High-Performance Graphics (2019)
T. Foley and M. Steinberger (Editors)

Short Paper

A Practical and Efficient Approach for
Correct Z-Pass Stencil Shadow Volumes

B.Usta

T, L. Scandolo'™, M. Billeter'™, R. Marroquim

and E. Eisemann

Delft University of Technology, The Netherlands

Figure 1: Pixel-perfect hard shadows produced by our method in the Citadel scene from different viewpoints.

Abstract

Shadow volumes are a popular technique to compute pixel-accurate hard shadows in 3D scenes. Many variants exist that trade
off accuracy and efficiency. In this work, we present an artifact-free, efficient, and easy-to-implement stencil shadow volume
method. We compare our method to established stencil shadow volume techniques and show that it outperforms the alternatives.

CCS Concepts
o Computing methodologies — Rendering; Visibility;

1. Introduction

Realistic shadows can provide crucial visual cues for understanding
spatial relationships in a scene. Although many different methods for
artifact-free shadows have been proposed, their pixel-accurate com-
putation at real-time rates, even for point lights, remains a challenge.
The majority of shadow-generation algorithms fall into one of four
categories: shadow maps [Wil78], shadow volumes [Cro77], irregu-
lar Z-Buffer solutions [JLBMOS, WHL15] and ray-tracing [App68].
Although shadow maps are very efficient, they suffer from difficult-
to-avoid aliasing. The irregular Z-Buffer, while having led to ef-
ficient shadow computations [SEA08], still requires a significant
overhead for larger screen resolutions. Real-time ray-tracing is still
limited in availability and performance on current commodity hard-
ware. Shadow volumes thus remain a portable and proven option for
generating pixel-accurate hard shadows, yet many of its variants are
prone to artifacts. For example, the original Z-Pass method [Hei91]
fails when the observer is located in shadow. More recent solu-

T {b.usta,l.scandolo,m.j.billeter,r.marroquim,e.eisemann } @tudelft.nl

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

tions try to address this problem but introduce significant costs or
are complex to implement. We present a faster artifact-free robust
version of the ++ZP algorithm [ESAW11] that is easy to imple-
ment. After reviewing previous works (Sec. 2), we will describe this
method (Sec. 3), then report results and comparisons (Sec. 4) before
concluding (Sec. 5).

2. Related Work

Generating shadows in graphics applications is an important but
difficult task, having a large body of research devoted to it. Eise-
mann et al. [ESAW11, EAS*13] present an in-depth overview of
techniques for interactive and real-time applications. Here, we will
focus on shadow-volume techniques [Cro77], which remain a popu-
lar option due to their pixel-accurate results (Fig. 1).

A shadow volume tightly encloses the space that lies in shadow
with respect to a specific point light source. The boundary of a
shadow volume can be found by extending the edges of the input
geometry away from the light source. A common approach for
determining shadows using shadow volumes relies on the stencil

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

DOI: 10.2312/hpg.20191195

https://orcid.org/0000-0002-9596-8449
https://orcid.org/0000-0001-6320-3129
https://orcid.org/0000-0003-1806-2587
https://orcid.org/0000-0001-8299-7067
https://orcid.org/0000-0003-4153-065X
https://doi.org/10.2312/hpg.20191195

46 Usta, Scandolo, Billeter; Marroquim, Eisemann / A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes

— Front facing side - ,
— Backfacing side P . i
[0 Shadowed pixels - e

| | IncorrecﬂyLi(pM -
[Lit pixels

(a) Z-Pass (b) Z-Fail

(c) ZP+ (d) ++ZP

Figure 2: An illustration of the different existing shadow volume techniques. All methods count the amount of shadow volume boundaries
traversed in a given path. Z-Pass counts from the near plane to the surface point. Z-Fail accounts for shadow boundaries from the surface
point to a point infinitely far away. ZP+ computes traversed shadow boundaries from the light to the surface point via the near plane. ++ZP

also counts boundaries from the light source to the surface point, but it does so via the camera position.

buffer [Hei91]. This buffer is used to count the number of times a
ray from the camera enters and leaves the volumes on its way to a
surface point.

