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Figure 1: Screenshots from our virtual reality application that uses ray marching to visualize volumetric medical datasets and allows real-

time changes to the transfer function, while rendering at the native refresh rate of a head mounted display.

Abstract

Visualizing volumetric medical datasets in a virtual reality environment enhances the sense of scale and has a wide range

of applications in diagnostics, simulation, training, and surgical planning. To avoid motion sickness, rendering at the native

refresh rate of the head-mounted display is important, and frame drops have to be avoided. Despite these strict requirements and

the high computational complexity of direct volume rendering, it is feasible to provide a comfortable experience using volume

ray casting on modern hardware. Many implementations use precomputed gradients or illumination to achieve the targeted

frame rate, and most rely on acceleration structures, such as distance maps or octrees, to speed up the ray marching shader.

With many of these techniques, the opacity of voxels is baked into the precomputed data, requiring a recomputation when the

opacity changes. This makes it difficult to implement features that lead to a sudden change in voxel opacity, such as real-time

transfer function editing, transparency masking, or toggling the visibility of segmented tissues.

In this work, we present an empty space skipping technique using an octree that does not have to be recomputed when the

transfer function is changed and performs well even when more complex transfer functions are used. We encode the content

of the volume as bitfields in the octree and are able to skip empty areas, even with transfer functions that cannot efficiently be

represented as a simple range of voxel values. We show that our approach allows arbitrarily editing of the transfer function in

real-time while maintaining the target frame rate of 90 Hz.

CCS Concepts

• Computing methodologies → Virtual reality; Rendering; Ray tracing; • Human-centered computing → Virtual reality;
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1. Introduction

Realistic visualizations of 3D medical data, such as Computed To-
mography (CT) or Magnetic Resonance (MR) images, are impor-
tant for diagnosis and surgical planning. Direct volume rendering
(DVR) techniques, such as volume ray casting [Lev88] or shear
warping [CU92], can be used to render an image directly from the
volumetric dataset instead of segmenting the relevant tissue and
generating surface mesh models for rasterization. By defining a
transfer function (TF), the user is able to control the visibility, the
color, and possibly other rendering parameters of different tissue
types. Combined with suitable lighting and shading models, vol-
ume ray casting can achieve excellent image quality and is widely
used in many medical applications [KPV14; SMBT03; FZG*19].
Real-time interactive volume rendering has been used in a clini-
cal setting for over 25 years [JHB*96], although the image quality
and rendering performance has improved considerably since then,
thanks to increasing computing power. Hardware accelerated ray
casting further improved the performance and user experience of
these systems. A typical CT or MR image used for diagnosis con-
sists of a single 16-bit channel and up to 10003 voxels. Therefore,
in this work we focus on an in-core setting, where the entire dataset
fits into GPU memory.

Since the recent wide-spread availability of cost-effective
consumer-grade virtual reality (VR) hardware, it is now possible
to visualize volumetric datasets in a virtual environment while pro-
viding a comfortable and immersive user experience. There are sev-
eral benefits of such a VR application. Surgical planning in VR has
been shown to benefit from an increased accuracy of the surgical
plans and to improve the surgical outcome [VLA*03; SGR*02].
Through the enhanced sense of depth and scale, surgeons can get
an improved spatial visualization of the pathological tissue and gain
a better understanding of the geometry of complex fractures or de-
formities [SKR*08]. Furthermore, VR applications provide a more
intuitive and direct user interface. Instead of indirectly controlling
the view and move objects using a mouse, the user can naturally
move through the virtual environment and interact with objects via
hand tracking or motion-tracked controllers.

VR hardware manufacturers generally recommend targeting the
native refresh rate of the head mounted display (HMD) for the
best user experience [Ant15]. Since current HMDs do not support
adaptive refresh rates, low frame rates can quickly result in nausea
and a subpar user experience [KCDM19; SSB*20]. Although asyn-
chronous timewarp [BG16] or asynchronous reprojection [Vla16]
can alleviate these issues during a temporary performance drop,
they cause rendering artifacts and should not be relied upon in gen-
eral.

To achieve the targeted performance, a number of different opti-
mizations can be implemented in a volume renderer. Some of these
optimizations trade visual quality for better performance, for in-
stance by allocating fewer rays to the outer periphery using variable
rate shading or foveated rendering in conjunction with eye track-
ing [PSK*16]. Other optimization approaches involve precomput-
ing certain aspects of the volume rendering workload, such as light-
ing or shading related data, thereby improving the run-time perfor-
mance.

Empty space skipping (also know as space leaping) is an opti-

mization that is employed by most ray marching renderers. Gen-
erally, it involves generating an acceleration structure that stores
some information about empty regions within the volume. This in-
formation is used during ray marching to efficiently identify seg-
ments along the ray that can safely be skipped without missing any
opaque voxels. Since the selected TF directly affects the opacity of
every voxel, some acceleration structures have to be recomputed
when the TF is changed. Depending on the chosen method and
dataset, this cannot be done in a synchronous manner without af-
fecting the rendering performance. This is especially an issue in
VR, where a low performance is detrimental to user experience.
For this reason, a transfer-function-dependent empty space skip-
ping method is not an ideal choice when the frame budget is limited
and real-time modifications of the TF are desired.

This work presents an empty space skipping method that uses an
acceleration structure which does not depend on the currently se-
lected TF. We encode the content of the volume using bitfields at
the nodes of an octree. The bitfields are a compact representation
of the voxel values found in each octant and are computed directly
from the raw data. The selected TF is encoded similarly in a bit-
field. Whether an octant contains any visible voxels with a given
TF can be verified by a single binary operation on the correspond-
ing bitfields. A change in the TF only requires updating a single
uniform variable in the ray marching shader and does not incur a
noticeable performance penalty. This allows the user to change the
TF on the fly, easily visualizing different tissue types and gaining
more context about the relevant anatomy.

