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Figure 1: Sketch of the proposed method: given a database of traditionally measured BTFs, a data-driven linear model is derived in a novel
way that allows for both existing paradigms under consideration to be used separately as well as, for the first time, simultaneously.

Abstract

We present preliminary results on our effort to combine sparse and illumination-multiplexed acquisition of bidirectional texture

functions (BTFs) for material appearance. Both existing acquisition paradigms deal with a single specific problem: the desire
to reduce either the number of images to be obtained while maintaining artifact-free renderings, or the shutter times required
to capture the full dynamic range of a material’s appearance. These problems have so far been solved by means of data-driven
models. We demonstrate that the way these models are derived prevents combined sparse and multiplexed acquisition, and
introduce a novel model that circumvents this obstruction. As a result, we achieve acquisition times on the order of minutes in
comparison to the few hours required with sparse acquisition or multiplexed illumination.

Categories and Subject Descriptors (according to ACM CCS): 1.4.1 [Image Processing and Computer Vision]: Digitization and

Image Capture—Reflectance

1. Introduction

Photo-realistic reproduction of material appearance is of great
importance im many applications in fields like virtual prototyp-
ing, advertisement and entertainment. While analytical reflectance
models such as bidirectional reflectance distribution functions
(BRDFs) [NRH*77] have become widely used due to their capa-
bility of modeling the reflectance at a surface point depending on
the incident and outgoing light directions, such models face seri-
ous limitation when it comes to faithfulness, in particular when
reproducing non-local effects like self-shadowing and interreflec-
tions. For this reason, data-driven reflectance models like the bidi-
rectional texture function (BTF) are the first choice in such cases.

One of the main challenges of data-driven models is presented by
the dense sampling of view and light directions necessary to accu-
rately capture high-frequency characteristics of the light exchange
on the material surface. The resulting high sampling rate leads to
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intolerably time-consuming acquisition on the order of many hours
or even days [SSW™14]. In the context of image based acquisition
devices this problem is even more challenging since for the accurate
acquisition of the full dynamic range of the material’s reflectance
behavior capturing HDR images is with possibly excessive expo-
sure times is inevitable.

Several approaches to mitigate these problems were proposed in
the literature. Sparse acquisition techniques are applied where only
a small subset of the desired dense sampling is actually measured,
and the remaining data is interpolated by means of a model learned
from an existing database (e.g. [dBSHK14, NJR15]). A common
technique to accelerate the capturing of HDR images by increas-
ing the amount of light on the sample and decreasing the dynamic
range caused by shadows (cf. Fig. 2) is illumination multiplexing,
i.e. illuminating the material with illumination patterns comprised
of several simultaneous light sources and exploiting the linearity of
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Figure 2: Material sample as illuminated by single light source
(left) and illumination pattern (right).

the superposition of light to reconstruct the desired images by solv-
ing an appropriate linear system, a process that is, however, known
to be detrimental to the signal-to-noise ratio (SNR). The models
used in sparse BTF acquisition have been shown to also help miti-
gate the noise problems [dBSK15]. Although both methods signif-
icantly reduce acquisition times, the process still takes in the range
of hours. Therefore, the question arises whether the two paradigms
- sparse acquisition and illumination multiplexing - can be com-
bined in order to speed up the acquisition further. So far, this has
been impossible: the linear bases used as models in the above ap-
proaches rely heavily on range-reduction techniques applied to the
training data which do not commutate with multiplexing. There-
fore, de-multiplexing has to be performed prior to fitting the mea-
sured data to the model, but this requires images for all illumination
patterns, which we wish to avoid in sparse acquisition.

In this paper, we investigate whether accurate reflectance ac-
quisition, simultaneously exploiting sparse acquisition and multi-
plexed illumination, is possible. Specifically, we propose a different
approach to dynamic range reduction in model learning: rather than
the absolute L, error on non-linearly transformed data as a metric,
we minimize the relative L, error on untransformed data, which
ultimately allows for sparse multiplexed acquisition of BTFs. As
demonstrated by our results, combining sparse and multiplexed ac-
quisition allows for a reduction of the acquisition time from the
order of hours/days required for brute-force measurements to only
several minutes.

2. Related work

Related work can be categorized according to techniques that focus
on the acquisition and modeling of material appearance and tech-
niques that focus on sparse reflectance acquisition or multiplexed
acquisition, respectively.

Acquisition and modeling of material appearance As detailed
surveys on acquisition and modeling of material appearance can be
found in the literature [HF13, WK15], we only briefly discuss two
of the reflectance models that are widely used for the depiction of
materials in industry and cultural heritage. Spatially varying bidi-
rectional reflectance distribution functions (SVBRDFs) [NRH*77]
and bidirectional texture functions (BTFs) [DvGNK99] both cap-
ture the spatially varying material characteristics under varying
viewing and illumination conditions. Unlike SVBRDFs, BTFs are
not necessarily defined with respect to the material’s actual surface
but can also be defined on an approximate surface geometry and do
not impose restrictions regarding energy conservation on the per-
texel BRDFs and simply encode the appearance of the material at

one particular coordinate on the reference geometry. In contrast,
SVBRDFs do not accurately capture the light exchange for such
materials. Consequently, one typically retreats to image-based rep-
resentations that can be evaluated by doing a possibly interpolated
table look-up. For the purpose of modeling, it is convenvient to
represent BTFs as matrices B € R™ ™™, where n;, and n;x denote
the number of light/view combinations and texels, respectively (cf.
Fig. 3).