Methods relying on the stencil buffer [Hei91, Car00, EK02,
HHLHOS5] draw (potentially) many shadow-volume boundaries,
which can cause significant overdraw - one of the main drawbacks of
shadow volumes. Limiting the number of planes by only construct-
ing them for silhouette edges [AMAO3, Yaz06,ZB11] is essential
for these methods.

Overdraw can be further reduced by eliminating redundant
shadow planes using an acceleration structure over the geome-
try [CBCJ99]. This approach was recently extended to avoid the sten-
cil buffer completely [GMAG15,MGAG16]. The acceleration struc-
ture may alternatively be built over the pixel data [SOA11,SKOA14],
where shadow planes are rasterized to an irregular buffer that com-
bines writes to large regions to reduce the cost of overdraw. Per-
triangle shadow volumes relax requirements such as avoiding the
need for closed geometry. Nevertheless, these methods rely heavily
on non-trivial compute operations on the GPU, including generation
and updates of acceleration structures and software rasterization.

In this work, we revisit and build upon the ++ZP method pro-
posed by Eisemann et al. [ESAW11]. Similar to other stencil-based
approaches, our method utilizes the standard rendering pipeline to-
gether with just a custom geometry shader. Since shadow volumes
are extruded from silhouette edges, the geometry needs to be closed
(with few exceptions).

2.1. Z Pass

The Z-Pass algorithm [Hei91] is the first hardware-accelerated
shadow-volume implementation [Cro77]. It works by using a screen-
sized stencil buffer as a per-pixel counter of the amount of traversed
shadow boundaries from the camera to the first visible surface. A
first render pass of the scene geometry is performed to fill a depth
buffer. The shadow volumes are then rendered into the stencil buffer,
incrementing the stencil value by one when drawing a front-facing
shadow boundary fragment and decrementing it by one for each
back-facing one. Using the initialized depth buffer, only shadow-

volume polygons in front of the first visible surface are counted.
After drawing all shadow volumes, a pixel with a zero counter is
considered lit, otherwise in shadow, as zero means that the ray from
the camera to the visible surface point entered as many shadows as
it exited.

This algorithm produces pixel-perfect hard shadows and it avoids
counting non-visible shadow boundaries by using the depth test.
Nevertheless, when the camera is inside a shadow volume, the
results are invalid. The resulting misclassification of pixels can be
seen in Fig. 2a, where red pixels are incorrectly considered lit.

2.2. Z-Fail

Z-Fail [Car00, EK02] is a similar but robust alternative of the Z-
Pass algorithm. Instead of counting the amount of shadow bound-
aries from the camera position to the first visible surface, it counts
from the first visible surface to a point infinitely far away along the
same line of sight (see Fig. 2b). The principle is essentially equiva-
lent to the Z-Pass algorithm, but assumes instead that the camera is
at this infinitely far away point. The volumes are capped at the far
plane to ensure that the far point is outside of any shadow volume.
Thanks to this, it sidesteps the main failure case of the original
algorithm.

The main drawback of Z-Fail is that it generates a higher overdraw
than the Z-Pass algorithm, since it requires rendering all shadow
volumes up to an infinitely far-away point, as well as the shadow
volumes’ front and back caps.

2.3. 7P+

The ZP+ algorithm [HHLHOS5] aims to address the failure case of
the Z-Pass algorithm by initializing the stencil buffer with a value
that ensures the correct result. It performs an initial render pass from
the point of view of the light, matching its far plane to the camera
near plane (blue frustum in Fig. 2¢), and using the same stencil
buffer which is used for the Z-Pass algorithm. During this pass, only
the original light-facing geometry is counted. Combined with the
Z-Pass, this effectively amounts to counting the intersections of a ray
from the light to the near plane and then to the first visible surface

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Usta, Scandolo, Billeter, Marroquim, Eisemann / A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes 47

point. As the light source itself cannot be in its own shadow, this
counting process will be correct. While this algorithm retains most
of the advantages of Z-Pass, it requires an extra render pass and a
careful match of the pixel locations during the two different stencil
render passes, which makes the implementation quite complex.

