Appearance of Interfaced Lambertian Microfacets using STD Distribution

M. Ribardière, D. Meneveaux, B. Bringier, L. Simonot

University of Poitiers, XLIM (CNRS UMR7252) and PPRIME (UPR3346)

Contents

- BRDFs and Microfacet Theory
 - Microfacet BRDEs
 - Issues and Needs
- Interfaced Lambertian Materials
 - Model definition
 - Appearance and discussion
- Student's T-Distribution
 - Definition
 - Discussion
- Combination of IL with STD Influence on appearance

Conclusion and Future Work

BRDF Models

$$L(\mathbf{i}, \mathbf{o}, \mathbf{n}) = \frac{d^2 \phi_o(\mathbf{i}, \mathbf{o})}{dS \cos \theta_o d\omega_o}$$
$$f(\mathbf{i}, \mathbf{o}, \mathbf{n}) = \frac{dL(\mathbf{o}, \mathbf{n})}{dE(\mathbf{i}, \mathbf{n})}$$

- Many existing models [Phong,Ward,CT82,ON94,Ash00,Jak14,Wu15,Bel17,etc.] Only few parameters, more or less intuitive and easy to control Some are designed specifically for fitting parameters
- Some of them aim designed for physically-based applications (Energy conservation and reciprocity)
 ⇒ Microfacet-based models often employed

General Equation [ON94,Walt07]:

$$f(\mathbf{i},\mathbf{o},\mathbf{n}) = \int_{\Omega_{+}} \frac{|\mathbf{i}\mathbf{m}|}{|\mathbf{i}\mathbf{n}|} f^{\mu}(\mathbf{i},\mathbf{o},\mathbf{m}) \frac{|\mathbf{o}\mathbf{m}|}{|\mathbf{o}\mathbf{n}|} D(\mathbf{m}) G(\mathbf{i},\mathbf{o},\mathbf{m}) d\omega_{m}.$$
 (1)

- ⇒ All microfacets may contribute
- \Rightarrow Rough surfaces imply multiple light reflections

Simplifies with specular microfacets f^{μ} [TS67,CT82,Walt07]:

$$f(\mathbf{i},\mathbf{o},\mathbf{n}) = \frac{F(\mathbf{i},\mathbf{h})D(\mathbf{h})G(\mathbf{i},\mathbf{o},\mathbf{h})}{4|\mathbf{i}\mathbf{n}||\mathbf{o}\mathbf{n}|},$$
(2)

- \Rightarrow Only one microfacet orientation can contribute
- \Rightarrow Multiple light reflections are ignored

Many authors have discussed:

- Relationships between D and GAF [TS67,Ash00,SB,Heitz,etc.]
- Energy conservation with specular microfacets [Kel01,TVCG17]
- Multiple scattering [Heitz, TVCG17]

• Playing with f^{μ} offers a large panel of different materials.

M. Ribardière (Poitiers)

IL microfacets and STD

- Playing with f^{μ} offers a large panel of different materials.
- Geometrical Attenuation Factor (GAF).

Torrance-Sparrow (V-cavity profile) Smith-Bourlier (Uncorrelated microfacets)

- Playing with f^{μ} offers a large panel of different materials.
- Geometrical Attenuation Factor (GAF).
- Normal Distribution Functions.

- Playing with f^{μ} offers a large panel of different materials.
- Geometrical Attenuation Factor (GAF).
- Normal Distribution Functions.
- Multiple scattering between microfacets.

(image from [Heitz16])

Interfaced Lambertian (IL) Model [TVCG17]

Several observations can be made:

- The glossy term increases according to incidence angle
- Thus, a constant Lambertian term is not adapted to energy conservation
- Solution: Rough Lambertian background covered with a flat Fresnel interface

Flat IL Material

- Flat surface: Analytical representation, including multiple light scattering
- Body term decreases according to incidence angles, and specularity
- Decreases also at grazing observation angles

Model definition

Rough IL Material

The general BRDF equation should be integrated, with:

$$f(\mathbf{i},\mathbf{o},\mathbf{n}) = \int_{\Omega_{+}} \frac{|\mathbf{i}\mathbf{m}|}{|\mathbf{i}\mathbf{n}|} \left[f_{s}^{\mu}(\mathbf{i},\mathbf{o},\mathbf{m}) + f_{b}^{\mu}(\mathbf{i},\mathbf{o},\mathbf{m}) \right] \frac{|\mathbf{o}\mathbf{m}|}{|\mathbf{o}\mathbf{n}|} D(\mathbf{m}) G(\mathbf{i},\mathbf{o},\mathbf{m}) d\omega_{m}$$
(3)

• The first integral corresponding to f_s corresponds to the glossy term

$$f_{s}(\mathbf{i},\mathbf{o},\mathbf{n}) = \frac{F(\mathbf{i},\mathbf{m})D(\mathbf{m})G(\mathbf{i},\mathbf{o},\mathbf{m})}{4|\mathbf{i}\mathbf{n}||\mathbf{o}\mathbf{n}|},$$

• The second term f_b has no analytical solution

Monte Carlo for the rendering Equation:

$$L_o(x, \mathbf{o}, \mathbf{n}) = L_e(x, \mathbf{o}, \mathbf{n}) + \int_{\Omega_+} L_i(x, \mathbf{i}, \mathbf{n}) f(\mathbf{i}, \mathbf{o}, \mathbf{n}) |\mathbf{i}\mathbf{n}| d\omega_i, \qquad (4)$$

where f is given by Equation 3, which includes

$$f_b^{\mu}(\mathbf{i},\mathbf{o},\mathbf{n}) = \frac{1}{\pi n_i^2} T(\mathbf{i},\mathbf{m}) T(\mathbf{o},\mathbf{m}) \frac{K_d}{(1-K_d r_i)}$$
(5)

Rough IL Material

Solution: use Monte Carlo process again.