2. Related work

The efficient rendering of volumetric data has been studied ex-
tensively, and there is a vast collection of work published in this
area. Many approaches explore different techniques to group ho-
mogeneous areas of the volume, separate transparent from non-
transparent voxels, and skip the transparent ones. To do this ef-
ficiently, most approaches rely on acceleration structures that are
precomputed during the initial loading of a dataset.

Lacroute et al. describe a fast classification algorithm that uses a
min-max octree and a multi-dimensional summed area table to effi-
ciently classify voxels based on opacity [LL94]. An opacity change
in the TF requires a relatively inexpensive update of the summed
area table. Although this technique was used in conjunction with
shear warp rendering and run-length encoding of transparent and
non-transparent voxel runs along the scan lines, similar hierarchi-
cal acceleration structures can be used for volume ray casting as
well [Lev90; DH92; KWPH06; WFKH07]. While a min-max oc-
tree does not depend on the selected TF, complex TFs with multiple
disconnected non-transparent regions cannot accurately be repre-
sented by a single range, potentially resulting in unnecessary sam-
pling of the dataset. Ljung et al. use a blockwise sample value dis-
tribution for adaptive sampling density selection and thereby as a
form of empty space skipping [LLYM04]. This approach is simi-
lar to ours, but uses a segmented block histogram in a flat block-
ing structure and focuses on data compression and level-of-detail-
based memory management of out-of-core data.

Distance maps are another popular type of acceleration structure
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for ray marching [SK00; EI07]. These are 3D textures that store
the Euclidian or Chebyshev distance to the nearest non-transparent
voxel. Sampling the distance map during ray marching returns a
distance that can safely be skipped without missing visible vox-
els. Due to the efficiency of these queries, distance maps generally
outperform hierarchical structures with regards to rendering per-
formance, but take a longer time to generate. Since distance maps
have to be regenerated when voxel transparencies change, they are
not ideal if the TF is changed frequently.

Deakin et al. use an occupancy map to speed up the generation
of the distance map and achieve interactive TF editing with up-
date times between 10 and 37 ms, depending on dataset complex-
ity [DK20]. Considering the already high GPU usage of volume
rendering and the typical time budget of 8 ms to 12 ms per frame
in VR software, this would require an asynchronous update of the
distance map to avoid frame drops, delaying the response to user
feedback.

Another common technique is object-order empty space skip-
ping, where a coarse bounding geometry of visible voxels is raster-
ized into depth buffers, which are used to clamp the rays to the visi-
ble areas of the volume [ASK92]. Hadwiger et al. use an occupancy
histogram tree to generate the bounding geometry and rasterize it
into per-pixel linked lists by merging consecutive segments of the
same occupancy. This allows an efficient traversal of the volume
and skipping of empty segments, however, both the histogram tree
as well as the bounding geometry have to be recomputed after a TF
change. Nysjo et al. combine volume ray casting with object-order
rendering and exploit the spatial and temporal coherence between
the eyes in a VR application [NMN19]. Primary rays are cached
as brick meshes, which are rasterized in back-to-front order. A bi-
nary occupancy clipmap is used to avoid redundant bricks. This ap-
proach is able to maintain 90 FPS while editing the opacity thresh-
old, but takes about 32 frames to converge after switching between
distinct isovalues or after quick head movements.

3. Methods

Our empty space skipping approach is based on an octree that stores
a hierarchical and compact representation of the raw volume data.
We use this data structure during ray marching to efficiently skip
empty areas within the volume. The volume renderer was imple-
mented as an extension of the standard rendering pipeline of the
Unity Engine, and the shaders were written in DirectX 11 style
HLSL. In the following sections, we describe the generation of the
octree, the implementation of TF editing and the ray marching pro-
cess.

3.1. Voxel data histogram

To build an octree, we require a compact description of the voxel
values found within a block of the volume. First, we define a range
of voxel values that we want to be able to represent and later vi-
sualize. By default, this range is automatically set to the minimum
and maximum voxel values found within the entire dataset. Option-
ally, the visualization range can be modified manually by trimming
voxel values that are irrelevant to the visualization or that we are

Figure 2: An illustration of the octree generation process, simpli-

fied to 2D. In the upper right, the subdivision of the raw volume

data into blocks of 43 is shown. To generate the leaf layer of the

octree, we process each of these blocks individually, as shown in

the upper left. We map each voxel to the index of a voxel value

bin and set the corresponding bit of the block’s bitfield to 1. Once

the leaf nodes have been computed, we compute the higher octree

layers consecutively. The values of the nodes in higher layers are

computed by applying a bitwise OR to the values of the 8 corre-

sponding nodes in the next lower layer.

not interested in. Changing the range requires recomputing the en-
tire octree and therefore should be chosen such that all voxel values
of interest are included.

Once the visualization range is defined, it is split into a number of
equal-sized bins. Therefore, each bin corresponds to a consecutive
subrange of the overall visualization range. For any given block of
the volume, we can store a compact approximation of the voxel
values contained within that block in a bitfield, as visualized in the
upper part of Figure 2. Each bit in the bitfield corresponds to a
single bin of the visualization range. A bit is set to 1 if the block
contains any voxel values within the subrange of the corresponding
bin, otherwise the bit is set to 0.

For a straightforward storage of the octree data as a 3D texture
on the GPU, it is desirable to limit the byte size of each bitfield
to the maximum available size of a single texel. In the case of a
4-bytes-per-channel texture with 4 channels, e.g. RGBA32UI, this
would give us a maximum of 128 bits per octree node. Alterna-
tively, multiple 3D textures, compute buffers or a linked list data
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Figure 3: Schematic illustration of a transfer function that could

be applied to an MR scan to visualize the blood vessels in the brain.

The horizontal axis corresponds to the voxel values within the visu-

alization range and the overlaid color gradient shows the output of

the transfer function. The vertical axis and the blue lines indicate

the voxel opacity. The binary representation of the voxel opacities

is shown below the color gradient for an exemplary bitfield width

of 8 bits.

structure could be used for a higher resolution representation of the
block content. However, due to diminishing returns with increas-
ing bitfield widths, it is unlikely that more than 128 bits per node
would improve the performance. In Section 4.3, we go into more
detail about the optimal bin size.

