
High-Performance Graphics (2021)
N. Binder and T. Ritschel (Editors)

Vertex-Blend Attribute Compression

Bastian Kuth and Quirin Meyer
Coburg University of Applied Sciences and Arts, Germany

(b) Uncompressed, 160 bpv (d) Difference Image(c) Our Compression, 33 bpv

Frame Time: 12.9 msFrame time: 17.4 ms

(a)

0
255

1
255

16
255

Figure 1: (a) Each vertex of the 1024 characters is animated by four weighted transformations. (b) Uncompressed, weights consume 128
bits per vertex (bpv) and bone indices 32 bpv. (c) In this lossy example, we compress weights to 22 bpv, bone indices to 10 bpv, require 1
bpv on average for a lookup table, and render faster. (d) The difference image shows that our compression produces only little errors. The
color-scale on the right encodes the L∞-norm of the pixel differences using normalized color intensities.

Abstract
Skeleton-based animations require per-vertex attributes called vertex-blend attributes. They consist of a weight tuple and a
bone index tuple. With meshes becoming more complex, vertex-blend attributes call for compression. However, no technique
exists that exploits their special properties. To this end, we propose a novel and optimal weight compression method called
Optimal Simplex Sampling and a novel bone index compression. For our test models, we compress bone index tuples between
2.3:1 and 3.5:1 and weight tuples between 1.6:1 and 2.5:1 while being visually lossless. We show that our representations can
speed rendering and reduces GPU memory requirements over uncompressed representations with a similar error. Further, our
representations compress well with general-purpose codecs making them suitable for offline-storage and streaming.

CCS Concepts
• Computing methodologies → Rendering; Animation; • Theory of computation → Data compression;

1. Introduction

Advances in computer graphics continue to stress hardware bound-
aries. Screen resolutions get bigger, textures grow in size and num-
ber, and geometry becomes unprecedentedly complex with sen-
sors and algorithms delivering more and more data. This develop-
ment results in more triangles, vertices, and per-vertex attributes.
While central processing units (CPUs) and graphics processing
units (GPUs) reach higher compute performance levels with ev-

ery new generation, memory performance grows much slower.
To counteract this divergent performance growth of compute and
bandwidth, compression becomes key. Modern GPUs support com-
pressed textures and many internal compression techniques. By
that, they save memory and increase the effective bandwidth.

Attribute compression is commonly found in practice to meet
memory and performance requirements [FH11, Per12, GGW20].
However, it mostly does not go beyond naïve uniform quantiza-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/hpg.20211282 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-9473-8847
https://orcid.org/0000-0001-7073-442X
https://doi.org/10.2312/hpg.20211282

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

tion techniques, missing out a lot of compression potential. Better
compression is achieved with techniques designed for specific at-
tributes, but, to our knowledge, there is no method that handles
vertex-blend attributes well. Vertex-blend attributes are memory
intense and their compression is worthwhile: They consist of an
n-tuple of bone indices an n-tuple of weights, where n = 4 in prac-
tice. Uncompressed, they make ca. 38% the per-vertex memory
of Fig. 1. However, compression must not degrade image quality.
Weights are carefully computed or determined by an artist. Unwary
quantization may result in unpleasant artifacts. Additionally, bone
indices must be compressed without any loss.

To our knowledge, no documented vertex-blend attribute com-
pression method exists. We compress independent and identically
distributed (i.i.d.) vertex-blend attributes and contribute

1. a novel, lossless bone index compression,
2. an analysis of the vertex-blend weight space,
3. a broad overview of weight compression methods, and
4. Optimal Simplex Sampling (OSS), a novel and optimal com-

pression scheme for weights.

For each vertex, we guarantee a time complexity of O(1). De-
compression is fast and can speed rendering times. Our weight
compression can be lossless over fixed-point weights and visually
lossless over floating-point weights. A controllable error lets us
trade quality against compression ratio to achieve lossy compres-
sion (cf. Fig. 1). Compression is fast enough to have little perfor-
mance impact on asset preparation. We do not affect triangle or
vertex order making it compatible with many mesh pre-processing
techniques. OSS compresses well with general purpose codecs en-
abling offline-storage and streaming. Our compression works with
vertex-blend methods that assume convex weights, such as linear
blend skinning [MTLT89] or dual quaternion skinning [KCvO08].
While most of our compression methods handle an arbitrary num-
ber of weights, OSS supports only up to four weights, which is
sufficient for most practical situations.

2. Related Work

Compression and decompression are frequently used in computer
graphics. Due to the topic’s broadness, we focus on previous work
related to real-time GPU rasterization methods in Sec. 2.1 and give
a brief overview of skeleton-based animations in Sec. 2.2.

2.1. GPU-Related Compression Methods

A significant amount of GPU memory consumption is due
to textures. Hence, most GPUs support lossy texture com-
pression with random read-access. It provides memory space
reduction, better bandwidth utilization, faster sampling, and
lower power dissipation [NLP∗12]. Most formats [Gar19] subdi-
vide textures into equal-sized blocks. Compression ratios range
from 2:1 to 36:1 [NLP∗12]. Super-compressed textures meth-
ods [KPM16, Bin21] compress already compressed textures. This
reduces disk-space and speeds CPU-GPU data transfer. A GPU
compute-shader decodes super-compressed to conventionally com-
pressed textures. Similar approaches decode on the CPU [Bin20]
or decode to uncompressed textures on the GPU [OBGB11].

Several special GPU buffer compression techniques exist for
depth [HAM06] and float buffers [SWR∗08, PLS12, NVB∗20].
Seiler et. al propose to unify CPU and GPU virtual memory in the
presence of compressed and swizzled GPU buffers [SLY20]. Re-
cently, Sakharnykh and colleagues [SLK20] implemented a GPU
LZ4 codec [Col19] to speed memory transfers between multiple
GPUs. GPUs have several buffer compression techniques built-
in [Bre16, MJT14]. Those methods are mostly lossless or visually
lossless and some are transparent to the developer. The main pur-
pose is not to reduce memory consumption, but to increase band-
width efficiency and reduce power dissipation.

Vertex-blend attribute compression is part of geometry
compression, pioneered by Deering [Dee95]. Multiple re-
ports [PKJ05, AG05, MLDH15] provide overviews over the vast
field. Meyer et al. [MKSS12] compress triangle topology to about
3.7–7.6 bits per triangle (bpt). Their GPU approach decompresses
index buffers every frame without significant performance loss.
Jakob et al. [JBG17] provide a data-parallel codec that compresses
triangles to 3.5–4.2 bpt. It runs fast enough on the GPU to re-
duce CPU-GPU data transfer times. Kubisch [Kub20] uses mesh
shaders [Mic20] to decompress topology. He subdivides a mesh
into meshlets of 64 vertices with a meshlet-local index buffer of 84
triangles and achieves a triangle compression ratio of 3:1.

