
MLVis: Machine Learning Methods in Visualisation for Big Data (2019)
D. Archambault, I. Nabney and J. Peltonen (Editors)

Interpreting Black-Box Semantic Segmentation Models in Remote
Sensing Applications

A. Janik1 K. Sankaran1 A. Ortiz2

1Montreal Institute of Learning Algorithms
2University of Texas - El Paso

Abstract
In the interpretability literature, attention is focused on understanding black-box classifiers, but many problems ranging from
medicine through agriculture and crisis response in humanitarian aid are tackled by semantic segmentation models. The ab-
sence of interpretability for these canonical problems in computer vision motivates this study. In this study we present a user-
centric approach that blends techniques from interpretability, representation learning, and interactive visualization. It allows
to visualize and link latent representation to real data instances as well as qualitatively assess strength of predictions. We have
applied our method to a deep learning model for semantic segmentation, U-Net, in a remote sensing application of building
detection. This application is of high interest for humanitarian crisis response teams that rely on satellite images analysis.
Preliminary results shows utility in understanding semantic segmentation models, demo presenting the idea is available online.

CCS Concepts
•Human-centered computing → Information visualization; • Computing methodologies → Knowledge representation and
reasoning; Image segmentation;

1. Introduction

The possibility of exploring characteristics of models beyond ac-
curacy is becoming a legal demand in business applications un-
der the light of recently introduced laws, including the European
GDPR and the “right to explanation” of decisions made by algo-
rithms [GF16]. Machine Learning is often introduced as an oracle,
rather than a scientifically explainable approach, and this is cause
for concern. Relying on visualizations of neuron activations is not
enough – people need interpretations. How do models link to the
underlying datasets on which they were trained? How can we use
this knowledge to open the black-box and discover the reasoning
behind the model?

Being able to tell what properties of the data result in good model
performance is useful for designing them in a more transparent
way, and with more honest certifications of when they can be de-
ployed reliably.

While interpretability in machine learning can be realized in
many ways, the focus of this work is the problem of explain-
ing black-box models, as defined in [GMR∗18]. While there is
substantial research on explanation of black box image classifiers
[RSG16, KWG∗17], less is available for image segmentation. The
question we explore in this study is how can we explain predicted
segmentations by inspecting their learned representations and nav-
igating the associated latent space.

One of the problems of remote sensing is segmentation of differ-
ent elements of satellite images e.g. roads, bridges, buildings, cars,
land coverage etc. Information about detected buildings is being
used, for example, to estimate region populations. This knowledge
guides humanitarian efforts in distribution of food, water and other
basic resources for people affected by the crisis, and for creating
strategies for epidemiology prevention.

1.1. Related Work

The survey [HKPC] present the framework for classification of vi-
sual methods in deep learning. Related approaches [YYB∗,YCN∗]
are based on plotting filters and exploring features, in our approach
we plot observations itself within the context, giving a possibility
to select region of interest to a user, we decrease cognitive load that
comes with representing everything at once on the same chart.

Our contribution:

• combining feature representation ideas in computer vision with
interactive visualization
• predicting evaluation score for entire latent space (IoU smooth-

ing)
• demo visualization - available online here: http:adrijanik.

github.io/unet-vis/
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1.2. Incompleteness in Remote Sensing

According to [DVK], the need for interpretability originates from
an incompleteness of the problem definition which makes it diffi-
cult to optimize and evaluate. To understand this in the context of
remote sensing one needs to understand the user’s perspective, as
one of the questions about interpretability is to whom it should be
interpretable [TBH∗18].

Incompleteness in remote sensing may manifest itself in differ-
ent ways. Domain knowledge is one - resources for inference are
often limited in humanitarian remote sensing applications, which
may guide model choice. Another aspect is safety and reliability
– we are not able to flag all undesired outputs for an end-to-end
system, it will never be fully testable. Finally, ethics are an im-
portant consideration – every model is biased by the data it was
trained on and by the model of the world used to annotate data. For
example, main street in Chicago and in Niger State have different
visual representations, although they fulfill similar roles. Incom-
pleteness may also be associated with mismatched objectives or
multi-objective trade-offs like privacy vs quality.

Therefore, in the presence of incompleteness, explanations can
ensure that underspecifications of formalization are visible and un-
derstood by users [DVK].

In the remote sensing scenario, interpretability could highlight:

• biases from the training set (e.g. a model trained on cities should
not be used in rural areas);
• more honest information about the characteristics of data and

their effect on model performance, so that users can set their
expectations accordingly;
• techniques to guide sample collection (e.g. how target areas dif-

fer from the areas that was covered in the training set);
• the importance of the underlying data to a wider audience (e.g.

one might mistakenly think that the model should work for every
city in the world in the case of a building detection task, which
might be disappointing and can undermine trust towards usage
machine learning at all).