2.4. ++7ZP

The ++ZP algorithm [ESAW11] takes a similar approach to ZP+ by
creating a two-segment path from the light to the visible fragment.
In the case of ++ZP, the path goes via the camera position instead
of the near plane. A single 1x1 stencil buffer orthographic render
pass is used to count the amount of shadow blockers from the light
position to the camera position (depicted in blue in Fig. 2d). This
resulting value is used as the reference during the shading pass to
determine whether a pixel is shadowed. The full-screen stencil pass
is performed next, which is similar to Z-Pass, with the exception that
shadow volume fragments between the camera and the near plane
are clamped to the near plane, which can be efficiently achieved
with the corresponding OpenGL extension. The implementation is
straightforward and handles the limitations of Z-Pass. Our method
is inspired by ++ZP and addresses its main shortcoming: the need
for an extra geometry pass.

3. AtomicZP

The main drawback of ++ZP is the additional render pass to find
the number of shadow blockers between light and camera. Although
this pass computes a single value, the scene geometry must be read
and processed. We propose to skip this render step, and instead
compute this information during the geometry stage of the screen-
size forward stencil pass.

As part of the forward stencil pass, we utilize a geometry shader to
identify and extrude silhouette edges for light-facing triangles using
adjacency information. During this step, for each light-facing trian-
gle, we additionally perform a fast ray-triangle intersection [MT97]
test to determine if it lies between light source and camera. If so,
we increment a global atomic counter (Fig. 3), which implicitly
represents the one-pixel buffer of the ++ZP method. This eliminates
the need for an extra geometry pass.

The resulting atomic counter can be retrieved before the final shad-
ing pass and used to initialize the stencil buffer, similar to the ZP+
method, or simply to set the reference value for the stencil test, sim-
ilar to our implementation of the ++ZP method. Depending on the
capabilities of the graphics library and specific hardware, this step
may require reading back the value from the GPU to main memory
(the read-back may be avoided using ARB_shader_stencil_export,
however our setup did not support this OpenGL extension). How-
ever, other work can be scheduled while waiting for this read-back
result, such that no stall occurs. Alternatively, it is even possible
to skip this step altogether and emulate the stencil test during final
shading by reading the fragment’s stencil value, comparing it against
the value of the atomic counter, and discarding the fragment if the
values do not match.

Timings in Section 4 use the last approach, which proved most
efficient. In our implementation, reading back the atomic counter

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

= Front facing side
— Back facing side R,

[shadowed pixels
[] Litpixels

Figure 3: AtomicZP: First, a Z-Pass-like operation updates the
stencil values depending on the facing of the generated shadow
volume quads. Similar to ++ZP, the pass uses depth clamping.
When extruding the shadow volume quads, a check determines if a
light facing triangle lies between the light source and the camera’s
origin (dotted line). Each such triangle (shown in blue) increments
a counter (n). Fragments are lit (white pixel) if their stencil value
equals the value of the counter (i.e., n =1 in this example), and
shadowed otherwise (gray pixel).

value introduces a stall in rendering, since no other operations are
scheduled, increasing total frame time slightly (about 500us). Time
for the final shading pass (excluding the read-back) is however
the same as for the rest of the previously described methods. As
already mentioned, if the stall can be avoided by scheduling other
operations between the read-back and the final shading step, using
this approach may be advantageous as it can utilize early-out stencil
tests if such are supported.

4. Results and Discussion

We performed our experiments on a NVIDIA GTX 1080TI GPU,
running under Microsoft Windows 10 on an Intel 17-8700 CPU with
16GB of RAM. All methods have two main steps: stencil buffer
update by rendering the shadow volumes, and final scene render
using said stencil buffer. In addition, for ZP+ and ++ZP there is an
extra stencil buffer render pass. We have selected three scenes for
our experiments:

e Buddha: simple scene with one model and two planes (543k
vertices, 1M triangles)

e Sponza: indoor scene with exterior light source where the camera
is often in shadow and facing the light source(153k vertices, 262k
triangles)

e Citadel: outdoor scene with high depth complexity (310k vertices,
613k triangles)

For each scene, we have predetermined a camera path, and exe-
cuted each algorithm 10 times. We store the median execution time
for each frame in order to eliminate most variation due to other con-
current processes. Some variation is, nevertheless, still noticeable in
the results, especially for slower methods that might be more prone
to interruption.