Vectors of GPU vertex buffers have up to four components
and can be quantized at fixed bit-levels [Khr21], only. Purnomo
et al. [PBCK05] achieve more flexibility by quantizing attributes
with arbitrary many bits. However, they do not exploit the in-
dividual compressible properties for each attribute. Kwan et
al. [KXW∗18] store vertex attributes in a compressed texture.
They permute the vertex order such that the compression er-
ror gets sufficiently small. Meyer et al. [MSGS11] use a view-
dependent approach to adjust the number of bits for positions
by adding or removing bit-planes. They yield compression ratios
from 2.5:1 to 4:1 and render faster. Lee et al. [LCL10] partition a
mesh into multiple sub-meshes, quantized with 8 bits. They pre-
vent cracks by aligning the sub-meshes along a common grid.
Jakob et al. [JBG17] compress positions between 2.7:1 and 3:1
with a data-parallel arithmetic codec. Special schemes for unit-
vectors [MSS∗10, CDE∗14, KISS15, RB20] reach about 2:1 com-
pression ratio without visual error and can decrease render times.

2.2. Skeleton-Based Animation

Vertex-blending (skinning, skeleton-based) animation transforms a
mesh to perform gestures. An artist or automated process prepares
a skeleton (armature, rig) for the mesh and assigns vertex-blend
(skinning) attributes to its vertices. The skeleton is a tree hierar-
chy with M nodes called bones. For each bone b ∈ {1, . . . ,M},
we assign a bone transformation Ab ∈ T, such as rotation, trans-
lation, or scaling. Vertex-blend attributes consist of weights ~w =
[w1, . . . ,wn]

T ∈ Rn and bone indices~I = [I1, . . . , In]
T ∈ Nn. To an-

imate a mesh vertex from its rest pose ~p ∈ R2,3,4 to its deformed
pose ~p′, we compute:

~p′ = A⊗~p with A = σ((w1�AI1)⊕·· ·⊕ (wn�AIn)) . (1)

Thereby, R�T 7→ T is a scalar multiplication, T⊕T 7→ T adds
two transformations, and σ is a normalization mapping T 7→ T.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

44

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

Depending on the underlying method, different choices for T ex-
ist: For affine matrices [MTLT89], T is R3×4, � is a matrix scal-
ing, ⊕ is a matrix addition, σ orthonormalizes the rotational part
of the matrix, and ⊗ is a matrix-vector product. In case T is the
set of dual quaternions [KCvO08], � scales a dual quaternion, ⊕
adds dual quaternions, σ projects a dual to a unit dual quaternion,
and ⊗ is the Hamiltonian product with the Euclidean point ~p rep-
resented as a dual quaternion. Common to those and other meth-
ods [Ale02, Kv05] is that the weights ~w are convex: they build a
partition of unit ∑

n
i=1 wi = 1 and are non-negative wi ≥ 0.

Skeleton-based animation is efficient for GPU real-time render-
ing: First, an animation only adjusts the bone transformations Ab.
Weights and indices remain constant. Since the number of bones
is small, changing transformations is fast. Second, the GPU pro-
gramming models suits Eq. (1) and enables efficient implementa-
tions. Third, animations appear plausible already at a low number
of vertex-blend attributes n, which keeps computation at moderate
levels. For our test meshes of Tab. 1, 51% vertices require one, 22%
two, 13% three, and 14% four weights. Even though game engines
have recently started to support more weights, they recommend us-
ing four weights for performance reasons [Cry19, Uni21].

While vertex-blend attributes consume a significant amount
of vertex data, it has not yet been explored how to effi-
ciently compress them. Existing animation compression meth-
ods [SSK05, LDJ∗19, Fré17] deal with bone transformations only.

3. Bone Index Compression

A vertex has a bone index tuple ~I ∈ Nn. Each ~Ii points at a bone
transformation. For the test meshes of Tab. 1, we see that a mesh
with M bones requires ndlog2 Me bits per bone. With four bones
per vertex, we stay below 32 bpv (cf. col. Raw).

We improve compression by utilizing coherence in the bone in-
dex tuples. We observe that only a small number of combinations
of bone indices are used. We call those combinations unique tuples.
Tab. 1 assigns the same color to vertices of unique tuples. We place
unique tuples in a lookup table (LUT). Instead of n bone indices,
a vertex uses a single tuple index into that LUT. Column Unique
Tuples of Tab. 1 shows that the number of unique tuples is sur-
prisingly small. Each unique tuple is therefore addressable with the
number of bits shown in column Tuple Idx. Note that we need to
store the LUT, too. Splitting the LUT size over the vertices adds
an additional per-vertex cost shown in column LUT. We store bone
indices in the LUT with byte granularity. That and assuming 32
bpv for uncompressed bone indices, we compress bone indices at
2.3:1 to 3.5:1. Decompression time complexity for each bone in-
dex is O(1). Using a hash-map, compression has an average time
complexity of O(1) per vertex.

As the order of vertex-blend attributes within a vertex is arbi-
trary, we could reduce the number of unique bone index tuples fur-
ther by sorting the bone indices inside a tuple. Weights must be
swapped accordingly. As weights require more memory, we receive
better compression when sorting weights instead of bone indices
(cf. Sec. 4). In fact, Tab. 1 already uses weight sorting.

Croc: Nile Crocodile Swimming by Monster, CC BY-NC-ND 4.0, https://skfb.ly/6Aotx, Face: Facial Rig test.
by bayuitra, CC BY 4.0, https://skfb.ly/6tKXo, Dragon: Black Dragon with Idle Animation by 3DHaupt, CC
BY-NC 4.0, https://skfb.ly/FWLt, Turtle: Model 50A - Hatchling Hawksbill sea turtle by DigitalLife3D, CC
BY-NC 4.0, https://skfb.ly/6QTKp, Trooper: DANCING STORMTROOPER by StrykerDoesAnimation, CC
BY 4.0, https://skfb.ly/WVIA

Mesh V M Raw Unique Tuple Idx LUT
[bpv] Tuples [bpv] [bpv]

Croc 12800 108 28 1096 11 2.7
Face 11371 109 28 1093 11 3.0
Dragon 22844 121 28 1330 11 1.8
Archer 12424 54 24 354 9 0.9
Turtle 4346 24 20 148 8 1.1
Boss 5828 56 24 379 9 2.1
Human 20340 53 24 420 9 0.7
Trooper 5174 53 24 302 9 1.9

Table 1: Bone Index Compression. Vertices within a mesh that have
the same color use the same unique index tuple. For the meshes
(col. Mesh), we list the vertex (col. V) and bone count (col. M). Col.
Raw shows the bits per vertex (bpv) required for four uncompressed
bone indices. We store combinations of bone indices in a LUT with
Unique Tuples entries. Each LUT entry is addressable with Tuple
Idx bits. Col. LUT shows the per-vertex overhead of the LUT.

