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Figure 1: Left: Assessment of a physical prototype of a stamped metal sheet. Reflections of light tubes off a surface help detecting cosmetic
shape defects that are difficult to quantify numerically. Right: Recreation of the light cage in a virtual reality setting, which eliminates the
need for producing physical mockups.

Abstract

Although interactive ray tracing has been around since the late 1990s, real-time frame rates had so far only been feasible for
low and mid-size screen resolutions. Recent developments in GPU hardware, that specifically accelerate ray tracing, make it
possible for the first time to target head-mounted displays (HMDs), which require constant high frame rates as well as high
resolution images for each eye. This allows for utilizing ray tracing algorithms in novel virtual reality scenarios, which are
impractical to do with rasterization. In this short paper we present our experiences of applying real-time ray tracing to the
problem of detecting cosmetic defects in sheet metal stamping simulations by creating a virtual light cage.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing; Scientific visualization; • Human-centered computing → Virtual
reality; Visualization systems and tools;

1. Introduction

Over the last two decades, interactive ray tracing has made tremen-
dous progress, with ray tracing solutions such as NVIDIA Op-
tiX [PBD∗10] or Intel Embree [WWB∗14] having been widely
available for quite some years. However, until recently these were
only practical in cases where high frame rates were not a necessity
(e.g., global illumination previews), whereas rasterization remained
the method of choice for real-time scenarios that required consis-
tent frame rates of 30 and more images per second. One particular

area, where low frame rates are not acceptable, are virtual reality
(VR) applications.

More recently, new developments have boosted ray tracing per-
formance to a point where its use even in games becomes possible.
On the hardware side, specialized ray tracing circuits have found
their way into GPUs, most prominently in the form of RT cores that
are part of NVIDIA’s recent Turing architecture. On the software
side, mainstream graphics APIs like DirectX or Vulkan have started
to incorporate ray tracing extensions. These new technologies open
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up the opportunity to exploit ray tracing algorithms also in VR to
simulate optical effects that cannot easily be reproduced with ras-
terization based techniques (like pixel-accurate shadows and reflec-
tions). In turn, this gives way to the conception and design of novel
applications of VR rendering.

One important application of VR is based in virtual prototyping,
where it reduces or ideally eliminates the need for physical work-
flows and prototypes. In this paper, we describe a use case where
ray traced reflections in immersive VR help engineers to inspect the
shape of simulated stamped sheet metal (e.g., parts of a car body)
in real time, allowing them to spot cosmetic surface defects, whose
aesthetics could not be reliably estimated from numerical analysis
(unlike structural defects, such a wrinkling or cracking).

Simulation of reflection lines is one of the most common meth-
ods used for virtual examination of car bodies (see, e.g., [SGA04]).
Traditionally, this had been realized using reflection mapping and
environment textures. With the advent of interactive ray tracing
techniques, accurate real-time simulation of reflections became fea-
sible in CAD scenarios, e.g., [WDB∗06], but was limited to desktop
settings with low frame rates and resolutions.

There has been prior research on bringing ray tracing to head-
mounted displays, e.g., Weier et al. [WRK∗16]. Most of the earlier
work, however, focused on sparse frame sampling rather than full-
frame ray tracing. Also, no specific industrial use case was targeted
as in our case.

2. Evaluation of Cosmetic Defects in Sheet Metal Stamping

Sheet metal forming – originally introduced as early as 1880 as a
replacement to forging with higher yield at ’good enough’ quality
– up until this day serves as one of the main production techniques
in mass-market products. Today, forming as a production technique
summarizes processes as diverse as stamping, punching, blanking,
embossing, bending and coining. Besides sheet metal forming as
the main application, processes such as stamping are in fact used
with various materials including plastics. While employed by al-
most all production industry tiers, automotive today sees the widest
use of sheet metal forming techniques.

With the recent interest into lightweight vehicles on the one hand
and ever growing customer demands into visual aesthetics of exte-
rior bodywork, the automotive industry provides some of the most
interesting challenges in sheet metal stamping today. As an esti-
mate, around half of the visual exterior of a car is made up of
stamped parts. For structural integrity, an additional up to 20% of
the chassis are produced from stamped parts [vTMR17]. For the
context of this case study we have focused on the challenge of pre-
dicting cosmetic defects in the quality of exterior surfaces (body
panels).