3.2. Transfer function

The TF maps the voxel values within the selected visualization
range to color and opacity. The user can edit the TF by placing and
moving a set of control points on a color gradient editor. Whenever
the TF is changed, we first discretize it with a fixed resolution. This
allows us to store the TF in a simple 1D lookup table or a 2D pre-
integrated lookup table [EKE01], which can be used during the ray
marching stage to shade visible voxels.

In addition to the compact representation of the content of blocks
of the dataset, we also need a similar representation of the currently
configured TF. Similarly to the method described in Section 3.1, we
can also generate a bitfield of the same length that encodes a TF.
Instead of processing the content of a block of voxels, we determine
which bits to set by examining the transparency of the TF. In this
case, each bit corresponds to a subrange of the discretized TF, as
shown in Figure 3. If all color values within a subrange have an
opacity of 0, we set the corresponding bit to 0, otherwise to 1. The
resulting bitfield is then used as a uniform shader variable during
ray marching.

3.3. Octree generation

Our approach for empty space skipping is a modification of the
classic octree-based approach. When loading a new dataset, we
generate an octree representation of the voxel data in a one-time
automatic preprocessing step. The computation of this octree struc-
ture is implemented in a compute shader and takes around 5 ms for
a dataset with a resolution of 5123 on an AMD Radeon RX 6800
XT GPU. A complete benchmark is provided in Section 4. Each

node in the octree corresponds to a block of the dataset with the root
node encapsulating the entire volume. For every node, we compute
a bitfield that describes the voxel values found in the corresponding
block of data, as described in 3.1.

We compute the octree in a depth-first bottom-up fashion. Start-
ing at the leaf nodes of the octree, we iterate over all voxel values
within the associated block of data and generate the correspond-
ing bitfield representation. Each block is processed in parallel in a
single dispatch of the compute shader. The computed bitfields are
stored in a 3D texture of appropriate channel count and size to fit
a bitfield into a single texel. Every texel in this texture corresponds
to a node of the lowest layer of the octree.

Once the first pass of the compute shader completes and all leaf
nodes of the octree have been processed, we continue with the in-
ternal nodes. An internal node has to represent all voxel values con-
tained within any of its children. This is easily achieved by taking
the bitwise OR of the bitfields of every child node, as shown in the
lower part of Figure 2. The result is equivalent to computing the
bitfield for the internal node from scratch. This process is repeated
for the remaining layers of the octree. We store the entire data struc-
ture in a single 3D texture with the required channel count and size
using a mipmap pyramid layout.

3.4. Ray marching

The ray marching part of our implementation is similar to other
octree-based empty space skipping methods. It is implemented as a
compute shader and is executed at the end of the rendering pipeline
after other objects in the scene have already been fully rendered. We
dispatch one thread for every pixel we want to render. Each thread
processes a single ray starting at the camera position, going through
the corresponding pixel of the image plane and possibly traversing
through the volumetric data. Before the ray marching stage, each
ray is transformed into the normalized texture space of the vol-
ume and clamped to its axis-aligned bounding box. Additionally,
the rays are further clamped by the near plane, user-controlled clip-
ping planes, and the scene depth information stored in the camera
depth texture.

At the start of the ray marching stage, we first need to deter-
mine which block the ray is currently in because the ray origin is
not necessarily on the boundary of the volume, for instance, if the
camera is inside the volume or a part of the volume has been cut off
by a clipping plane. We start at the highest level of the octree that
we want to take into account and determine which octant contains
the ray origin. If the octant is considered empty with the current
TF, the entire octant is skipped. Otherwise, we have to go one level
deeper in the octree until we find an empty block. If we reach the
lowest level of the octree without finding an empty block, we have
to march the ray through that block until the ray exits it.

During the entire ray marching stage, we keep track of the level
and the block of the octree that the ray is currently passing through.
Whenever we finish ray marching through a block and enter an
empty block, we have the possibility of going back to higher lev-
els of the octree and possibly skipping bigger octants at once. The
whole process is repeated until the ray completely passes through
the volume and exits on the other side.
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4. Results

For the evaluation of our empty space skipping approach, we con-
ducted a series of performance benchmarks with different datasets
and a wide range of rendering parameters. In a first step, we investi-
gated the effect of the different parameters of the bitfield octree on
the rendering performance and identified a set of parameters that
performed best for a variety of datasets. For a complete compari-
son, we also implemented other empty space skipping methods in
our ray marching shader and compared their performance to our
approach. Finally, we tested the performance of our approach in an
interactive VR application.

4.1. Datasets

Since our primary use case is in the medical field, we mostly used
CT and MR scans of the human body for our performance bench-
marks. This includes the Manix dataset [Osi05] containing a hu-
man head as well as the well-known Philips Aneurysm dataset. We
also tested a CT scan of a torso, which was rendered with a TF
highlighting the air inside the lungs, to evaluate any performance
differences in the presence of gaps in the TF. Similarly, we used an
MR scan of a head to visualize the blood vessels in the brain. This
requires the visibility of brain tissue to be turned off and causes an
opacity gap in the TF, as shown in Figure 3. Additionally, we used a
couple of well-known datasets that have been used in other volume-
rendering-related works, such as a scan of a kingsnake [dig03] and
of a stag beetle [GGK05].

4.2. Benchmark configuration

We ran our performance benchmarks on a standard Windows
10 workstation equipped with an Intel Core i7-9700K CPU @
3.60 GHz, 16 GB RAM, and an AMD Radeon RX 6800 XT GPU.
We identified a few render resolutions to be most frequently used
in related work ranging from 5122 to 21602. Although some earlier
HMDs (e.g. Oculus Rift CV1) had a resolution of around 12002

pixels per eye, more recent models (e.g. HP Reverb G2) have been
released with up to 21602 pixels per eye. Therefore, we decided
to perform our benchmarks with a rendering resolution of 21602

pixels. For better comparability with non-VR related research, we
report the performance when rendering just one eye. The reported
frame times can be doubled for a rough estimation of the perfor-
mance with a high resolution 4K HMD.