- Importance sampling of one microfacet for the body term
- Slightly increases noise (since increases integral dimension)
- But allows to handle multiple scattering between microfacets [Heitz16,TVCG17]

⇒ Inherently accounts for anisotropy, given anisotropic distributions

Appearance

General model, accounts for:

- Flat Lambertian ($\sigma = 0.0, n_i = 1.0$)
- Rough Lambertian $(n_i = 1.0)$, with backscattering
- Rough dielectric mirrors ($K_d = 0.0$)
- Rough interfaced Lambertian (general case)

\Rightarrow Illustrated on next slide

An approximate model is proposed in [TVCG17], with:

- Beckmann and Gauss distributions
- Torrance-Sparrow's GAF

 \Rightarrow Makes it possible to use with interactive applications and fitting

Note that:

- Surface and substrate roughnesses are the same
- Light scattering between microfacets should be handled

IL BRDF lobes

Distributions and GAFs for various values of n_i and σ , illustrated at $\theta_i = 60^{\circ}$ (log scale).

With Beckmann Distribution and Smith GAF

IL BRDF lobes: approximate model

Comparison between Monte Carlo BRDF estimation of Lambertian (L) and interfaced Lambertian (IL) materials and our approximate model, with Gaussian (G) and Beckmann (B) distributions, and Torrance-Sparrow (TS) GAF (log scale).

IL microfacets and STD

- Management of metals (conductors) ?
 ⇒ Nothing new [CT82], since almost no transmission
- Generalization of approximate models ?
 - ⇒ much more complicated...
 - \Rightarrow Approximation relies on both D and G
 - ⇒ Our method extends [ON94], based on Gaussian/Beckman distributions
- Generalization of distribution and GAF
 - Many existing distributions
 - Without analytical GAF and/or analytical importance sampling
 - \Rightarrow This presentation provides some results with STD (next slides)
- Management of light scattering between microfacets
 - Two existing contributions: [Heitz16] with SB GAF; [TVCG17] with TS GAF
 - Path tracing implementation
 - \Rightarrow Both applied to STD and IL in this presentation

Student's T-Distribution

Introduced at EG 2017 [EG17]:

$$D^{STD}(m) = \frac{(\gamma - 1)^{\gamma} \sigma^{2\gamma - 2}}{\pi \cos^4 \theta_m \left((\gamma - 1) \sigma^2 + \tan^2 \theta_m \right)^{\gamma}}$$

- Inspired from GTR (Generalized Towbridge Reitz) [TR75,Walter07]
- Includes both GGX and Beckmann's distributions
- With analytical GAF formulation following the Smith's formulation
- With analytical importance sampling

(6)

\Rightarrow Anisotropy also handled (rough aluminium in this case)

M. Ribardière (Poitiers)

IL microfacets and STD

Advantages of STD:

- Accurate control of roughness
- Interesting use for fitting (combines the advantages of GGX and Beckmann)

Fitting with STD

Advantages of STD:

- Accurate control of roughness
- Interesting use for fitting (combines the advantages of GGX and Beckmann)
- Provides a general tool for choosing distribution

Advantages of STD:

- Accurate control of roughness
- Interesting use for fitting (combines the advantages of GGX and Beckmann)
- Provides a general tool for choosing distribution

Advantages of combining IL with STD:

- Accounts for a physical representation of body scattering
- Combines advantages of both
- Further generalizes both

Advantages of STD:

- Accurate control of roughness
- Interesting use for fitting (combines the advantages of GGX and Beckmann)
- Provides a general tool for choosing distribution

Advantages of combining IL with STD:

- Accounts for a physical representation of body scattering
- Combines advantages of both
- Further generalizes both

Implementation issues:

- Does not make any difference for IL
- Possible to include the combination in any Monte Carlo rendering system
- Also possible to handle multiple scattering

According to γ , with two different roughnesses σ (Smith GAF with $n_i = 1.5$):

When changing GAF ($\gamma = 1.75$, $n_i = 1.5$ and $\sigma = 0.7$):

For grazing observation angles:

- Torrance-Sparrow's GAF tends to overestimate gloss [Heitz14]
- Glossy effects remain high despite increasing roughness

Comparisons with and without multiple scattering between microfacets:

- Rough Lambertian $(n_i = 1.0)$
- $\gamma = 8, \sigma = 0.7$
- Smith-Bourlier GAF

Comparisons with and without multiple scattering between microfacets:

- Interfacet Lambertian microfacets $(n_i = 1.5)$
- $\gamma = 1.75, \sigma = 0.5$
- Smith-Bourlier GAF

Conclusion and Future Work

STD with interfaced Lambertian microfacets:

- Physically based model
- Management of specular and body reflections
- Only few parameters
- Extends the range of rendered materials

Future work:

- Better STD importance sampling
 ⇒ What about Visible Normals Importance Sampling?
- In depth fitting analysis
- Correlation between the interface and the substrate roughness in IL
- Any other idea ?