4. Weight Compression

We review common weight representations (Sec. 4.1) and analyze
the weight space (Sec. 4.2) in order to derive compact weight repre-
sentations (Secs. 4.3–4.6). For readability, we abbreviate the meth-
ods as shown in parenthesis of the respective caption.

4.1. Naïve Quantization Methods

n Floats (Floats): Mostly, n floats are used for weights. This con-
stitutes the uncompressed form and serves as baseline.

n Fixed-Point Numbers (Fixed): The dynamic range of floats is
not required for bounded weights. Moreover, the space between
two adjacent floats gets denser towards zero. We found no reason to
sample small weights more densely than large ones. Thus, we sam-
ple [0;1) with a (Bm + 1)-bit fixed-point number, where Bm is the
number of mantissa bits of the float type. Since this conversion pre-
serves the maximum quantization error of floats, it is quasi-lossless.
To save the extra bit that only encodes the 1, we sample [0;1] and
accept a slightly larger error.

Unit Cube Sampling (Cube): Since weights are convex, we com-
pute one weight from the others. The remaining weights form an
(n−1)-D unit cube. Thus, we call this method unit cube sampling.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

45

https://skfb.ly/6Aotx
https://skfb.ly/6tKXo
https://skfb.ly/FWLt
https://skfb.ly/6QTKp
https://skfb.ly/WVIA

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

v2

v4

v3

~g1 =

[
0
0
0

] ~g2 =

[
1/2

0
0

]

~g4 =

[
0
0

1/4

]

~g3 =

[
0

1/3
0

]

~f4 =

[
1/4
1/4
1/4

]

~f3 =

[
1/3
1/3

0

]

~f2 =

[
1/2

0
0

]
w2

w4

w3

~f1 =

[
0
0
0

]

v2

v3

w2

w3
~f3 =

[
1/3
1/3

]

~f2 =
[
1/2
0

]

~g2 =
[
1/2
0

]

~g3 =
[0
1/3

]

~g1 =
[
0
0

]

~f1 =
[
0
0

]

(a) (b)

(c) (d)

Figure 2: Weight Spaces. We compute the largest weight w1 from
the smaller ones. (a) For three sorted convex weights, we store
w2 ≥ w3.Valid tuples [w2;w3]

T form a triangle. (b) For four sorted
convex weights, we keep w2 ≥w3 ≥w4.Valid tuples form a tetrahe-
dron. Delta weights shear the (c) triangle and (d) tetrahedron edges
emanating from the origin onto the coordinate systems’ axes.

4.2. Weight Space Analysis

Vertex-blend weights are non-negative, sum to one, and their order
is arbitrary. Thus, we arrange them in descending order with wi ≥
wi+1 and compute w1 = 1−∑

n
i=2 wi. We pick the largest weight

w1 as it consumes most bits. The remaining sorted weights form a
triangle for three (cf. Fig. 2a), a tetrahedron for four (cf. Fig. 2b),
and an (n−1)-D simplex for n weights with the inequalities:

w2 +
n

∑
i=2

wi ≤ 1, wi ≥ wi+1, 2≤ i≤ n−1, wn ≥ 0. (2)

Alternatively, we delta encode weights and obtain sheared weights
~v= [v2, . . . ,vn]

T ∈Rn−1 with vi =wi−wi+1, i∈ {2, . . . ,n−1} and
vn = wn. This shears the simplex’s edges emanating from the ori-
gin onto the coordinate systems’ axes, as shown in Fig. 2c and 2d.
Thereby, we get a sheared simplex with the following inequalities:

n

∑
i=2

i · vi ≤ 1, vi ≥ 0, 2≤ i≤ n. (3)

We call a tuple inside the respective polyhedral a valid tuple. Con-
versely, a tuple violating those conditions is an invalid tuple.

We derive methods for discretizing the simplex. A method is op-
timal, if two conditions are met: First, samples inside the simplex
are distributed uniformly, since, in general, we must assume that
all weights are equally likely. Second, the discretization contains
no invalid tuples. For most methods, we must relax those goals,
but present an optimal one in Sec. 4.6. Further, the sample spacing
must be controllable to trade memory space against image quality.
Moreover, compression and decompression must be O(1).

To discretize the tetrahedron, we could use subdivision. How-
ever, performance tests revealed that decompression is impractical

with O(B) run-time complexity, where B is the bit count used for
weights. With a clustering method, we could replace weights by an
index into a LUT that contains the decompressed weights. How-
ever, even for small B, LUT sizes become too large to be practical.

4.3. POT AABB (POT)

With the inequalities (2), we see that 0≤ wi ≤ i−1 with 2≤ i≤ n.
Thus, we envelop the simplex with an axis-aligned bounding box
(AABB) whose i-th side-length is rounded up to the next power-of-
two (POT) of i−1 (cf. Fig. 3a). Then, the sample count along each
axis is a POT, too. This enables fast weight extraction through bit
operations. The resulting sample spacing is 1/2

2B2−1 along all axes,
where B2 is the number of bits spent for w2. As the maximum value
of wi gets smaller with increasing i, the number of bits decreases.
For example, w4 ≤ 1/4, needs one bit less than w2 ≤ 1/2.

By that, we can, however, encode invalid samples for those wi
whose maximum value is not a power-of-two. For example, w3 can
represent values larger than 1/3, although we never need them. We
can avoid that by sampling those wi more densely. However, this
has no effect on the maximum sampling error. In either case, this
methods suffers from invalid tuples as shown in Fig. 3a.

4.4. Any AABB (Any)

To reduce invalid tuples, we sample each axis with a non-POT sam-
ple count and try to make the total sample count a POT. Therefore,
we enclose the simplex with an (n− 1)-D AABB. Its axis-lengths
are ai = i−1,2≤ i≤ n. We seek an isotropic grid of Q = 2B points
that covers the AABB entirely. In general, this is not possible for
two reasons: First, we will not exactly hit a power-of-two for Q.
Therefore, we want to find a number Q ≤ 2B as close as possible
to 2B. Second, the grid can only be almost isotropic and we must
sample some directions more densely than others. For each axis,
we must determine the number of points qi such that ∏

n
i=2 qi = Q.

The ratio between the number of points and the side lengths must

(a) POT AABB

1/2
2B2−1

w2
0 1

2 0 1
2

w3

1/3
q3−1

w2

(b) Any AABB

1/2
q2−1

0

1
3

1
2

w3

Figure 3: POT and Any AABB. The triangles show the set of valid
tuples. The grid indicates the discretization and the double-sided
arrows its sample spacings. (a) We encode weights as points inside
an AABB (red box) whose side lengths are power-of-twos. B2 is
the number of bits spent for w2. (b) Weights are inside an AABB
whose side lengths match the maximum value of each weight. qi is
the number of samples per axis.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

46

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

(a)

v4

v2

v3

v4

1
2 1

3

1
4
1
8

~0

v3
1
3

1
8

1
4

~0
v2

(b)

v3

1
3

1
2

v20
0 1

4
1
3

v3

1
2

v20
0 1

4
1
2

v20
0 1

4

Figure 4: Simplex Chopping. (a) For three weights, we cut the tri-
angle into two triangles shown in blue and yellow. We transform
the triangles to a rectangle avoiding invalid tuples. (b) For four
weights, cutting and transforming polytopes leaves invalid tuples.

be the same for all axes, hence qi = λai. We then compute λ:

Q =
n

∏
i=2

qi =
n

∏
i=2

λ ·ai = λ
n−1

n

∏
i=2

ai ⇒ λ = n−1

√
Q

∏
n
i=2 ai

.