After loading the dataset, we generate the octree with the se-
lected parameters. For every dataset, we configured the scene so
that the entire volume was visible in the viewport while rotating
around the vertical axis through its center. After one second of
warm-up, we logged every frame delta time for a period of 10 sec-
onds while the dataset completed 2 full rotations. We report the
average frame times, as well as the slowest 1 percentile.

4.3. Octree parameters

In the first set of performance benchmarks, we focused on find-
ing ideal parameter sets for our bitfield octree approach. The main
parameters of the bitfield octree include the block size at the leaf

2
3

4
3

8
3

16
3

32
3

64
3

Leaf Block Size

0

4

8

12

16

F
ra

m
e

 T
im

e
 [

m
s
]

Aneurysm

8 16 32 64 128

Bitfield Width

2
3

4
3

8
3

16
3

32
3

64
3

Leaf Block Size

0

4

8

12

16

F
ra

m
e

 T
im

e
 [

m
s
]

Manix

2
3

4
3

8
3

16
3

32
3

64
3

Leaf Block Size

0

4

8

12

16

20

24

28

F
ra

m
e

 T
im

e
 [

m
s
]

Kingsnake

Figure 4: The ray marching performance using different configu-

rations of the bitfield octree. The vertical axes show the frame delta

time over a time span of 10 seconds while the dataset completed two

full rotations. The darker tint indicates the average frame times,

while the brighter tint shows the slowest 1 percentile. The ren-

dering resolution was set to 21602 pixels. Early ray termination

and gradient-based shading was deactivated. The horizontal axes

group the benchmark results by the block size at the lowest level of

the octree. The bar colors indicate the bitfield width used to repre-

sent the content of the blocks and the selected transfer function.

nodes, the width of the bitfields stored for each node, and the high-
est level to consider when traversing through the octree. To find the
optimal parameters, we performed a hyperparameter grid search
where we performed a benchmark with all possible combinations
of the above parameters. We considered block sizes in the range of
23 to 643 and bitfield widths of 8, 16, 32, 64 and 128. We also tested
all starting levels in the octree that were possible, given the number
of total octree levels with a particular configuration and dataset.

Leaf block size. Figure 4 shows the ray marching performance
achieved when starting the octree traversal at the root node and us-
ing different combinations of leaf block sizes and bitfield widths.
For the more complex and higher resolution datasets (e.g. king
snake) the optimal leaf block size was 43. Larger block sizes result
in a lower performance due to a coarser subdivision of the volume
and a less accurate representation of higher frequency details of the
dataset. This prevents skipping empty areas that are too small to
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(a) 43 leaf block size, 64 bits (b) 323 leaf block size, 64 bits

(c) 43 leaf block size, 16 bits (d) 323 leaf block size, 16 bits

Figure 5: Heatmaps of the number of iterations per ray used to

render the king snake dataset using different parameter sets for the

bitfield octree. The heatmaps were normalized by the upper limit of

allowed iterations (1024).

completely encompass an entire leaf block and leads to a higher
overall ray step count. The effect of the block size on the itera-
tion count can also be seen in Figure 5 by comparing the iteration
heatmaps of the test runs with different leaf block sizes.

While a finer subdivision of the volume allows rays to skip
smaller empty areas, it also exhibits diminishing returns as the
overhead of computing ray-block intersections reduces the perfor-
mance benefit of skipping blocks. For higher resolution datasets,
this overhead outweighs the performance gain with a leaf block
size of 23. For less demanding datasets (e.g. Aneurysm), the opti-
mal leaf block size was 23.

Bitfield width. Figure 4 also shows the performance when using
different bitfield widths for the octree. In the case of the Aneurysm
dataset, the performance difference is negligible. When rendering
the Manix dataset with a TF that only visualizes bony tissues, there
is a noticeable performance decrease with a bitfield width of 8 bits.
For the Kingsnake, our most challenging and highest resolution
dataset, a performance decrease can also be seen when using 16
bits.

The bitfield width determines how accurately the content of a
block of data can be represented in the octree. Additionally, it is
used as the resolution of the TF that is used to determine the visi-
bility of blocks as the rays march through the volume. The lowest
bitfield width that we tried separates the entire visualization range
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Figure 6: The ray marching performance with different initial oc-

tree levels. Early ray termination was disabled, the leaf block size

was set to 43 voxels, the bitfield width to 64 bits, and the render-

ing resolution to 21602 pixels. The vertical axis shows the aver-

age frame delta times over a time span of 10 seconds while the

dataset completed two full rotations. The horizontal axis indicates

how many levels of the octree are ignored for empty space skipping,

starting at the root. Solid lines correspond to using bidirectional

traversal through the octree levels and resuming at the level of the

previous check. Dashed lines show the performance of only using

top-down traversal and always starting at the initial level for every

emptiness check.

into only 8 bins. A low number of bins can result in voxel values
corresponding to different tissue types to be assigned to the same
bin. Voxel values that are assigned to the same bin cannot be dif-
ferentiated for the purpose of empty space skipping. If any of them
are set to be visible by the TF, the entire bin has to be marked as
containing visible data. This can result in blocks which cannot be
skipped despite containing no visible voxels given the current TF.
This issue can be mitigated by increasing the bitfield width and
thereby increasing the resolution of the TF’s binary representation
and improving the ability of the octree to differentiate between tis-
sue types with similar voxel values.

The effect of using different bitfield widths on the ray step count
can also be seen in the iteration heatmaps in Figure 5. Comparing
heatmap (a) to (c) and heatmap (b) to (d) demonstrates that fewer
iterations are needed when the octree can store more detailed infor-
mation about the content of each block.

