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Abstract
Appearance acquisition is a challenging problem. Existing approaches require expensive hardware and acquisition times are
long. Alternative “in-the-wild” few-shot approaches provide a limited reconstruction quality. Furthermore, there is a funda-
mental tradeoff between spatial resolution and the physical sample dimensions that can be captured in one measurement. In
this paper, we investigate how neural texture synthesis and neural style transfer approaches can be applied to generate new ma-
terials with high spatial resolution from high quality SVBRDF measurements. We perform our experiments on a new database
of measured SVBRDFs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Capturing the appearance of real surfaces requires scanning in the
spatial and the bi-angular domain of light and view directions. As
the reflectance of most materials shows high-dynamic-range prop-
erties, this is an involved process that requires carefully calibrated
cameras and light sources. There are commercial devices avail-
able [XR18], but at a high cost. Recent trends show an application
of deep learning for tackling the severely ill-posed problem of few-
shot reflectance acquisition [YLD∗18, DAD∗18, LXR∗18]. How-
ever, these approaches are limited in model complexity and gen-
eral reconstruction quality. Merzbach et al. [MHRK19] predict high
quality complex SVBRDF parameters, but they still require dense,
calibrated inputs. For our approach we rely on an existing corpus
of high quality SVBRDFs, e.g. the publicly available fabric sam-
ples in the Bonn Fabric SVBRDF dataset† [MHRK19]. We adapt
two deep-learning-based methods, the texture synthesis method of
Zhou et al. [ZZB∗18] and the Neural Style Transfer by Gatys et
al. [GEB15b] to SVBRDF materials from this database. Our work
has the following contributions

• example-based synthesis of higher-resolution SVBRDFs of ma-
terial samples with limited spatial resolution;
• appearance transfer of existing to new target materials;
• re-use of existing RGB-pre-trained CNN features without the

need for costly re-training on materials.

† https://cg.cs.uni-bonn.de/svbrdfs/

2. Related Work

Neural style transfer and neural texture synthesis are the two
branches of works underlying our paper. Example-based texture
synthesis deals with the problem of creating spatially enlarged
instances of small exemplars of a texture. During style transfer
the artistic style of an input image is transferred to the seman-
tic structures of a content image by optimizing a style loss. Tex-
ture synthesis and style transfer are closely related. An extensive
overview of existing neural style transfer and neural texture syn-
thesis approaches is provided by Jing et al. [JYF∗19]. Gatys et
al. were the first who proposed a deep learning approach for tex-
ture modelling [GEB15a] and extended their ideas in a subsequent
work to the transfer of style of paintings to other “content” im-
ages [GEB15b]. These approaches work by passing a style im-
age through a pre-trained convolutional neural network (CNN) and
computing Gramian matrices on the features of some of the convo-
lutional layers. To produce a new instance of a style image applied
to an additional provided content image, an optimization is run over
the output image, which is initialized with noise. The optimization
tries to progressively minimize the style loss that enforces similar
Gram matrices between style and output images, and a content loss
that enforces similar features on another subset of the CNN layers
between output and content image. In a more recent work, Zhou et
al. [ZZB∗18] achieve state of the art texture synthesis results us-
ing a generative adversarial network (GAN) in combination with a
style loss.

All of these methods work exclusively on RGB images. This is
because they re-use CNN models pre-trained on large-scale image
datasets. Since our material representations contain more then 3
channels, we cannot simply feed them as input to the existing mod-
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Figure 1: Example material maps from the Bonn Fabric SVBRDF
dataset. Base and highlight colors are respectively defined by dif-
fuse (ad) and specular (as) albedos, the glossiness by the rough-
ness parameters σx,σy (displayed in R and G channels), displace-
ment (H) and shading normal ns encode fine-scale surface varia-
tions, and the anisotropy angle α (color-coded) defines the domi-
nant anisotropy direction.

els. Naïve splitting into 3-channel images which are fed individu-
ally will produce uncorrelated results that cannot simply be con-
catenated. We therefore need to adapt these models to our special
multi-channel inputs, ideally without having to train the underly-
ing CNNs from scratch. The latter would pose very challenging
because of a lack of training data.