2. Method

This study presents an interactive visualization method for high-
lighting model capabilities. Let us first introduce one of the metrics
for evaluating semantic segmentation models that our method uses.
It is the Intersection over Union score (IoU), which intuitively can
be understood as a ratio between overlapping area and union area of
detected mask and ground truth mask (Equation 1). The method is
based on linked brushing and IoU smoothing to interact with latent
representations from an encoder-decoder segmentation model. IoU
smoothing is an approximation of the IoU score across the whole
training dataset, and it will be explained in the sections following.

Our method was designed for explaining the U-Net semantic
segmentation model [RFB15], though in the future we also plan
to explore other networks with encoder-decoder architecture. It
requires access to a trained U-Net segmentation model, training
dataset and activations at the bottleneck layer. To evaluate segmen-
tation prediction with respect to ground truth we used IoU score

defined as

IoU(y, ŷ) =
y∩ ŷ
y∪ ŷ

(1)

where y is a ground truth mask and ŷ is a predicted mask.

2.1. U-Net

U-Net is a deep network commonly used in segmentation problems.
It learns a reduced representation of an image through a down-
sampling path, while at the same time preserving localized infor-
mation about desired properties through an up-sampling path with
skip connections, which is used to make a prediction.

Each component is composed of convolutional layers going
down and transposed convolutions going up, with max-pooling lay-
ers in between. Down-sampling is responsible for reducing the in-
put image to a concise representation, while up-sampling retrieves
localized information for the network’s output. The latent repre-
sentation referred in this work is represented by activations of the
bottleneck layer – the layer that contains the quintessence of ana-
lyzed image.

2.2. Dimensionality Reduction

At the bottleneck there are 512 neurons from which activations
are collected, this amount of data is incomprehensible for a hu-
man without any aid. To decrease cognitive load of such a huge
amount of data we used dimensionality reduction method. Principal
Component Analysis (PCA) [Dun] was chosen as an example of a
well-established dimensionality reduction method that can project
a high-dimensional representation into a low-dimensional space,
preserving distance relationships between the data. Even though
some information is lost during the process, we gain the ability to
show the reduced representation to the user in a form of cognitively
accessible low dimension views. The choice of dimensionality re-
duction method was motivated by the fact that PCA preserves dis-
tances between input samples, which is important for our applica-
tion. The first two components were used for visualization because
of lower cognitive load of two dimensional charts in comparison
to 3D charts, but of course depending on the end goal, the first 3
components can be also plotted as a 3D chart or even all of the
components can be plotted as a scatterplot matrice with a cost of
increased complexity of the visualization.

2.3. IoU Smoothing

Prediction of IoU score over the whole training data space was ob-
tained by training a multi-layer perceptron (MLP), [RHW85] which
is a neural network with one hidden layer with 100 neurons, opti-
mized with Adam [KB] with initial learning rate of 0.001 regular-
ized with L2 norm. As an input values of 9 principle components
were used for 85% of training samples - remaining 15% was held
out as a test set.

IoU smoothing gives a sense of IoU score for areas of latent
space where there is no data available. The method presented gives
a map of the latent landscape learned by the model.
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Estimated IoU plotted as a background of scatter plot gives pos-
sibility to qualitatively assess strength of predictions based on lo-
cation in the latent space and its estimated score.

2.4. Algorithm

The motivation behind our approach is to guide users in under-
standing and successfully applying the model to the considered
task. Our visualization is based on principle of linked brushing
[Spe], allowing users to interactively explore coordinated views
across subsets of the data [Kei02].

Our visualization is obtained through the following steps. Firstly
activations from the bottleneck of the network are collected for the
training dataset. Next step is to associate IoU score and set of ac-
tivations with image (patch) and predictions (ground truth and in-
ference). Once the activations are collected, the dimensionality is
reduced by PCA and two principal components are used to plot
points on the scatterplot. Each point is a representation of an in-
put image. Given a set of reduced activations and associated IoU
scores, we train a MLP regressor to estimate an IoU score across
the whole training space. This prediction is visualized as a heatmap
of IoU scores plotted in the background of the scatterplot. The last
step is applying brushing to the plot in order to associate the la-
tent views with the original samples. For each point contained in
the brush selection, we display the corresponding ground truth and
prediction mask. This provides a convenient view of the dataset and
model properties.

In the following section we present a proof of concept designed
for the task of interpreting building detection models in remote
sensing.

3. Application

One potential application of this method could be the pre-screening
of satellite images in a newly encountered region, filtering to those
likely to contain features of interest. To prioritize manual labeling,
we can evaluate the similarity between the latent representation
of new patches and those from urbanized regions used for train-
ing. One of the on-going initiatives in humanitarian applications
is collaborative mapping [HS19] – this currently is not integrated
with machine learning tools to the extent it could be. Visualization
and interpretability focused methods may help convince people to
adopt AI solutions. To give a sense of how collaborative mapping
works, let’s take an example of the application MapSwipe, a part
of OpenStreetMap ecosystem. Currently, volunteers have to man-
ually swipe tiles that contains images of undeveloped areas. Fil-
tering down to those that have desired features present is tedious,
especially where the images have the same geography. In a building
detection task we could use smarter way of prescreening tiles with
our method that can instantly prioritize regions with higher proba-
bility of being inhabited. Examples will be presented in Figure 1.