As qi = λai is usually not integral, we round slightly below or equal
the desired amount. From a quantized weight xi ∈ {0, . . . ,qi− 1},
we obtain a unique index C(~x) that we use as the compressed value.
For decompression, we use di(C):

C(~x) =
n

∑
i=2

xi ·
i−1

∏
j=2

q j, di(C) =

⌊
C

∏
i−1
j=2 q j

⌋
mod qi.

The divisor and module are constant so compilers can replace them
by shifts and multiplications. Fig. 3b shows that Any AABB re-
duces the number of invalid tuples over POT AABB.

4.5. Simplex Chopping

We reduce invalid tuples by chopping the sheared simplex at v2 ≥
1/4 and at v4 ≥ 1

8 . We transform the resulting parts as shown in
Fig. 4 to fit an AABB. During sampling, we carefully treat ambigu-
ities along the split planes. Since, we are only able to avoid invalid
tuples for three weights, we do not further consider this method.

4.6. Optimal Simplex Sampling (OSS)

OSS is a weight representation that encodes valid tuples, only. We
exclude the possibility to encode invalid tuples by design. Our
method samples weights uniformly in each axis. Therefore, it is
optimal for i.i.d. weight tuples. Our compression and decompres-
sion haveO(1) time and space complexity. We derive formulas for
four weights, which is sufficient for most practical cases.

Three Weights To only discretize the set of valid weights, we inter-
sect the triangle that contains all possible weights with a 2D Carte-
sian grid. We make sure that [w2,w3]

T = [0;0]T and [w2,w3]
T =

[1/2,0]T are sampled. N is the number of samples along the bottom
row, i.e., where w3 = 0. We assign a weight index W to each valid
tuple, as indicated by the numbers inside the circles of Fig. 5. The

(b)

i

k

j

23 22 21 20 19
242526

28 27

29
32

3031

33

5 4 3 2 1 0
789

11

15 14 13 12
1617

18

6

10
0 1 2 3 4 5 6

7 8 9 10 11

12 13 14 15

16 17

18

i

j

0

4

(a)

0 6

Figure 5: Assigning Indices for OSS. (a) For the quantized and
sheared weights i, j, that correspond to valid weights, we compute
a unique index (numbers inside non-grey circles). The grey circles
represent invalid tuples. The indices of the red and yellow circles
indicate the base indices of each row. (b) For 4D weights, we quan-
tize and sheared weights to indices i, j,k. The red and green circles
indicate the base indices of each stacked triangle.

weight index serves as our compressed weight. Therefore, we quan-
tize and sheared weights [w2,w3]

T ∈ [0; 1/2]× [0; 1/3] to an index-
pair [i, j]T and compute W :

W (i, j) = sN(j)+ i, (4)

j = quant(w3) , i = quant(w2)− j,

quant(w) = rd(2w(N−1)) ,

where rd(·) rounds to the nearest valid weight component. Thereby,
sN(j) is the base index of row j, shown as red and yellow circles in
Fig. 5a. Computing sN(j) iteratively is too slow and we, therefore,
derive a closed form as shown in Appx. A:

sN(j) =
⌊
−3

4
j2 +

1
2

j+ jN +
1
4

⌋
= bs̃N(j)c . (5)

In Appx. B, we show that the number of samples per triangle is

S(N) =

⌊
1
3
(N2 +N +1)

⌋
. (6)

This number is important to compute the bit count of 3D weights.

For decompression, we first need to find the row index j0 from a
given index W such that

sN(j0)≤W < sN(j0 +1).

Solving this problem with binary search would make decompres-
sion too slow. Instead, we solve the equivalent root-finding problem
s̃N(j̃0) =W . Due to numerical issues, we mirror the function to

s̃N

(
2N +1

3

)
− s̃N(j̃0) = s̃N

(
2N +1

3

)
−W︸ ︷︷ ︸

W ′

,

and obtain the integer root j0 by flooring the relevant real root j̃0:

j0 =
⌊

j̃0
⌋
=

⌊
1
3

(
2N +1+

√
12W ′

)⌋
.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

47

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

Float arithmetic might introduce off-by-one errors for j0 if W is
near a base index sN(j0). We address them with an extra check.
Finally, we invert Eqs. (4) to compute w2 and w3.

Four Weights For compressing 4D weights [w2,w3,w4]
T ∈

[0,1/2]× [0,1/3]× [0,1/4], we extend the index pair of Eq. (4) to
a triple [i, j,k]T and compute a weight index for four weights U :

U(i, j,k) = u(k)+ sN−2k(j)+ i,

k = quant(w4) , j = quant(w3)− k, i = quant(w2)− j.

U is the compressed representation for four weights. Thereby, u(k)
is the base index of the k-th triangle. By that, we stack multiple
triangles used for 3D weights, with decreasing number of samples
at their bottom edges, as shown in Figure 5b. An iterative algorithm
for computing u(k) would be too slow. In Appx. C, we derive how
to obtain u(k) inO(1). The base indices are shown by red and green
circles in Fig. 5b and are computed as follows:

u(k) := bũ(k)c=
⌊

1
9

[
3Nk (N−2k+3)+ k(4k2−9k+6)+2

]⌋
.

As the w2 axis is twice as long as w4 axis, there are
⌊

N+1
2

⌋
stacked

triangles. Thus, the sample count per tetrahedron is:

T (N) := u
(⌊

N +1
2

⌋)
.

We set N such, that T (N) is smaller or equal a power-of-two.

For decompression, we avoid expensive binary search, make it
anO(1) root-finding problem, and mirror the functional to increase
numerical stability:

u(k0)≤U < u(k0 +1) ⇒ ũ(k̃0) =U

⇒ ũ
(

N +1
2

)
− ũ(k0) = ũ

(
N +1

2

)
−U︸ ︷︷ ︸

U′

.

We find the relevant non-integer root k̃0

k̃0 =
1
4

[
2N +3−

(
c+

1
c

)]
,with

c =
3
√

72U ′−1+
√

72U ′(72U ′−2)≈ 3√
144U ′.