48 Usta, Scandolo, Billeter, Marroquim, Eisemann / A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes

In all cases the final shading step times are nearly identical, since
all methods perform practically the same work after the shadow
volumes have been rendered. Furthermore, we use a simple Phong
shading model for the experiments. In a more realistic application,
with more complex shading models, any differences would become
even more negligible as the shading computations would dominate
the total time. Therefore, we have focused our analysis on the more
relevant step for this work, that is, evaluating the stencil buffer.

Fig. 4 shows timings for the shadow-volume creation step for
the three test scenes. For ZP+ and ++ZP these timings also include
the stencil-buffer initialization. The two fastest algorithms have
practically the same performance, namely, Z-Pass and AtomicZP.
Yet, our method produces the correct result for all cases, while
Z-Pass is not artifact free, as discussed in Section 2.1.

Our method outperforms other artifact-free methods consistently.
The difference to the next best method, ++ZP, is as expected pri-
marily the time required to count the number of blockers between
light and camera. This time is quite stable across the runs in our
tests (around 190us for the Sponza scene when measured in isola-
tion), as the complexity depends only on the amount of geometry,
given that the render target has resolution 1 x 1. Nevertheless, in
geometry-bound applications, this difference may grow larger. ZP+
occasionally shows a larger performance difference, which is likely
due to increased fill-rate requirements in some views.

Apart from its superior performance, our method has the addi-
tional advantage of being easier to implement, since we do not have
to handle special cases and avoid an extra geometry pass, unlike
ZP+ and ++ZP.

A minor limitation of stencil-based shadow volume methods
relates to the stencil buffer’s 8-bit limit. This is a common problem
for stencil-buffer applications, as the buffer can overflow. Using
the extension to wrap the buffer values solves many issues but
when passing from 255 to 0, the resulting zero will indicate that
the region is lit, while the ray towards it actually traversed 256
shadow boundaries. This is an extremely rare case, and in practice,
we noticed no artifacts due to buffer overflow. In cases, where
correctness is imperative, the stencil buffer can be replaced by a
16-bit texture and the stencil test can be performed manually at the
fragment level.

During our analysis, we found that shadow-volume quads for
which both extruded edges extend to infinity behind the camera
frustum were carrying a significant performance penalty. We avoid
this case by manually clipping these quads against the plane per-
pendicular to the view direction and passing through the camera
position. We perform this in all relevant cases (our method, Z-Pass,
Z-Fail, and ++ZP). Furthermore, in our experiments enabling depth
clamping for Z-Pass slightly increased performance, while only
affecting failure cases, so it was enabled during our tests. Both of
these observations might be specific to the OpenGL implementation
of our test system. In this context, an improved interface that allows
setting the stencil reference value directly from a value computed
during rendering could simplify our solution and ++ZP further. In
OpenGL, this would require an API similar to glMultiDrawEle-
mentsIndirectCountARB where the count is a value stored in an
OpenGL parameter buffer.

ZP+
5.0 Z-Pass
— Z-Fail
4.5|—— Atomic ZP
— ++ZP
4.0
m
E35
o
£
£3.0
£
2.5
2.0
15
0 200 400 600 800 1000 1200 1400 1600
frames
ZP+
Z-Pass
51— Z-Fail
—— Atomic ZP
— ++ZP
4
m
£
3
£
£
=
2
1
0 500 1000 1500 2000 2500
frames
ZP+
7 Z-Pass
— Z-Fail
6l— Atomic ZP
— ++2ZP
~5
@
£
24
E
3
2
1

0 200 400 600 800 1000 1200 1400
frames

Figure 4: Top to bottom: Shadow volume creation times for Buddha,
Sponza, Citadel. Note that our method’s performance is very close
to Z-Pass, causing their graphs to overlap.