Basis acquisition and computation Given a database D of mea-
sured BTFs, where the separate BTFs are concatenated along the
second dimension, a straight-forward approach to modeling is the
use of matrix factorization techniques like the (truncated) singu-
lar value decomposition (SVD), e.g. D = UzV’. Matusik et al.
[MPBMO03a] have shown that the dynamic range of reflectance
data, determined by the huge difference in brightness between spec-
ular highlights and diffuse reflection which may amount to several
orders of magnitude, leads to severe overfitting of the highlights. A
number of metrics have since been proposed to overcome this prob-
lem, most of which based on some logarithmic scaling of the data,
the most recent being the one proposed by Nielsen et al. [NJR15].

Sparse acquisition Techniques for sparse reflectance acquisition
aim at taking only a suitable subset of the total amount of im-
ages used by conventional dense-sampling approaches. Instead of
the full measurement B, the matrix product SB is obtained, where
S € {0, 1}™*™ with SS" = 1 denotes a binary sparse measurement
matrix that selects the desired rows, i.e. textures, of B. Assuming
that B can be approximated well by a linear basis U, an approxima-
tion B =~ UV is given by

V = argming [SUV — SB|f: + | RV . )

where ||R\~7H% represents an optional Tihonov regularization that
penalizes implausible solutions. In their work on sparse BRDF ac-
quisition, Nielsen et al. [NJR15] use R = Z_l, where X denotes
the diagonal matrix of singular values corresponding to the singu-
lar vectors in U, which penalizes large deviations from the training
set’s distribution of basis coefficients.

Sparse acquisition has been successfully used in the context
of (SV)BRDFs of various kinds [MPBMO03a, MPBMO3b, NJR15,
VF16, YXM™16]. Furthermore, Peers et al. [PML"09] investigate
the acquisition of reflectance fields based on compressed sensing,
and sparse reconstruction of light fields has been considered based
on dictionary-based techniques [MWBR13]. Closely related to our
approach is the technique presented by den Brok et al. [dBSHK14],
where sparse BTF acquisition is achieved based on linear models
derived from a database of small BTF patches.

Multiplexed illumination In illumination-multiplexing tech-
niques, the material is illuminated by multiple light sources at once,
following certain illumination patterns. As the amount of light il-
luminating the scene is increased, and less shadows occur when
light is coming from different directions, the shutter times used for
image acquisition can be reduced. This corresponds to measuring
MB, where M € {0, 1}"»*"" represents a multiplexing matrix that
specifies the np, illumination patterns used during acquisition. If M
is chosen to be an invertible matrix, it is possible to reconstruct B
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Figure 3: Representation of a discretized BTF as a matrix. (x,y)
denotes the spatial coordinates in the BTF patch, i.e. there are nsx
columns in the matrix. The number of rows ny, corresponds to the
number of view-light configurations (®;, ).

from MB. However, the reconstruction suffers from noise as, for
imaging systems like BTF acquisition setups, the measurements
are distorted by Poisson noise [HS79]. Den Brok et al. [dBSK15]
introduced this technique to BTF acquisition, demonstrating sig-
nificantly reduced acquisition times in comparison to single-light
acquisition. Noise contained in the demultiplexed reconstruction is
mitigated by projecting the noisy BTF onto a linear subspace U
obtained from a database of conventionally measured BTFs:

V = argming [|[UV — M' (MB)||: )
where M denotes the pseudo-inverse of M.

Other techniques that rely on multiplexed illumination in-
clude the acquisition of time-varying light fields of human
faces [WGT*05], continuous per-point spectral reflectance recon-
struction from spectral measurements, programmable aperture pho-
tography of light fields [LLW*08] and the recovery of dense and
accurate light transports from objects by using orthogonal illumina-
tion based on a Walsh-Hadamard matrix which allows to consider
ambient illumination in addition to directly reflected light [MT16].

3. Our approach

While the aforementioned techniques individually enable signifi-
cant speed-ups of the acquisition process, they are still far from
what we are used from, e.g., SVBRDF acquisition. Considering
the gains provided by the individual techniques, the question arises
whether the combination of these approaches is possible, in par-
ticular as they deal with orthogonal problems. For this purpose,
we propose to pose the combination of the different paradigms of
sparse acquisition and multiplexed acquisition as an optimization
problem

V = argming [|[SMUV — SMB||% + RV £, 3)

where the first summand represents the data term and the second
summand an optional regularization term as described in Section 2.
This corresponds to obtaining a possibly small number of images
of the material sample lit by and viewed from selected illumina-
tion patterns and camera positions, respectively. It turns out that
the obstacle is the very idea which makes the previous approaches
practical in their domains: the application of a logarithmic scaling
to the data. The basis U typically is a basis for log-space data, but
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we cannot infer Mlog(B) from the measurement MB, because in
general log(MB) # Mlog(B).