Initial octree level. The performance can further be improved by
ignoring the highest levels of the octree during ray marching. Fig-
ure 6 shows how the performance is affected by omitting an in-
creasing number of levels, starting at the root. Assuming that all
datasets that we want to visualize contain at least some visible vox-
els, the root node of the octree will always evaluate to not-empty
and therefore can safely be ignored. Similarly, since most datasets
have their main point of interest close to the center of the volume,
there is a high chance that all octants of the second level will also
contain something visible. Therefore, the first two octree levels can
be ignored to avoid unnecessary octree sampling and emptiness
checks. Depending on the dataset and the selected TF, ignoring an
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additional level of the octree can further increase the performance.
However, if too many of the higher levels are ignored and only the
smaller blocks of the lower levels are used for empty space skip-
ping, the performance can start to degrade. This is most noticeable
the case of sparser datasets, such as the Aneurysm dataset, where
large empty areas cannot efficiently be traversed without relying on
the higher octree levels to skip larger empty blocks.

In addition to using bidirectional traversal through the octree lev-
els, we also evaluated the performance of reducing the branching
in the octree traversal by only allowing top-down traversal. With
top-down traversal, we always start at the root of the octree (or the
initial octree level) for every emptiness query and travel down the
tree to search for an empty block. We do not resume the search on
the same level of the octree for a subsequent query, because with a
top-down only traversal that would prevent rays from skipping big-
ger blocks after passing by a visible structure in close proximity.
With bidirectional traversal, we resume successive queries on the
same level and allow checking higher levels if an empty block was
found to potentially find a bigger empty block. When a high num-
ber of octree levels were ignored, the top-down traversal slightly
outperformed the bidirectional implementation, due to a simpler
shader. However, the overall best performance was reached with
bidirectional traversal and by skipping 2 or 3 octree levels for most
datasets.

4.4. Performance comparison

To compare our approach with other empty space skipping meth-
ods, we implemented three additional variants and conducted fur-
ther performance benchmarks. First, we implemented the min-max
version of the octree [LL94], where the minimum and maximum
voxel values within each octant are stored. During ray marching,
these values are compared with the minimum and maximum non-
transparent voxel value, as defined by the current TF, and blocks
are skipped if these ranges do not overlap. We also implemented a
simple Boolean octree variant, which uses precomputed, transfer-
function-dependent, binary occupancy flags for each octree node.
This method requires a simple sampling of the octree to determine
the emptiness of a block, but has to be recomputed if the visibil-
ity of voxels changes. Additionally, we compare these octree-based
methods with a distance-map-based method. The Euclidean dis-
tance map is a 1-channel 3D texture where each voxel stores the
length of the longest possible space leap without skipping any visi-
ble voxels, i.e., the radius of the biggest sphere centered on a given
voxel that only contains invisible voxels. We applied a downsam-
pling of 1

4 to the distance map, as using a higher resolution did not
improve the performance during our testing.

Table 1 shows the results of our performance comparison bench-
marks. For every method and dataset, we measured the perfor-
mance with different shader configurations. We separately report
the ray marching performance with and without early ray termina-
tion, with only minimal shading, using a simple TF color lookup.
We measured the performance impact of applying a physically-
based shading model, derived from the Unity Standard Shader,
which uses the Disney model [Bur12] for the diffuse component,
the GGX model [WMLT07] for the specular component with a
Smith Joint GGX visibility term [Hei14] and Schlick’s approxima-

tion of the fresnel factor [Sch94]. Finally, we benchmarked the per-
formance of the complete rendering pipeline, including real-time
ray-marched shadows for a spotlight with a shadow map resolution
of 10242 pixels.

For the octree-based methods, we report the frame times that
were achieved with the best performing parameters, and we report
these parameters as well. Additionally, we list the generation dura-
tion for each acceleration structure.

For all configurations that we tested, the distance-map-based
empty space skipping resulted in the best rendering performance,
with about 10–160% more frames rendered per second, compared
to the octree-based methods. The generation of the distance map
took about 2.5× longer than the octree generation for the simpler
datasets and up to 20× longer for the higher resolution datasets.
Comparing the octree-based methods with each other, there is a
consistent, but minor performance gain with the simple Boolean oc-
tree, presumably due to the slightly less complex emptiness check.
The min-max octree and the bitfield octree showed almost identi-
cal performance for the less challenging datasets and TFs. For more
complex TFs, containing regions with alternating opacity, such as
the example in Figure 3, the bitfield octree was up to 114% faster.
This can be seen in the results for the Head MRI and especially in
the Lungs dataset.

Considering that both the distance map and the Boolean octree
have to be recomputed when voxel opacities change and the perfor-
mance advantage of the bitfield approach over the min-max octree
for more detailed TFs, our method seems to be an ideal acceleration
technique when the editing of TFs in real-time is desired. Although
the generation duration of the Boolean octree was less than 10 ms
for the lower resolution datasets, it would still consume a consider-
able part of the limited time budget per frame in a VR application,
which could otherwise be spent on improving the image quality
with supersampling, and more accurate shading and lighting.

4.5. Real-time transfer function editing

The computational overhead of arbitrarily changing the TF is neg-
ligible. We only need to compute the bitfield representation of the
TF and update a uniform shader variable to change the visibility
of voxels. Additionally, we need to update the albedo color lookup
texture, which is required for alpha testing and shading, irrespec-
tive of which empty space skipping method is used. If the TF is
defined by a list of control points, we only need to upload a mini-
mal amount of data to the GPU and can generate the lookup texture
in a compute shader.