3.1. Dataset

We applied this method to Inria Aerial Labelling Dataset
[MTCA17], as it is an example of a well-explored labeled dataset
for satellite imagery. The training set contains 180 color image tiles

of size 5000 x 5000, covering a surface of 1500m x 1500m each (at
a 30cm resolution). There are 36 tiles for each region. It covers
5 regions Austin, Chicago, Kitsap County, Western Tyrol, Vienna.
For the test set there were another 5 regions chosen: Bellingham,
WA; Bloomington, IN; Innsbruck; San Francisco; Eastern Tyrol. It
provides all together coverage of 810 km2. Images were sliced into
patches of size 572 x 572.

3.2. Trained Model

We analyzed trained U-Net model optimized with Adam algorithm
with batch normalization. It scored overall IoU of 71.87% on vali-
dation set and 67.98% IoU on the transfer set.

3.3. Demo Visualization

The red region in the Figure 1 is an artifact of how IoU is defined,
if in the image there is nothing to be detected there is no union
between detections and formula of IoU does not make sense we
assumed that in such situation the IoU score will be 0. This area is
also highly condensed and qualitatively we can see that it contains
mostly images of undeveloped areas without any buildings. Demo
is available on GitHub: http:github.com/adrijanik/unet-vis

3.4. Clustering

After reducing dimensionality through PCA, we explored cluster-
ing of the new representation. To get the idea of what was learned in
different locations of space for each cluster we selected representa-
tive points characteristic for them. We used k-means and DBSCAN,
after comparing silhouette scores of several parameters configura-
tions, better clustering was obtained with k-means algorithm with
14 classes. Despite representatives, we also explored their median
and mean IoU scores. The choice of representatives was based on
their proximity to the centroid of the cluster, another direction that
seems to be better is choice of prototypical points as described
in [WT], which we plan to explore further.

Exploring clusters led us to some peculiar discovery about our
given model. For example, according to our U-Net cementeries
and car parking lots are similar (Figure 2). Why? Probably because
of similar pattern of rectangular shaped objects positioned next to
each other. The question is if it is a desirable generalization for a
given task?

Another interesting observation that we made were errors of pre-
dictions that were attributed to erroneous ground truth predictions
(Figure 3). It seems that annotations of data were collected in a dif-
ferent time then the actual images in the dataset. We found many
examples were image represents the construction site but ground-
truth annotation shows buildings.

In this case study alone, we have discovered that undesired out-
puts may originate from:

• poor generalization capabilities for specific type of data
• ground-truth errors
• the definition of error metric
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Figure 1: Demo visualization with several selections merged together. Selections present samples from three qualitatively distinguishable
regions a) that does not contain any buildings b) that contains few buildings c) highly urbanized with many buildings and with higher IoU
score. We can see a bipolar nature of learned representation: undeveloped area and urbanized.

(a) Car parking (b) Cemetery

Figure 2: Two representatives of one cluster - according to the model.
Is it a desirable generalization? Does it matter if network confuses
cars with a grave?

(a) Image (b) Ground-truth (c) Prediction

Figure 3: Network almost correctly segmented image of a construction
site despite ground-truth being wrong, it can be an evidence supporting
generalization capabilities of the network despite noisy annotations.

4. Conclusion

Users tend to not trust the models which they do not understand.
This is not surprising since models really are genuinely compli-
cated structures. Overall performance measures of black-box mod-
els are simply not enough to justify the use of model predictions
in the field. If users do not trust models, they do not use them. If
a crisis response team does not trust AI predictions, then we are
not using the full potential of current technology, meaning that the
help offered to people affected by crises is not best that it could
be. To address this problem, we propose the usage of interpretable
approaches - focus on the end-user, the decision maker working
in limited resources and time critical environment for introducing
machine learning to current humanitarian workflows. Are there any
distinguishable clusters of outliers? Can we find the reason why
models make errors? Are the errors consistent? What are the most
common errors? What is the generalization capability of the model?
To what extent can you trust the model in a new region? Those are
only a handful of questions that are of interest not only for practi-
tioners but for scientists, and we believe that approach focused pri-
marily on interpretability could shed a new light on those questions.
With this work, we emphasize the importance of interpretability
and explore its utility in remote sensing analysis in the context of
humanitarian AI, enhancing tools that are already used by com-
munity. We presented a method of visualization of a segmentation
model along with its training data and describe a latent space view
that we believe will be useful for estimating IOU score or error of
new, unseen data.
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