Besides being one of the most common processes and offering
attractive benefits in cost and time taken in actual production, sheet
metal forming has been notoriously difficult to master as a pro-
cess. Compensating for complex effects such as springback distor-
tion, cracking, splitting, creasing, excessive thinning or thickening
of material at critical locations has long been the subject of research
and efforts to simulate and predict the outcome of the manufactur-
ing process. Beyond achieving the design goals towards structural

integrity and material physics, achieving the desired aesthetic ef-
fect of a reference class A surface has been the subject of long-
standing efforts in virtual prototyping [PS10]. (In automotive de-
sign, a class A surface is a set of free form surfaces having curvature
and tangency alignment.) Today, simulation software such as ESI
PAM-Stamp as part of ESI Sheet Metal Forming Solution provides
numerical simulation results to predict most critical defects at a de-
sign stage, eliminating the need for physical prototypes [And05].

Efforts to simulate and achieve a quantifiable result to predict
aesthetic quality are much more difficult to achieve, however. Sim-
ulation historically has tried to quantify the deviation to reference
class A surfaces, allowing (automatic) optimization of the die face
to minimize distortion introduced, e.g., by springback. However,
the effect of physical non-conformity on visual aesthetics is ex-
ceedingly difficult to relate. Surface geometrical deviation as little
as 25 microns has been proven to show visible effects on visual
appearance [YqDC04]. While in a sub-millimeter range, precision
measurements of manufactured parts in production are not able to
capture these defects. In addition to the obvious issue of being too
late in the process, physical measurements are not able to quantify
and capture effects on visual aesthetics in practice. Deviation of
shape in stamped parts relies on local curvature and deflection in
contours as much as accurate coordinate matching with reference
class A surfacing. Qualifying an error condition result to determine
the stamped part as ’good’, ’bad’, or acceptable is near impossible
on measurements and numerical simulation alone. Today, this pro-
cess bases judgments upon prototype and pre-production parts in
the try-out phase of the automotive body-in-white. In addition to
being too late in the process to affect meaningful change, qualifi-
cation and acceptance is based purely on expertise and experience,
thus non-reproducible.

For the use case at hand, we explored two methods of analyzing
cosmetic quality on real world prototypes. Stoning uses an abrasive
stone of predetermined size, requiring an engineer to rub the flat
face of the stone against the formed part in predefined sequences
specific to the geometric intent of the component. The resulting
scratch marks highlight localized changes in curvature - as the stone
bridges the differing curvatures, roughing only adjacent sheet metal
(Figure 2). Digital stoning tries to simulate the process and serves
well to determine large-scale defects - but fails to offer a repro-
ducible way to detect subtle broadly distributed changes in surface
deflection angles.

Figure 2: Methods for assessing surface defects. Left: Numer-
ical simulation result as a contour plot showing normal distor-
tion. Right: Result of stoning on a physical prototype panel, where
scratch marks from a stone highlight localized changes in curva-
ture. Structural defects are easily spotted, but it is difficult to say
whether any distortion of the shape is aesthetically acceptable.
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As an alternative approach, production quality is evaluated based
on physical prototype reflections, shining the panel with oil and
evaluating reflective behavior using an array of fluorescent lights.
Based on interactive handling of the part and varying viewpoints
relative to light sources, an engineer or skilled tradesperson would
be able to observe if reflections are consistent across the surface
(Figure 1). Any diverging lines would indicate a noticeable defect,
possibly affecting aesthetics of the final panel. While difficult to
reproduce and subjective, this method captures all properties of the
surface relevant to visual anomalies of the final assembly.

The key aspects of modeling the real world test of panel cosmet-
ics inside an immersive virtual reality environment focusses on in-
teractivity and accuracy of reflections. Prior image-based solutions
using reflection mapping or resolution-reduced ray tracing such as
vertex tracing [UBBS01] failed to meet accuracy requirements of
surface-based reflection. While brute force ray tracing solved the
problem, interactive review of reflections was only possible using
pre-recorded movement. While this presents a workable and re-
peatable solution to evaluate previously known defects - where a
continuous review of engineering changes to address the problem
might be required - the discovery and qualification of new issues
is only possible using an exploratory, interactive process as per the
real world procedure.

Our work presents an approach to address the interactive eval-
uation of likely cosmetic defects in immersive virtual reality as an
application of real-time ray tracing (Figure 3). Analytical ray traced
reflections provide the required accuracy and interactivity to allow
engineers to preload the qualification of manufacturing effects on
as-designed class A surfacing. Results are available continuously
from initial design to final manufacturing, allowing virtual proto-
typing of the full chain of production steps from stamping to fit-
ting to treatment to paint. Reproducible results allow demonstra-
tion, discussion and interactive reviews of the cosmetic effect of
small-scale predicted defects in stamping simulation results.