Relative error metric Inspired by Ruiters et al. [RSK12], we
therefore modify the metric used when computing the basis by as-
signing per-entry weights W to the L, errors instead of modifying
the data. The optimization problem to be solved then becomes

U, V = argming 3||W® (OV—D)||, @

where ® denotes the entry-wise matrix product. By taking W as the
entry-wise inverse of D, this is equivalant to minimizing the relative
L, error instead of the absolute one, which dampens the influence
of highlights in a fashion similar to the logarithmic scaling, but
without any change to the input data.

Basis computation We assume the availability of a database D €
R™"*"= of p fully measured material BTFs. To the best of our
knowledge, there is no canonical way to solve Eq. 4; we chose an
alternating least-squares approach: Let ¢ be the approximate rank
of D and d, w be the vectors of entries of D and W, respectively. We
initialize U € R"* with random values drawn uniformly from the
interval (—1, 7). Then, we may determine V € R“*™* by solving
for its vector v of entries as

v = argming||diag(w) diag(U, ..., U) v —diag(w)d|]2, (5)

where diag(U, ...,U) is a block-diagonal matrix of n;x copies of U.
Given a new estimate of V, U can be obtained analogously. These
alternating optimizations are iterated until convergence, after which
the columns of U are normalized. Optionally, for reasons of effi-
ciency, this method may be applied on a per-material basis and the
resulting bases merged similar to what has been done in previous
work [dBSHK 14].

Sampling strategy It remains to determine a sparse measurement
matrix S € {0, 1}*", Following Matusik et al. [MPBMO03a], we
propose to minimize the condition number kK(SMUZ), because this
is a good indicator that redundant sample coordinates have been
avoided. A greedy strategy is to start with a random subsampling
and iteratively test whether exchanging a random coordinate with
another leads to a smaller condition number, and, if so, keeping the
new coordinate, until convergence or a time-limit is reached.

Reconstruction Once a sparse, multiplexed measurement SMB
has been obtained, determining an approximation B ~ UV is
straight-forward:

V = ((SMU) (SMU) + R'R)) ' (SMU)(SMB),  (6)

where R is an appropriate regularization matrix. We take R = A -
£7!, where A is a free parameter determining the regularization’s
weight.

4. Evaluation

We evaluate our approach on a material database of 12 pieces
of leather. BTFs for the materials were captured by means of a
semi-parallel setup consisting of 11 cameras, 198 LEDs, and a
sample holder placed on a turntable which is rotated in incre-
ments of 30° during measurement, described in detail by Schwartz
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(a) Reference.

(b) ny =100.  (c) ny = 200. (d) ny = 400.
Figure 4: Comparison of reconstructions from sparse,

illumination-multiplexed measurements for a leather BTF.

et al. [SSW*14] The resulting measured BTFs each consist of
198 x 11 x 12 = 26136 HDR RGB images of size 128 x 128.
We randomly select one leather as a test material Bes. The re-
maining materials are used for training the models. Computations
are performed using MATLAB 2015b on a modern desktop-grade
machine. We compute and merge per-material bases as explained
in Section 3, assuming a rank of ¢ = 256. The algorithm con-
verges quickly; we allowed for 15 iterations, reached after about
two hours. We inspect the projections U”Biest for various num-
bers djass € {256,512,...,2048} of columns of U perceptually
and find that d;j,5s = 1024 is an adequate choice. We determine
a sampling strategy optimized for our setup from the basis for
ns € {100, 200, 400} as described in Sec. 3, where the setup’s par-
allel nature is taken into account, i.e. each sample corresponds to
11 images. Cf. Fig. 4 for renderings of the reconstructed test leather
BTF. Acquisition of the ground truth took roughly a day, whereas
sparse multiplexed acquisition took about 10, 20 or 40 minutes,
depending on the chosen sparsity, in close reach of the realm of
industrial-grade SVBRDF acquisition devices. While reconstruc-
tion for ny = 100 exhibits annoying artificats, we observe percep-
tually good reconstruction results for ng € {200, 400}.

5. Conclusion & Future work

We demonstrated that using a novel linear model for material
BTFs, obtained by minimizing the relative L error, it is possi-
ble to obtain high-resolution, high-dynamic-range material BTFs
from sparse, illumination-multiplexed measurements. It remains to
be seen whether the results extend to a wider range of materials,
and a more quantitative analysis is desirable. Moreover, our model
should also lend itself to each previous use case individually; it
would thus be interesting to compare its performance against that
of the prior art.
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