To demonstrate this benefit of our approach, we prepared two
separate TFs for our datasets and continuously interpolated be-
tween them. Before rendering each frame, we computed the linear
interpolation between the two TFs, using a time-based sine wave
as the interpolant, generated the lookup table on the CPU, and up-
loaded it to the GPU. Figure 1 shows three exemplary states of
this interpolation for the Manix dataset. We were able to render
the above example at the native refresh rate (90 Hz) and default
rendering resolution (2016× 2240 per eye, before lens distortion
correction) of an HTC Vive Pro, using an AMD Radeon RX 6800
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Distance Boolean Min-Max Bitfield
Dataset Description None Map Octree Octree Octree

Marching Only [ms] 12.05 5.98 7.32 15.59 7.91
+ Early Exit [ms] 7.83 2.76 4.50 10.16 4.75
+ Shading [ms] 12.47 7.54 8.20 13.41 8.52
+ Lighting [ms] 14.38 8.21 9.07 15.14 9.46

Generation [ms] 59.2 7.7 7.1 7.0
Lungs Leaf Block Size 23 43 23, 32 bits
512×512×690 Initial Level 5 6 5

Marching Only [ms] 10.90 7.03 9.81 14.82 11.28
+ Early Exit [ms] 5.41 1.51 2.33 3.11 2.56
+ Shading [ms] 7.66 3.89 4.37 4.83 4.59
+ Lighting [ms] 8.61 4.34 4.93 5.57 5.24

Generation [ms] 39.6 9.4 7.9 5.3
Head MRI Leaf Block Size 23 43 23, 128 bits
512×640×184 Initial Level 3 3 3

Marching Only [ms] 6.41 0.94 2.46 2.47 2.46
+ Early Exit [ms] 6.32 0.82 2.22 2.24 2.24
+ Shading [ms] 6.78 1.18 2.33 2.34 2.35
+ Lighting [ms] 7.36 1.33 2.54 2.56 2.57

Generation [ms] 14.0 5.2 5.2 5.2
Aneurysm Leaf Block Size 23 23 23, 32 bits
256×256×256 Initial Level 3 3 3

Marching Only [ms] 9.17 2.59 4.27 4.39 4.35
+ Early Exit [ms] 6.48 0.92 1.72 1.74 1.74
+ Shading [ms] 7.81 2.27 2.59 2.67 2.63
+ Lighting [ms] 9.40 2.51 2.94 3.00 2.97

Generation [ms] 54.6 4.2 3.5 4.4
Manix Leaf Block Size 23 43 23, 32 bits
512×446×459 Initial Level 3 3 3

Marching Only [ms] 19.31 2.07 2.82 2.87 2.85
+ Early Exit [ms] 17.20 0.69 1.28 1.30 1.29
+ Shading [ms] 18.58 1.29 1.63 1.65 1.64
+ Lighting [ms] 22.49 1.50 1.91 1.95 1.93

Generation [ms] 118.2 12.0 12.1 9.8
Beetle Leaf Block Size 43 43 43, 32 bits
832×832×494 Initial Level 2 2 2

Marching Only [ms] 23.82 2.35 3.26 3.39 3.45
+ Early Exit [ms] 21.58 1.29 2.33 2.39 2.41
+ Shading [ms] 23.38 2.46 2.96 3.04 3.06
+ Lighting [ms] 29.87 2.75 3.39 3.45 3.51

Generation [ms] 350.4 18.3 23.5 23.7
Kingsnake Leaf Block Size 23 43 43, 64 bits
1024×1024×795 Initial Level 3 3 3

Table 1: Performance comparison for rendering a collection of datasets using different empty space skipping methods. We report the average

frame delta time over a period of 10 seconds, while the dataset completed 2 full rotations. The slowest 1 percentile of frames took on average

27% longer to render and are provided as supplementary material. We run the benchmarks on an AMD Radeon RX 6800 XT GPU and set

the rendering resolution to 21602 pixels. For every method and dataset, we measured the performance with various shader configurations.

Marching Only: The performance achieved for ray marching only, merely using transfer function sampling for shading and disabling early

ray termination. Early Exit: Ray marching performance with early ray termination enabled. Shading: The performance with gradient-based

shading and a single light source. Lighting: The final performance with real-time ray-marched shadows for a single spotlight with a shadow

map resolution of 10242 pixels. We report the generation time for the octrees and distance maps. Additionally, we list the best performing

parameters for all octree-based methods that were used for the ray marching only results.
© 2021 The Author(s)

Eurographics Proceedings © 2021 The Eurographics Association.

8



B. Faludi et al. / Transfer-Function-Independent Acceleration Structure forVolume Rendering in Virtual Reality

0 5 10 15 20

Time [s]

0

2

4

6

8

10

12

F
ra

m
e
 T

im
e
 [
m

s
]

Figure 7: Frame time plot of rendering the Manix dataset in VR

at a resolution of 2016×2240 per eye using an AMD Radeon RX

6800 XT GPU. Head tracking was disabled and the camera was

rotated around the dataset twice in 20 seconds at a distance of

75 cm from its center. The red dashed line marks the frame bud-

get of 11.1 ms per frame.

XT GPU. No foveated rendering was used, but early ray termina-
tion was enabled. A video recording is provided as supplementary
material. Figure 7 shows the frame time plot of this example. Note
that the fluctuations in performance are not due to the updating of
the TF, but due to the changing rendering complexity of different
points of view and different amounts of semi-transparent voxels as
the TF is interpolated.

5. Discussion

When compared to other empty space skipping methods, our ap-
proach provides several benefits. Changing the TF or updating the
positions of the volume, camera and light sources does not require
a regeneration of any acceleration structures or caches. Many other
approaches rely on distance maps, precomputed node values in an
octree, or boundary meshes that have to be partially or fully re-
computed when the visibility of any voxel changes. While it is pos-
sible to execute these updates in the background or to distribute
the workload of recomputation over many frames, this leads to a
delayed response to user input and often results in temporarily re-
duced rendering quality or performance.

Our method only needs to update a single uniform shader vari-
able and a small lookup table to reflect the updated visibility of
voxels when the TF is modified. Updating the bitfield representa-
tion of the TF is a negligible amount of work and the generation of
the lookup texture can be implemented efficiently on the GPU. This
allows the user to edit the TF while wearing an HMD and imme-
diately see the results without a performance drop or degradation
of visual quality. Being able to change the TF with no noticeable
performance hit not only ensures that the user does not experience
frame drops and motion sickness, but also provides a new way to
explore a medical dataset by quickly changing the visible structures
and obtaining a better understanding of the patient’s anatomy.