Figure 3: Analysis of ray traced reflection behavior on a simulated
prototype in immersive virtual reality. The part marked by the red
circle exhibits a smooth curvature, but still may be aesthetically
unacceptable.

3. Ray Tracing on HMDs

Implementation of our VR ray tracing system has been realized as
an extension to our in-house rendering engine, which is used in a
variety of different virtual prototyping solutions. The engine fea-
tures a hierarchical structure that encapsulates external rendering

APIs in dynamically loaded backend modules. In our case, we are
using OpenGL and NVIDA OptiX as external frameworks.

3.1. Rendergraph

The rendering engine is capable of traversing a rendergraph which
controls the backends. Figure 4 illustrates how the graph looks for
an HMD ray tracing scenario. It can be seen that there are not
only 3D rendering passes (CLEAR_GL, SCENE_GL, SCENE_RT,
WIDGET), but also several fullscreen and post-processing passes
like color grading or filtering. The main reason for employing a
graph that contains both rasterization and ray tracing passes is to
enable hybrid rendering, i.e., to only render specific parts of an
image with ray tracing or rasterization. However, it is important
to note that for the use case presented in this paper, the scene is
always fully ray traced, while the OpenGL passes only generate
depth buffers and 3D widgets. This is because the current imple-
mentation only supports hybrid rendering on a per-pixel basis, i.e.,
pixels can either be rasterized or ray traced. Since viewers will typ-
ically stand close to a reflective surface, ray tracing would have to
be used for almost all pixels anyway.

Figure 4: Rendergraph for HMD ray tracing. The graph defines
all passes involved in generating a frame. Most important parts are
the scene rendering passes using OpenGL (SCENE_GL) and OptiX
(SCENE_RT). Other passes include 3D widget generation (WID-
GET) and fullscreen post-processing (green). Blit passes (blue) are
used to adapt different target sizes so that widgets can be rendered
at a higher resolution. Yellow stages perform no actual rendering
tasks, but instead communicate with the HMD. They have been em-
bedded into the rendering pipeline in order to minimize latency.

A very important part of the HMD rendergraph are the stages
responsible for communication with the display. These are actually
no rendering passes, but are implemented as stages in our rendering
pipeline. The reason for doing this is to minimize latency as much
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as possible, which is crucial for the immersive effect created by an
HMD. This way, the viewing parameters of the headset are queried
as close as possible to image computation. Likewise the final image
is sent right after generation has finished.

3.2. Vision-Matched Rendering

Targeting an HMD as display provides a number of opportunities
for performance optimization, as due to the characteristics of the
human visual system not all parts of an image have to be computed
with the same accuracy.

Hidden area masking. To accommodate for the lens distortion
caused by the HMD optics, a rectangular image needs to be warped
before it can be displayed. This causes parts of the image to be
compressed, some parts, specifically at the borders, are not visible
at all. The shape and size of the hidden area can vary per HMD.
OpenVR provides SDK functions to request a so-called hidden area
mesh. Typically, the hidden area mesh is rendered into the stencil
buffer, which prevents fragment shaders from being invoked for
invisible pixels. In a ray tracing engine this is even easier to exploit
by simply masking generation of primary rays.

In all our experiments we used an HTC Vive Pro HMD (see Sec-
tion 4). For the Vive Pro, the hidden area mesh is almost circular
(Figure 5). We therefore do not need an explicit mask buffer, but
rather skip pixels in the OptiX ray generation program, in case they
lie outside a disk inscribed in the image square. Furthermore, ex-
periments showed that the radius of the masking circle does not
have to be of maximal extend. Depending on the distance of the
HMD lenses to the display, a radius of 80%-90% of the maximum
was possible without being noticeable. With an 80% setting, the
surface area of the disk is roughly half the area of the full image
square. The frame rate increases accordingly.

Figure 5: Left: Hidden image areas due to lens distortion. Right:
Approximation of the visible area with a disk. The disk radius se-
lected is 80% of the maximum radius (which is half the box width).

Variable rate sampling. A particular problem with HMD ray
tracing is aliasing. Due to constant head motion, aliasing causes
strong flickering, which in our case is specifically visible in the re-
flection of light tubes (Figure 6). An obvious approach to reducing
aliasing in a ray tracer is super sampling. Since full oversampling
would degrade our frame rate, we experimented with selective over-
sampling strategies: Even though the Vive Pro does not perform
eye tracking, we can assume that a user will typically look to the

center of the display. We therefore increase the sampling rate only
near the center. Figure 6 shows an example: Here an area with a
radius of about half the size of the display disk radius was chosen
and four samples per pixel taken (red). In addition, dithering (i.e.,
randomized switching of the sampling rate) was used to avoid a
sharp border where the sampling rate changes. Unfortunately, while
this looks promising on a desktop display, on an HMD flickering
of light reflections was not mitigated much. To have a noticeable
effect, sampling rates above 16 samples per pixels were needed,
which, however, did significantly reduce the frame rate, even with
a very small oversampling area. Therefore, we did not use variable
rate sampling in the final setup (see Section 4).

