected point and every hill or valley is shown four times. To obtain
the 3D landscape shown above, an island usually is cut out man-
ually, which can be a challenging task. The results for the dip test
for distance distributions illustrated again that the MDplot is more
sensitive to multimodality than statistical testing. However, it is not
surprising that statistical testing and MDplot failed on the datasets
of EngyTime and WingNut because both datasets are strictly based
on structures defined by density. The results also illustrate that the
detection of clusterability is challenging for datasets with almost
touching clusters of Tetra and WingNut which have no predom-
inant direction of variance. This insight was not reported priorly
[AAB19]. Contrary to the work presented there, chaining effects
in data (e.g., Chainlink) are detectable but not always statistically
significant (Target). Comparing the two PCA options showed that
statistical testing was dependent on preprocessing and the MDplot
preferred non-scaled and non-centered data. In sum, the combina-
tion of visualization with statistical testing provides acceptable re-
sults for the decision if a dataset has cluster structures.

5. Conclusion

This work demonstrates that the sensitivity of statistical testing
can be improved by the MDplot. However, the detection of al-
most touching clusters with low intercluster distances an without
a predominant direction of variance remain still challenging, even
if such cluster structures are obviously separable by the human eye.
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