The independence of our acceleration structure from the TF pro-
vides flexibility and easy extensibility for additional features. For
instance, extending the volume renderer to apply different TFs on
either side of a clipping plane is trivial, since we only need to add a
second bitmask and lookup table for the alternate TF and can reuse
the same octree.

Segmenting different areas of the volume and the ability to se-
lectively hide any segment is a common requirement in medical

applications. Automatic segmentation of up to 125 distinct bones
has been shown to be feasible with the help of 3D segmentation
networks [SHR*20]. Our approach could be extended to support
this use case with a second octree of the same structure and up to
128 bits per node, which encoded the segmentation layers, instead
of voxel value ranges. Toggling the visibility of segments would
have a similarly low performance impact as changing the TF and
hidden segments would be skipped efficiently.

6. Conclusions

We presented an acceleration method for volume ray marching that
allows changing the TF in real-time with no noticeable perfor-
mance impact in a VR application. While an empty space skipping
implementation with a distance map can provide better rendering
performance, it requires a full recomputation after the TF opacity
is changed. Our approach outperforms the min-max octree method
for TFs that contain intermittent opacity values, which can be used
to visualize otherwise hidden structures, such as the air inside the
lungs. Such TFs are also helpful when rendering MR scans, where
tissue types can map to widely different voxel values, depending
on the MRI sequence used. In future work, we want to extend our
approach to support toggling the visibility of segments in a la-
beled dataset and efficiently skip hidden segments. We also want
to explore the possibility of combining our empty space skipping
method with object-order rendering methods, similarly to Sparse-
Leap [HAB*18] or RayCaching [NMN19], to further improve the
rendering performance without sacrificing the flexibility of TF in-
dependent acceleration.
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[EI07] ES, ALPHAN and IŞLER, VEYSI. “Accelerated regular grid traver-
sals using extended anisotropic chessboard distance fields on a parallel
stream processor”. Journal of Parallel and Distributed Computing 67.11
(2007). ISSN: 07437315. DOI: 10.1016/j.jpdc.2007.06.011 3.

[EKE01] ENGEL, KLAUS, KRAUS, MARTIN, and ERTL, THOMAS. “High-
quality pre-integrated volume rendering using hardware-accelerated
pixel shading”. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

workshop on Graphics hardware. 2001, 9–16 4.

[FZG*19] FALUDI, BALÁZS, ZOLLER, ESTHER I, GERIG, NICOLAS, et
al. “Direct visual and haptic volume rendering of medical data sets
for an immersive exploration in virtual reality”. International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention.
Springer. 2019, 29–37 2.

[GGK05] GRÖLLER, MEISTER EDUARD, GLAESER, GEORG, and KAST-
NER, JOHANNES. 2005. URL: https://klacansky.com/open-
scivis-datasets/ 5.

[HAB*18] HADWIGER, MARKUS, AL-AWAMI, ALI K., BEYER, JO-
HANNA, et al. “SparseLeap: Efficient Empty Space Skipping for Large-
Scale Volume Rendering”. IEEE Transactions on Visualization and

Computer Graphics 24.1 (2018). ISSN: 10772626. DOI: 10 . 1109/
TVCG.2017.2744238 9.

[Hei14] HEITZ, ERIC. “Understanding the masking-shadowing function in
microfacet-based BRDFs”. Journal of Computer Graphics Techniques

3.2 (2014), 32–91 7.

[JHB*96] JOHNSON, PAMELA T., HEATH, DAVID G., BLISS, DON-
ALD F., et al. “Three-dimensional CT: Real-time interactive volume
rendering”. American Journal of Roentgenology 167.3 (1996). ISSN:
0361803X. DOI: 10.2214/ajr.167.3.8751655 2.

[KCDM19] KOURTESIS, PANAGIOTIS, COLLINA, SIMONA, DOUMAS,
LEONIDAS A.A., and MACPHERSON, SARAH E. Technological Com-

petence Is a Pre-condition for Effective Implementation of Virtual Re-

ality Head Mounted Displays in Human Neuroscience: A Technological

Review and Meta-Analysis. 2019. DOI: 10.3389/fnhum.2019.
00342 2.

[KPV14] KIKINIS, RON, PIEPER, STEVE D, and VOSBURGH, KIRBY G.
“3D Slicer: a platform for subject-specific image analysis, visualization,
and clinical support”. Intraoperative imaging and image-guided therapy.
Springer, 2014, 277–289 2.

[KWPH06] KNOLL, AARON, WALD, INGO, PARKER, STEVEN, and
HANSEN, CHARLES. “Interactive isosurface ray tracing of large octree
volumes”. 2006 IEEE Symposium on Interactive Ray Tracing. IEEE.
2006, 115–124 2.

[Lev88] LEVOY, MARC. “Display of Surfaces from Volume Data”.
IEEE Computer Graphics and Applications 8.3 (1988), 29–37. ISSN:
02721716. DOI: 10.1109/38.511 2.

[Lev90] LEVOY, MARC. “Efficient ray tracing of volume data”. ACM

Transactions on Graphics 9.3 (July 1990), 245–261. ISSN: 07300301.
DOI: 10.1145/78964.78965. URL: http://portal.acm.
org/citation.cfm?doid=78964.78965 2.

[LL94] LACROUTE, PHILIPPE and LEVOY, MARC. “Fast volume render-
ing using a shear-warp factorization of the viewing transformation”. Pro-

ceedings of the 21st Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH 1994. 1994. DOI: 10 . 1145 /
192161.192283 2, 7.

[LLYM04] LJUNG, PATRIC, LUNDSTROM, CLAES, YNNERMAN, AN-
DERS, and MUSETH, KEN. “Transfer function based adaptive decom-
pression for volume rendering of large medical data sets”. 2004 IEEE

Symposium on Volume Visualization and Graphics. IEEE. 2004, 25–32 2.

[NMN19] NYSJÖ, F., MALMBERG, F., and NYSTRÖM, I. “RayCaching:
Amortized Isosurface Rendering for Virtual Reality”. Computer Graph-

ics Forum (2019). ISSN: 14678659. DOI: 10.1111/cgf.13762 3,
9.