Figure 6: Variable rate sampling. Green area: 1 sample per pixel,
red area: 4 samples per pixel. Oversampling is dithered randomly
to avoid a sharp border between the two areas.

3.3. Fullscreen Anti-Aliasing

Another anti-aliasing method that is regularly used in highly dy-
namic rendering applications, most notably gaming, is to perform a
post-process filtering step. An efficient algorithm is Fast ApproXi-
mate Anti-Aliasing (FXAA) [JGY∗11]. In our rendering pipeline
(Figure 4) this is implemented as an OpenGL stage, which can
be executed without a noticeable performance impact. FXAA is
an edge-aware low-pass filter that detects edges based on contrast
difference. For pixels that are found to be near an edge, an ap-
proximate luminance gradient is computed. Samples are then taken
along the axis perpendicular to the gradient, which approximately
relates to the orientation of the edge. Finally, the resulting pixel
color is computed as a weighted average of the samples.

The effect of FXAA can be seen in Figure 7. While it does a
good job at smoothing jagged edges of directly visible light tubes
(left magnification), it doesn’t work as well on noise-type aliasing
of reflections (right magnification). Rather than fusing the small
fragments of reflected light tubes, it smooths the borders around
the fragments.

4. Performance Results

As hardware configuration for our prototype system we used an
NVIDIA Quadro RTX 8000 GPU in combination with an HTC
Vive Pro HMD. The RTX 8000 is fitted with 4608 CUDA cores,
576 Tensor cores, and 72 RT (ray tracing) cores. OptiX makes use
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Figure 7: Left: FXAA disabled. Right: FXAA enabled. Inlays show
a magnification of light tubes and their reflections.

of RT cores for hardware accelerated traversal and intersection op-
erations, whereas other operations, such as shading, are executed
on CUDA cores. The Vive Pro features a display resolution of
1140×1600 pixels per eye at a 90 Hz refresh rate. It has a 110 de-
gree field of view.

The 3D geometry data used in our experiments consists of
2.2 million triangles, collected into about 1000 individual objects.
The scene contains data exported from the sheet metal stamping
simulation plus a small amount of geometry for the light cage and
background. We used one point light and up to 3 levels of reflec-
tion, which amounts to at most 8 rays per sample (1 primary ray, 3
reflection rays, 4 shadow rays). In addition, parts of the scene con-
tain precomputed ambient occlusion lighting (which does not affect
performance). Shaders assigned to the sheet metal parts are purely
reflective. Additionally, the scene includes some car door models
covered with a red car paint material that consists of both diffuse
and specular components (see Figure 1).

As as a target resolution for the ray tracing backend the default
HMD setting of 2016×2240 pixels per eye was used. This pro-
vides basic oversampling for every pixel, which was necessary to
avoid excessive flicker. Edges were further smoothed by an FXAA
fullscreen pass (see Section 3.3). As mentioned in Section 3.2, ad-
ditional super sampling at the image center was not beneficial and
therefore omitted.

With this setup, the ray tracing backend is able to produce about
20-45 fps depending on the user’s view point (20 fps when the com-
plete view shows reflections). It is important to note that frame rates
of the ray tracer and the HMD display are decoupled. In order to
reduce judder caused by latency, the HMD driver performs an asyn-
chronous reprojection [Vla16], where older frames are warped to
match the actual camera position. In our case, for positional camera
changes a slight judder is visible. However, based on comparison
with an OpenGL rendered test scene, we found that the remaining
judder is quite subtle and acceptable.

5. Conclusion

In this paper, we presented an approach for the interactive evalu-
ation of potential cosmetic sheet metal stamping defects in an im-
mersive virtual reality environment. The application of real-time

ray tracing allows engineers to evaluate sheet metal stamping simu-
lations without the need for building physical prototypes or reliance
on loosely correlated numerical parameters. This demonstrates that
on current GPUs, full-frame ray tracing is possible today even on
HMDs, which require high resolutions and frame rates.

Our system is still early work in progress. A particular problem
is posed by noise-type aliasing that is visible in the reflections of
area lights. To this end, we plan to experiment with more advanced
adaptive super sampling methods based on foveated rendering tech-
niques and eye tracking.
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