The approximation error is smaller than 3.2 ·10−6 for U ′≥ 1. Next,
we compute k0 = bk̃0c and fix off-by-one errors in case U is close
to base index u(k0). With Wk0 = U − u(k0), we get a three-weight
decompression problem Wk0 = sN−2k0(j)+ i delivering i0 and j0.

4.7. Weight Compression Comparison

In Tab. 2, we list how many bits a weight compression method (first
column) requires to be as precise as an uncompressed representa-
tion (first row). We measure precision using the maximum sam-
ple spacing ∆ between two weight components. Consider column
4× 16-bit float: Uncompressed, we use four 16-bit half precision
floats. In row Float, we see that this takes up 64 bits. We require 44
bits for four 11-bit fixed-point numbers, to maintain the same maxi-
mum quantization error (cf. row Fixed). With the Cube method, we
save one 11-Bit fixed-point number, and use 33 Bit. With POT and

4×32-bit 4×16-bit 4×16-bit 4×8-bit
float fixed float fixed

∆ 1/224 1/(216−1) 1/211 1/(28−1)

Float 128 - 64 -
Fixed 96 64 44 32
Cube 72 48 33 24
POT 68 44 29 20
Any 67.4 43.4 28.4 19.4
OSS 64.4 40.8 25.8 16.8

Table 2: Bits Required to Represent Four Weights at a Sample
Spacing of ∆. For each compressed representation (first column),
we list the number of bits required to match the precision ∆ of an
uncompressed representation (first row).

Any, we can further reduce the memory consumption. Finally, OSS
performs best requiring 25.8 bits. OSS achieves compression ratios
of 1.6:1 to 2.5:1 over the uncompressed representations while still
maintaining the same maximum sample spacing.

5. Results and Discussion

In this section, we evaluate our compression techniques. All mea-
surements were taken on an Intel i7-10750H laptop at 2.6 GHz with
an Nvidia Quadro T1000 and an Nvidia RTX 2080 eGPU.

5.1. GPU Decompression Timings

We create 1024 instances from 25 individual meshes optimized
for vertex cache reuse [SNB07], as shown in Fig. 1. Scenes with
comparable geometric complexity that use bone animations can be
found in video games [CF15]. Our OpenGL implementation uses
a separate draw call for each instance and renders to a 1920×1080
window. The meshes consist of 2k–34k vertices, up to 256 bones,
and four weights and indices per vertex. We use 32-bit floats to
represent positions, normals, and texture coordinates. The vertex
shader carries out weight and index decompression and processes
15M vertices per frame. For linear vertex blending, we upload 54k
matrices (ca. 3.3 MiB) per frame. Our index compression yields
10 bpv for index tuples. The per-mesh LUTs are kept in uniform
buffers and require 0.2 bpv–2.2 bpv with 1.0 bpv on average (split
over the 25 meshes and not 1024 instances).

For compressed vertex-blend attributes, we assign a bit-budget of
32 and 48 bits, respectively. 10 bits for index tuples leaves 22 and
38 bits for weights. Tab. 3 summarizes frame times for different
compressed and uncompressed weight representations. Column ∆

shows the maximum sample spacing between two weight samples.
For comparison, we list timings for uncompressed representations
using four 8-bit and 16-bit fixed-point, as well as, 16-bit and 32-bit
float weights. Uncompressed indices fit in 4×8 = 32 bits.

We observe that our compressed representations are almost al-
ways significantly faster than uncompressed representations. The
only exception is Any AABB with 38-bit weights, which needs 64-
bit integer division and modulo operations degrading performance.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

48

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

Uncompressed Compressed

Method Float Fixed Float Fixed Cube POT Any OSS Cube POT Any OSS

Indices [Bit] 4×8 4×8 4×8 4×8 10 10 10 10 10 10 10 10
Weights [Bit] 4×32 4×16 4×16 4×8 22 22 22 22 38 38 38 38

Total [Bit] 160 96 96 64 32 32 32 32 48 48 48 48

∆ 6.0e−8 1.5e−5 4.9e−4 3.9e−3 7.9e−3 2.6e−3 2.2e−3 1.2e−3 2.4e−4 6.1e−5 5.3e−5 2.9e−5

Quadro T1000 [ms] 17.4 16.8 16.8 16.4 12.9 12.9 12.9 12.9 14.1 14.1 39.8 14.1
RTX 2080 [ms] 4.3 4.2 4.2 4.1 3.4 3.4 3.4 3.4 3.6 3.6 9.6 3.6

Table 3: GPU Rendering Timings. For Uncompressed and Compressed methods, we list the memory usage for Indices and Weights. ∆ is the
sample spacing between two weight components. For index compression, a uniform buffer for each LUT is required. When splitting the LUT
size over the vertices we obtain an additional 1.0 bpv on average, which is not included in the row Indices. We provide rendering timings on
an Nvidia Quadro T1000 and an Nvidia RTX 2080.

For fair comparisons, we consider methods with similar ∆. 22-
bit OSS is faster, more accurate, and more memory efficient than
4×8 fixed-point weights. 38-bit OSS is a more accurate than 4×16
float weights and only slightly less accurate than 4×16 fixed-point
weights. At the same time 38-bit OSS is faster and uses only half
the size than its uncompressed rivals.

5.2. Image Quality

Cube, POT AABB, and OSS are capable of representing any fixed-
point weight representation bit-exactly. Any AABB is not bit exact,
but maintains the same maximum sample spacing. Additionally, all
methods maintain the same maximum sample spacing of any float
format. Therefore, we consider them as visually lossless.

Fig. 6 compares the quality of 4× 32-bit float weights (top
left) against all methods of Tab. 3 through difference images. A
checkerboard texture highlights errors. The 4× 16-bit float and
fixed representations are visually indistinguishable from 4×32-bit
float weights. 4×8-bit fixed representation shows errors along the
checkerboard edges. All 22-bit compressed representations, except
for Cube, visually outperform 4×8-bit fixed. This is in accordance
with the smaller sample spacing ∆. 22-bit OSS has the least differ-
ence. The difference images for 38-bit show that the image quality
is visually indistinguishable from 4×32-bit float weights.

5.3. CPU Compression Timings

Our non-optimized, single-threaded, non-SIMD code compresses
ca. 50M four-weight floats to 32-bit words. For comparison, we
copy 66M four-weight floats per second. We compress about 45M
index tuples per second including hash-map creation. Therefore,
we consider our compression fast enough for asset preparation.

5.4. Offline Compression

For additional compression required by streaming and offline-
storage scenarios, we use the general-purpose compressor
zlib [GA17] configured for best compression. In Tab. 4, we com-
pare bpv statistics for compressed against uncompressed weights
and indices across all meshes from Tab 1. We use 41-bit for OSS
to match the precision of 4× 16-bit uncompressed fixed-point

weights. Without our compression, zlib compresses to an average
compression ratio of 4.1:1, whilst with our methods, we improve
the average compression ratio to 5:1.