[Osi05] OSIRIX. DICOM Image Library, Manix dataset. Feb. 2005. URL:
https://www.osirix-viewer.com/resources/dicom-

image-library/ 5.

[PSK*16] PATNEY, ANJUL, SALVI, MARCO, KIM, JOOHWAN, et al. “To-
wards Foveated Rendering for Gaze-Tracked Virtual Reality”. ACM

Trans. Graph. 35.6 (Nov. 2016). ISSN: 0730-0301. DOI: 10.1145/
2980179 . 2980246. URL: https : / / doi . org / 10 . 1145 /
2980179.2980246 2.

[Sch94] SCHLICK, CHRISTOPHE. “An inexpensive BRDF model for
physically-based rendering”. Computer graphics forum. Vol. 13. 3. Wi-
ley Online Library. 1994, 233–246 7.

[SGR*02] SEYMOUR, NEAL E., GALLAGHER, ANTHONY G., ROMAN,
SANZIANA A., et al. “Virtual reality training improves operating room
performance results of a randomized, double-blinded study”. Annals

of Surgery. Vol. 236. 4. 2002. DOI: 10 . 1097 / 00000658 -

200210000-00008 2.

[SHR*20] SCHNIDER, EVA, HORVÁTH, ANTAL, RAUTER, GEORG, et al.
“3D Segmentation Networks for Excessive Numbers of Classes: Dis-
tinct Bone Segmentation in Upper Bodies”. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). Vol. 12436 LNCS. 2020. DOI: 10.
1007/978-3-030-59861-7{\_}5 9.

[SK00] SRAMEK, MILOS and KAUFMAN, ARIE. “Fast ray-tracing of rec-
tilinear volume data using distance transforms”. IEEE Transactions on

Visualization and Computer Graphics 6.3 (2000). ISSN: 10772626. DOI:
10.1109/2945.879785 3.

[SKR*08] STADIE, AXEL THOMAS, KOCKRO, RALF ALFONS, REISCH,
ROBERT, et al. “Virtual reality system for planning minimally invasive
neurosurgery”. Journal of Neurosurgery JNS 108.2 (1Feb. 2008), 382–
394. DOI: 10.3171/JNS/2008/108/2/0382. URL: https:
//thejns.org/view/journals/j-neurosurg/108/2/

article-p382.xml 2.

[SMBT03] SALGADO, RODRIGO, MULKENS, TOM, BELLINCK, P, and
TERMOTE, J. “Volume rendering in clinical practice. A pictorial review”.
JBR-BTR : organe de la Société royale belge de radiologie (SRBR) = or-

gaan van de Koninklijke Belgische Vereniging voor Radiologie (KBVR)

86 (July 2003), 215–20 2.

[SSB*20] SAREDAKIS, DIMITRIOS, SZPAK, ANCRET, BIRCKHEAD,
BRANDON, et al. “Factors associated with virtual reality sickness in
head-mounted displays: A systematic review and meta-analysis”. Fron-

tiers in Human Neuroscience 14 (2020). ISSN: 16625161. DOI: 10 .
3389/fnhum.2020.00096 2.

[VLA*03] VICECONTI, M., LATTANZI, R., ANTONIETTI, B., et al. “CT-
based surgical planning software improves the accuracy of total hip
replacement preoperative planning”. Medical Engineering and Physics

25.5 (2003). ISSN: 13504533. DOI: 10.1016/S1350- 4533(03)
00018-3 2.

[Vla16] VLACHOS, ALEX. “Advanced VR rendering performance”. Game

Developers Conference. Vol. 2016. 2016 2.

[WFKH07] WALD, INGO, FRIEDRICH, HEIKO, KNOLL, AARON, and
HANSEN, CHARLES D. “Interactive isosurface ray tracing of time-
varying tetrahedral volumes”. IEEE Transactions on Visualization and

Computer Graphics 13.6 (2007), 1727–1734 2.

[WMLT07] WALTER, BRUCE, MARSCHNER, STEPHEN R, LI, HONG-
SONG, and TORRANCE, KENNETH E. “Microfacet Models for Re-
fraction through Rough Surfaces.” Rendering techniques 2007 (2007),
18th 7.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

10

https://doi.org/10.1007/s41095-019-0155-y
https://doi.org/10.1016/j.jpdc.2007.06.011
https://klacansky.com/open-scivis-datasets/
https://klacansky.com/open-scivis-datasets/
https://doi.org/10.1109/TVCG.2017.2744238
https://doi.org/10.1109/TVCG.2017.2744238
https://doi.org/10.2214/ajr.167.3.8751655
https://doi.org/10.3389/fnhum.2019.00342
https://doi.org/10.3389/fnhum.2019.00342
https://doi.org/10.1109/38.511
https://doi.org/10.1145/78964.78965
http://portal.acm.org/citation.cfm?doid=78964.78965
http://portal.acm.org/citation.cfm?doid=78964.78965
https://doi.org/10.1145/192161.192283
https://doi.org/10.1145/192161.192283
https://doi.org/10.1111/cgf.13762
https://www.osirix-viewer.com/resources/dicom-image-library/
https://www.osirix-viewer.com/resources/dicom-image-library/
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1097/00000658-200210000-00008
https://doi.org/10.1097/00000658-200210000-00008
https://doi.org/10.1007/978-3-030-59861-7{\_}5
https://doi.org/10.1007/978-3-030-59861-7{\_}5
https://doi.org/10.1109/2945.879785
https://doi.org/10.3171/JNS/2008/108/2/0382
https://thejns.org/view/journals/j-neurosurg/108/2/article-p382.xml
https://thejns.org/view/journals/j-neurosurg/108/2/article-p382.xml
https://thejns.org/view/journals/j-neurosurg/108/2/article-p382.xml
https://doi.org/10.3389/fnhum.2020.00096
https://doi.org/10.3389/fnhum.2020.00096
https://doi.org/10.1016/S1350-4533(03)00018-3
https://doi.org/10.1016/S1350-4533(03)00018-3