Material Model: We briefly describe the SVBRDF inputs that
we are processing. The database we use for our experiments con-
tains fabric samples represented using the Geisler-Moroder vari-
ant [GMD10] of the anistropic Ward BRDF [W∗92], extended by
a Fresnel term based on the Schlick approximation [Sch94]. For
a detailed description of model the reader is referred to the origi-
nal works or Merzbach et al. [MHRK19]. The model parameters,
represented in individual texture maps to allow spatial variations
across the surface, are shown in Fig. 1.

3. Neural SVBRDF Synthesis

Zhou et al. [ZZB∗18] introduce an example-based texture synthe-
sis that – contrary to many previous works – allows to generate
textures with non-stationary characteristics. Their results are very
appealing and motivate the application to the fabric SVBRDFs in
our database, many of which show exactly these properties. As it is
designed for RGB textures only, we have to adapt the method in the
following ways: We change the network architecture to allow for
more than the 3 RGB channels as inputs. This change is straightfor-
ward except for the computation of the style loss. The underlying
VGG network [SZ14] is pretrained on RGB images only and cannot
simply be replaced by an equivalent architecture with more input
channels. We solve this problem by splitting the SVBRDFs into m
3-channel textures (see below), which we can directly pass through
VGG-net. The resulting feature maps are then concatenated along
the feature-dimension. Finally, the Gram matrices can be calculated
in the same principle as before, only that ours are m times bigger.
Accordingly, we have to adjust the normalization weight for the
style loss to account for the additional factor of m2.

We apply the following mappings to our input to facilitate learn-
ing: The lobe parameters σx,σy are highly non-linear, so we trans-
form them via σ

′ = log(σ+0.001)−log(0.001)
log(0.65)−log(0.001) . The anisotropy angle

α ∈ [− π/2,π/2] shows discontinuities when it wraps around, which
causes high contrast in the parameter map, when in reality the ob-
served effect on the reflectance is only very subtle. We therefore
transform α to a 2D representation α 7→ {sin(2α),cos(2α)}. Af-

ter these transformations the SVBRDFs are represented with 14
channel textures. We furthermore increase the training efficiency
by normalizing the different modalities in the parameter maps. We
empirically found that a channel-wise normalization with the 0.1-th
and 99.9-th percentiles provides the best results.

We split the 14 channels of the mapped parameters into m = 8
separate RGB images by grouping semantically related parameters,
repeating some of them to obtain 3-channel textures (ad , as, nd ,
3×σx, 3×σy, 3× sin(2α), 3× cos(2α), 3×H). We also exper-
imented with m = 6 maps by respectively concatenating the lobe
and anisotropy parameters but obtained slightly better results with
the above version.

4. Neural Appearance Transfer

Our adaption of the texture synthesis method to SVBRDFs pro-
vides good results. However, in most cases it is desirable to have
more control over the synthesized materials. Inspired by the tex-
ture transfer experiments presented by Zhou et al. we also inves-
tigate neural style transfer methods on SVBRDFs. Zhou’s texture
transfer experiments provide promising results. However, we found
it difficult reproducing similar results with our adapted implemen-
tation on materials. Furthermore, the method has a significant train-
ing overhead of several hours for each material.

So instead we focused on image optimization based neural style
transfer methods. These methods achieve, in comparison to model
optimization based methods, more appealing results [JYF∗19]. Fur-
thermore, they require much lower training effort, as there is no
GAN component as in Zhou’s network that drives up the training
costs. We therefore select the neural style transfer method by Gatys
et al. [GEB15b] because of its simplicity and adapt it to allow for
appearance transfer. When trying to extend it to our 14 channel
SVBRDF representation, we face the same problem as with the
texture synthesis method of Zhou et al. [ZZB∗18]. We can thus
apply the same strategy of grouping semantically related texture
maps into 3-channel images, which we individually pass through
the VGG-net, and concatenate the resulting feature maps to com-
pute the Gram matrices. Similar changes allow computing the con-
tent loss term on the entire content-SVBRDF.