6. Conclusion and Future Work

In this paper, we introduce techniques for compressing vertex-
blend attributes used for skeleton-based animations. By exploiting
coherence amongst bone indices, we compress them to 2.3:1–3.5:1.
We observe that weights describe an (n− 1)-D simplex and pro-
vide several sampling methods. With OSS, we propose an optimal
sampling strategy achieving compression ratios between 1.6:1 and
2.5:1 while being at least visually lossless. Combining our bone in-
dex and weight compression, we speed frame times, require less
memory, and obtain a similar image quality over uncompressed
representations. For lossy compression, the controllable error of
our representations allows even higher compression ratios, while
being able to control visual quality. Moreover, our representations
compress well with general purpose codecs. Since compression and
decompression is in O(1), our methods are useful for many appli-
cations. Decompression runs in a standard vertex shader with 32-bit
arithmetic. The supplemental material contains code for OSS.

In the future, we will pair our methods with meshlets. They are
flexible enough to allow a variable weight count per vertex and

Indices & Weights ZLib Minimum Avgerage Maximum
[bpv] [bpv] [bpv]

Uncompressed No 96.0 96.0 96.0
Uncompressed Yes 11.6 23.7 38.7
Compressed No 50.1 52.4 55.0
Compressed Yes 9.3 19.2 30.1

Table 4: Offline Compression Result. For uncompressed weights,
we use 4× 16-bit uncompressed fixed-point weights and for com-
pressed weights the slightly more accurate 41-bit OSS weight com-
pression (cf. Tab. 2). Uncompressed indices are represented with
4× log2 (B) bits. For compressed indices, we use the method from
Sec. 3 and we split the LUT size across the vertices.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

49

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

22-bit Cube, ∆ = 7.9e−3 22-bit POT, ∆ = 2.6e−3 22-bit Any, ∆ = 2.2e−3 22-bit OSS, ∆ = 1.2e−3

38-bit Cube, ∆ = 2.4e−4 38-bit POT, ∆ = 6.1e−5 38-bit Any, ∆ = 5.3e−5 38-bit OSS, ∆ = 2.9e−5

4×32-bit floats, ∆ = 6.0e−8 4×16-bit floats, ∆ = 4.9e−4 4×8-bit fixed, ∆ = 3.9e−34×16-bit fixed ∆ = 1.5e−5

0
255

1
255

16
255

Figure 6: Quality Comparison. We obtain difference images when comparing renderings using 4× 32-bit float weights (top left) against
uncompressed representations (top row), compressed representations with 22 bits (middle row), and 38 bits (bottom row) for four weights,
respectively. The color-scale on the right encodes the L∞-norm of the pixel differences using normalized color intensities.

we expect additional compression benefits. Further the unique in-
dex tuple set per meshlet is likely to be much smaller than for an
entire mesh. Further, for OSS, we will support more weights for
cage-based animations, blend-shapes, and local barycentric coordi-
nates [ZDL∗14]. Early experiments with automated derivation of
base index formulas and numerical root-finding indicate that OSS
could scale well with more than four weights.

Acknowledgements

We thank C. Eisenacher, M. Chajdas, and G. Greiner for valuable
comments and Mixamo for meshes in Figs. 1, 6, and Tab. 1.

References

[AG05] ALLIEZ P., GOTSMAN C.: Recent Advances in Compression of
3D Meshes. In Advances in Multiresolution for Geometric Modelling
(2005), Springer. 2

[Ale02] ALEXA M.: Linear Combination of Transformations. ACM
Trans. Graph. 21, 3 (July 2002), 380–387. 3

[Bin20] BINOMIAL LLC: Advanced DXTn texture compression library,
2020. URL: https://github.com/BinomialLLC/crunch. 2

[Bin21] BINOMIAL LLC: Basis Universal Supercompressed GPU Tex-
ture Codec, 2021. URL: https://github.com/BinomialLLC/
basis_universal. 2

[Bre16] BRENNAN C.: Getting the Most out of Delta Color Compression,
2016. URL: https://gpuopen.com/learn/dcc-overview/.
2

[CDE∗14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D., MARA M.,
MCGUIRE M., MEYER Q.: A Survey of Efficient Representations for
Independent Unit Vectors. Journal of Computer Graphics Techniques
(JCGT) 3, 2 (April 2014). 2

[CF15] COURNOYER F., FORTIER A.: Massive Crowd on As-
sassin’s Creed Unity: AI Recycling, 2015. URL: https:
//www.gdcvault.com/play/1022141/Massive-Crowd-
on-Assassin-s. 6

[Col19] COLLET Y.: LZ4 Block Format Description, 2019.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

50

https://github.com/BinomialLLC/crunch
https://github.com/BinomialLLC/basis_universal
https://github.com/BinomialLLC/basis_universal
https://gpuopen.com/learn/dcc-overview/
https://www.gdcvault.com/play/1022141/Massive-Crowd-on-Assassin-s
https://www.gdcvault.com/play/1022141/Massive-Crowd-on-Assassin-s
https://www.gdcvault.com/play/1022141/Massive-Crowd-on-Assassin-s

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

URL: https://github.com/lz4/lz4/blob/dev/doc/
lz4_Block_format.md. 2

[Cry19] CRYTEK GMBH: CRYENGINE V Manual, 2019. URL:
https://docs.cryengine.com/display/CEMANUAL/
Biped+Rigging. 3

[Dee95] DEERING M.: Geometry Compression. SIGGRAPH ’95. 2

[FH11] FREY I. Z., HERZEG I.: Spherical Skinning with Dual Quater-
nions and QTangents. In ACM SIGGRAPH 2011 Talks (2011), SIG-
GRAPH ’11, Association for Computing Machinery. 1

[Fré17] FRÉCHETTE N.: Simple and Powerful Animation Compression,
2017. URL: https://www.gdcvault.com/play/1024009/
Simple-and-Powerful-Animation. 3

[GA17] GAILLY J.-L., ADLER M.: zlib 1.2.11.1, 2017. URL: https:
//zlib.net/. 7

[Gar19] GARRAD A.: Khronos Data Format Specification v1.3.1. The
Khronos Group Inc., 2019. 2

[GGW20] GEFFROY J., GNEITING A., WANG Y.: Rendering the
hellscape of doom eternal. In ACM SIGGRAPH ’20: ACM SIGGRAPH
2020 Courses (2020), SIGGRAPH ’20, Association for Computing Ma-
chinery. 1

[HAM06] HASSELGREN J., AKENINE-MÖLLER T.: Efficient Depth
Buffer Compression. In Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware (New
York, NY, USA, 2006), GH ’06, Association for Computing Machinery,
p. 103–110. 2

[JBG17] JAKOB J., BUCHENAU C., GUTHE M.: A Parallel Approach
to Compression and Decompression of Triangle Meshes Using the GPU.
Comput. Graph. Forum 36, 5 (Aug. 2017). 2

[KCvO08] KAVAN L., COLLINS S., ŽÁRA J., O’SULLIVAN C.: Ge-
ometric Skinning with Approximate Dual Quaternion Blending. ACM
Trans. Graph. 27, 4 (Nov. 2008). 2, 3

[Khr21] THE KHRONOS GROUP INC.: Vulkan 1.2.169 - A Specification,
2021. 2

[KISS15] KEINERT B., INNMANN M., SÄNGER M., STAMMINGER M.:
Spherical Fibonacci Mapping. ACM Trans. Graph. 34, 6 (Oct. 2015). 2

[KPM16] KRAJCEVSKI P., PRATAPA S., MANOCHA D.: GST: GPU-
Decodable Supercompressed Textures. ACM Trans. Graph. 35, 6 (2016).
2

[Kub20] KUBISCH C.: Using Mesh Shaders for Professional Graphics,
2020. URL: https://developer.nvidia.com/blog/using-
mesh-shaders-for-professional-graphics/. 2

[Kv05] KAVAN L., ŽÁRA J.: Spherical Blend Skinning: A Real-Time
Deformation of Articulated Models. In Proceedings of the 2005 Sym-
posium on Interactive 3D Graphics and Games (New York, NY, USA,
2005), I3D ’05, Association for Computing Machinery, p. 9–16. 3

[KXW∗18] KWAN K. C., XU X., WAN L., WONG T., PANG W.: Pack-
ing Vertex Data into Hardware-Decompressible Textures. IEEE Trans-
actions on Visualization and Computer Graphics 24, 5 (2018). 2

[LCL10] LEE J., CHOE S., LEE S.: Compression of 3D Mesh Geometry
and Vertex Attributes for Mobile Graphics. JCSE 4 (09 2010). 2

[LDJ∗19] LUO G., DENG Z., JIN X., ZHAO X., ZENG W., XIE W.,
SEO H.: 3D Mesh Animation Compression Based on Adaptive Spatio-
Temporal Segmentation. I3D ’19, Association for Computing Machin-
ery. 3

[Mic20] MICROSOFT: DirectX-Specs Mesh Shader v0.85, 2020. URL:
https://microsoft.github.io/DirectX-Specs/d3d/
MeshShader.html. 2

[MJT14] MCALLISTER D. K., JOLY A., TONG P.: Lossless Frame
Buffer Color Compression, 2014. 2

[MKSS12] MEYER Q., KEINERT B., SUSSNER G., STAMMINGER M.:
Data-Parallel Decompression of Triangle Mesh Topology. Computer
Graphics Forum 31, 8 (2012). 2

[MLDH15] MAGLO A., LAVOUÉ G., DUPONT F., HUDELOT C.: 3D
Mesh Compression: Survey, Comparisons, and Emerging Trends. 2

[MSGS11] MEYER Q., SUSSNER G., GREINER G., STAMMINGER M.:
Adaptive Level-of-Precision for GPU-Rendering. In Vision, Modeling,
and Visualization (2011) (2011), The Eurographics Association. 2

[MSS∗10] MEYER Q., SÜSSMUTH J., SUSSNER G., STAMMINGER M.,
GREINER G.: On Floating-Point Normal Vectors. In Proceedings of
the 21st Eurographics Conference on Rendering (2010), EGSR’10, Eu-
rographics Association. 2

[MTLT89] MAGNENAT-THALMANN N., LAPERRIÈRE R., THALMANN
D.: Joint-Dependent Local Deformations for Hand Animation and Ob-
ject Grasping. In Proceedings on Graphics Interface ’88 (CAN, 1989),
Canadian Information Processing Society, p. 26–33. 2, 3

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS S., OL-
SON T.: Adaptive Scalable Texture Compression. In Proceedings
of the Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics (2012), Eurographics Association. 2

[NVB∗20] NOORDSIJ L., VLUGT S., BAMAKHRAMA M., AL-ARS Z.,
LINDSTROM P.: Parallelization of Variable Rate Decompression through
Metadata. In 2020 28th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP) (2020), pp. 245–252.
2

[OBGB11] OLANO M., BAKER D., GRIFFIN W., BARCZAK J.: Variable
Bit Rate GPU Texture Decompression. In Proceedings of the Twenty-
Second Eurographics Conference on Rendering (2011), Eurographics
Association. 2

[PBCK05] PURNOMO B., BILODEAU J., COHEN J. D., KUMAR S.:
Hardware-Compatible Vertex Compression Using Quantization and
Simplification. HWWS ’05, Association for Computing Machinery. 2

[Per12] PERSSON E.: Creating vast game worlds: Experiences from
avalanche studios. In ACM SIGGRAPH 2012 Talks (2012), SIGGRAPH
’12, Association for Computing Machinery. 1

[PKJ05] PENG J., KIM C.-S., JAY KUO C.-C.: Technologies for 3D
Mesh Compression: A Survey. Journal of Visual Communication and
Image Representation 16, 6 (2005). 2

[PLS12] POOL J., LASTRA A., SINGH M.: Lossless Compression of
Variable-Precision Floating-Point Buffers on GPUs. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (2012), I3D ’12, Association for Computing Machinery. 2

[RB20] ROUSSEAU S., BOUBEKEUR T.: Unorganized Unit Vectors Sets
Quantization. Journal of Computer Graphics Techniques (JCGT) 9, 3
(2020). 2

[SLK20] SAKHARNYKH N., LASALLE D., KARSIN B.: Opti-
mizing Data Transfer Using Lossless Compression with NVIDIA
nvcomp, 2020. URL: https://developer.nvidia.com/
blog/optimizing-data-transfer-using-lossless-
compression-with-nvcomp/. 2

[SLY20] SEILER L., LIN D., YUKSEL C.: Compacted CPU/GPU Data
Compression via Modified Virtual Address Translation. Proc. ACM
Comput. Graph. Interact. Tech. 3, 2 (Aug. 2020). 2

[SNB07] SANDER P. V., NEHAB D., BARCZAK J.: Fast Triangle Re-
ordering for Vertex Locality and Reduced Overdraw. ACM Trans. Graph.
26, 3 (July 2007), 89–es. 6

[SSK05] SATTLER M., SARLETTE R., KLEIN R.: Simple and Efficient
Compression of Animation Sequences. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation (2005). 3

[SWR∗08] STRÖM J., WENNERSTEN P., RASMUSSON J., HASSEL-
GREN J., MUNKBERG J., CLARBERG P., AKENINE-MÖLLER T.:
Floating-Point Buffer Compression in a Unified Codec Architecture. In
Graphics Hardware (2008). 2

[Uni21] UNITY: QualitySettings.skinWeights, 2021. URL:
https://docs.unity3d.com/2021.1/Documentation/
ScriptReference/QualitySettings-skinWeights.html.
3