Not all of the SVBRDF parameters are equally “important” for
the resulting appearance. The variations stored in the displacement
map have a much less noticeable impact on a rendering than e.g.
the albedo maps. Similarly, even with our parameter mappings
and layer-wise normalization, some features are less prominent
and cause different degrees of feature activations in the CNNs.
Some parameters are much less correlated with the others, most
noticeably the displacements H. We therefore introduce a weight-
ing scheme into our style loss calculation, which applies different
weights to the different parameter types. It emphasizes the albedo
maps and decreases the weight for the displacement map using a
weight vector w = [1.5,2,1,1,1,0.05]. This vector also requires
normalization in order not to shift the style-content loss balance.
The normalization is given by m/||w||1.
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5. Results

Appearance synthesis: In the following we first present results
for appearance synthesis based on our adaption of Zhou et al.
[ZZB∗18] on a set of various materials, see Figs. 2 and 3. We gen-
erally obtain visually appealing results after around 50000 training
iterations.

originput synth

Figure 2: Result renderings of our texture synthesis. Columns from
left to right show: input: low resolution crop, orig: original un-
cropped material with input patch in the center, synth: synthesized
high resolution material.

Appearance transfer: Next, we show transfered appearance based
on our adapted neural style transfer method [GEB15b]. Figs. 4
shows renderings of style SVBRDFs transfered according to con-
tent SVBRDFs.

6. Conclusion

In this paper we first apply the ideas of the approach of Zhou
et al. [ZZB∗18] to the problem of synthesis of high resolutions
SVBRDFs of material samples. The synthesized textures with in-
creased resolution look appealing and perceptually similar (includ-
ing all reflectance properties) to the original materials, while pre-
serving global structures. However, the resolution can only be ex-
tended by the fixed factor between low and high resolution training
samples. Second, we extend the approach of Gatys et al. [GEB15b]
to the task of appearance transfer of fabrics. Though our implemen-
tation is not yet universally applicable to all combinations of style
and content materials, we still achieve very promising results.

We plan to further investigate improved weighting schemes to
stabilize the behavior in a future work. Furthermore, the next ob-
vious extension is to relax the need for a content SVBRDF and the
approach to handle arbitrary RGB content images.

ad orig ad synth as orig as synth σx ,σy orig σx ,σy synth

σx ,σy orig σx ,σy synth ns orig ns synth α orig α synth

Figure 3: Parameter maps of original and synthesized materials.
These results correspond to the renderings in Fig. 2.
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Figure 4: Result renderings of our neural appearance transfer. The
left column shows style SVBRDFs transfered respectively accord-
ing to content materials shown in the top row.
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7. Appendix

Addition of Deep Correlation loss:

In another recent work, Sendik and Cohen-Or introduced a Deep
Correlation loss [SCO17] for their neural texture synthesis method.
It enables a better synthesis of textures that show regular structures.
Given that this property applies to many fabrics, we investigate the
impact of adding this loss term to the synthesis method of Zhou et
al. [ZZB∗18]. We thus augment their total loss function presented

by an additional term LDCorr that is computed according to the
Deep Correlation loss [SCO17]:

Ltotal = Ladv +λ1LL1 +λ2Lstyle +λ3LDCorr, (1)

where Ladv is an adversarial loss [GPAM∗14], LL1 a simple L1
loss, and Lstyle a style loss computed on VGG-19 [SZ14].

Fig. 5 shows the effects of the addition of the Deep Correlation
loss term, as well the difference when it completely replaces the
style loss. Both when augmenting and replacing the style loss, we
observe qualitatively comparable results. Since the calcuation of
the correlation matrices is quite costly, the training performance
drops by a factor of 5. We conclude that Deep Correlation loss
poses an interesting alternative to the style loss, however, the per-
formance penalties outweigh the potential benefits.
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originput synth (20k iters, no DCorr)
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Figure 5: Ablation study for the effect of an additional Deep Correlations term (see Eq. 1). Top row: input, uncropped material, synthesis
with style loss only, synthesis with style and deep correlation loss; bottom row (pink fabric): further synthesis results with style loss only,
with style and deep correlation loss, and with deep correlation loss only; bottom right (green-blue fabric): typical artifacts observed when
using deep correlation loss.
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