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

51

https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md
https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md
https://docs.cryengine.com/display/CEMANUAL/Biped+Rigging
https://docs.cryengine.com/display/CEMANUAL/Biped+Rigging
https://www.gdcvault.com/play/1024009/Simple-and-Powerful-Animation
https://www.gdcvault.com/play/1024009/Simple-and-Powerful-Animation
https://zlib.net/
https://zlib.net/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://microsoft.github.io/DirectX-Specs/d3d/MeshShader.html
https://microsoft.github.io/DirectX-Specs/d3d/MeshShader.html
https://developer.nvidia.com/blog/optimizing-data-transfer-using-lossless-compression-with-nvcomp/
https://developer.nvidia.com/blog/optimizing-data-transfer-using-lossless-compression-with-nvcomp/
https://developer.nvidia.com/blog/optimizing-data-transfer-using-lossless-compression-with-nvcomp/
https://docs.unity3d.com/2021.1/Documentation/ScriptReference/QualitySettings-skinWeights.html
https://docs.unity3d.com/2021.1/Documentation/ScriptReference/QualitySettings-skinWeights.html

B. Kuth, Q. Meyer / Vertex-Blend Attribute Compression

[ZDL∗14] ZHANG J., DENG B., LIU Z., PATANÈ G., BOUAZIZ S.,
HORMANN K., LIU L.: Local Barycentric Coordinates. 8

Appendix A: Base Index for Three Weights

We derive the base index sN(j) of Eq. (5) shown in the in the red
and yellow circles of Fig. 5a. The number of indices per row j is

l(j) =
⌊

2N−3i
2

⌋
and the total number of rows is

J(N) =
⌊
J̃(N)

⌋
=

⌊
2N +1

3

⌋
=


2
3 N if N ≡ 0 mod 3
2
3 N + 1

3 if N ≡ 1 mod 3
2
3 N− 1

3 if N ≡ 2 mod 3.

(7)

The base index of each row is

sN(j) =
j−1

∑
i=0

l(j) =
j−1

∑
i=0

⌊
2N−3i

2

⌋
Since

⌊ a
b
⌋
= 1

b (a−a mod b), we get

sN(j) =
1
2

 j−1

∑
i=0

(2N−3i)−
j−1

∑
i=0

(2N−3i) mod 2︸ ︷︷ ︸
0,1,0,1,...


= −3

4
j2 +

3
4

j+ jN− 1
2

⌊
j
2

⌋
︸ ︷︷ ︸

0
2 ,

0
2 ,

1
2 ,

1
2 ,

2
2 ,

2
2 ,...

=

⌊
−3

4
j2 +

1
2

j+ jN +
1
4

⌋
= bs̃N(j)c (8)

= −3
4

j2 +
1
2

j+ jN +Γ with Γ =

{
1
4 , j is odd
0, else.

(9)

Eq. (8) suits code, Eq. (9) derivations, and s̃N(j) root finding.

Appendix B: Number of Indices per Triangle

For the triangle sample count S(N) := sN(J(N)) of Eq. (6), we have
three cases, from which we infer the cases of Eq. (9).

Case 1: N ≡ 0 mod 3⇒ J ≡ 0 mod 2

sN(J(N)) =−3
4

(
2
3

N
)2

+
1
2

(
2
3

N
)
+

(
2
3

N
)

N =
1
3

N2 +
1
3

N.

Case 2: N ≡ 1 mod 3⇒ J ≡ 1 mod 2

sN(J(N)) =−3
4

(
2
3

N +
1
3

)2

+
1
2

(
2
3

N +
1
3

)
+

(
2
3

N +
1
3

)
N +

1
4

=
1
3

N2 +
1
3

N +
1
3
.

Case 3: N ≡ 2 mod 3⇒ J ≡ 1 mod 2

sN(J(N)) =−3
4

(
2
3

N− 1
3

)2

+
1
2

(
2
3

N− 1
3

)
+

(
2
3

N− 1
3

)
N +

1
4

=
1
3

N2 +
1
3

N.

We condense these cases to

S(N) := sN(J(N)) =

{
1
3 N2 + 1

3 N + 1
3 ifN ≡ 1 mod 3

1
3 N2 + 1

3 N else.

=

⌊
1
3

(
N2 +N + τ

)⌋
,with τ ∈ [1,3] .

Appendix C: Base Index for Four Weights

For 4D weights, we stack triangles and add their respective sample
count (cf. Fig. 5b). The k-th triangle has N−2k samples at its bot-
tom row and total of S(N− 2k) samples. Summing them up yields
the base index of the k-th triangle (red and green circles in Fig. 5b):

u(k) =
k−1

∑
i=0

S(N−2i) =
k−1

∑
i=0

1
3

(
N2−4Ni+4i2 +N−2i+1

)
︸ ︷︷ ︸

ω


=

1
3

k−1

∑
i=0

ω− 1
3

k−1

∑
i=0

ω mod 3︸ ︷︷ ︸
rN(k)︸ ︷︷ ︸

rN(k)

=
1
9

[
3N2k−6Nk2 +9Nk+4k3−9k2 +6k−3rN(k)

]
. (10)

We can show that

rN(k) =


1,0,1; 1,0,1; 1,0,1; . . . , if N ≡ 0 mod 3
0,1,1; 0,1,1; 0,1,1; . . . , if N ≡ 1 mod 3
1,1,0; 1,1,0; 1,1,0; . . . , if N ≡ 2 mod 3,

rN(k) =


0,1,1; 2,3,3; 4,5,5; . . . , if N ≡ 0 mod 3
0,0,1; 2,2,3; 4,4,5; . . . , if N ≡ 1 mod 3
0,1,2; 2,3,4; 4,5,6; . . . , if N ≡ 2 mod 3

=
⌊

2k+νN
3

⌋
,νN =


1 if N ≡ 0 mod 3
0 if N ≡ 1 mod 3
2 if N ≡ 2 mod 3.

To avoid flooring, we write

rN(k) =
2k+νN − (2k+νN) mod 3

3
=

2k+η(k)
3

,

η(k) =


1− (2k+1) mod 3 if N ≡ 0 mod 3
2k mod 3 if N ≡ 1 mod 3
2− (2k+2) mod 3 if N ≡ 2 mod 3.

Inserting into Eq. (10) yields:

u(k) =
1
9

[
3N2k−6Nk2 +9Nk+4k3−9k2 +6k+η(k)

]
=

1
9

Y +
1
9

η(k).

Note that η(k)∈ {−2; . . . ;2} and Y is integer. u(k) must be integer,
so 1

9 η(k) serves as corrective to make 1
9Y integer: If η(k) = 2, then

1
9Y is 2

9 away from being integer, if η(k) = 1, then 1
9Y is 1

9 away
from being integer, etc. All five cases can be subsumed under

u(k)=
⌊

1
9

Y +
2
9

⌋
=

⌊
1
9

[
3Nk (N−2k+3)+ k(4k2−9k+6)+2

]⌋
.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

52