Since we are dealing with watertight objects, one could adopt
a watertight ray-triangle intersection test [WBW13] to increase
robustness over other ray-triangle intersection tests. Standard ray-
triangle intersection methods may produce gaps even in watertight
meshes. However, we did not encounter this problem in our tests.

5. Conclusion

We introduce AtomicZP, a stencil shadow volume algorithm with
minimal overhead over Z-Pass that is, nevertheless, correct regard-
less of the view and the scene configuration. We show that our
approach performs better than competing methods such as Z-Fail,

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Usta, Scandolo, Billeter, Marroquim, Eisemann / A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes 49

ZP+ and ++ZP while remaining easy to implement. Like the original
Z-Pass, our method requires only a single stencil render pass. This
advantage becomes especially evident in applications that work with
models that have high geometric complexity.

Acknowledgments

The Buddha model is courtesy of the Stanford 3D scanning reposi-
tory. The Citadel scene was provided by Erik Sintorn. The Sponza
scene is based on the original model by Marko Dabrovic, updated
by Crytek GmbH.

This work was supported by DyViTo that is funded by the European
Union’s Horizon 2020 programme under grant agreement No 765121 and
partially funnded by Swiss National Science Foundation Advanced Postdoc
Mobility Project 174321.

References

[AMAO3] AKENINE-MOLLER T., ASSARSSON U.: On the degree of
vertices in a shadow volume silhouette. Journal of Graphics Tools 8, 4
(2003). doi:10.1080/10867651.2003.10487591. 2

[App68] APPEL A.: Some techniques for shading machine renderings
of solids. In AFIPS Spring Joint Computer Conference (1968), vol. 32.
doi:10.1145/1468075.1468082. 1

[Car00] CARMACK J.:. Email to mail list., 2000. (link accessed
2019-03-27). URL: http://fabiensanglard.net/doom3_
documentation/CarmackOnShadowVolumes.txt. 2

[CBCJ99] CoSTA BATAGELO H., COSTA JUNIOR I.: Real-time shadow
generation using BSP trees and stencil buffers. In XII Brazilian Symposium
on Computer Graphics and Image Processing (1999). doi:10.1109/
SIBGRA.1999.805714.2

[Cro77] CRrow F. C.: Shadow algorithms for computer graphics. SIG-

GRAPH Computer Graphics 11,2 (1977). doi:10.1145/965141.

563901. 1,2

[EAS*13] EISEMANN E., ASSARSSON U., SCHWARZ M., VALIENT M.,
WIMMER M.: Efficient real-time shadows. In ACM SIGGRAPH Courses
(2013). doi:10.1145/2504435.2504453. 1

[EKO2] EVERITT C., KLIGARD M.: Practical and robust stenciled
shadow volumes for hardware-accelerated rendering. Online at
developer.nvidia.com, 2002. (link accessed 2019-03-27). URL:
https://fabiensanglard.net/doom3_documentation/
0301002 .pdf. 2

[ESAW11] EISEMANN E., SCHWARZ M., ASSARSSON U., WIMMER

M.: Real-Time Shadows. Taylor & Francis, 2011. URL: https: //www.

realtimeshadows.com/. 1,2,3

[GMAG15] GERHARDS J., MORA F., AVENEAU L., GHAZANFARPOUR
D.: Partitioned shadow volumes. Computer Graphics Forum 34 (2015).
doi:10.1111/cgf.12583.2

[Hei91] HEIDMANN T.: Real shadows, real time. Iris Universe (1991). 1,
2

[HHLHO5] HORNUS S., HOBEROCK J., LEFEBVRE S., HART J.: ZP+:
Correct Z-pass stencil shadows. In Proceedings of the Symposium on

Interactive 3D Graphics and Games (2005). doi:10.1145/1053427.

1053459. 2

[JLBMO5] JOHNSON G. S., LEE J., BURNS C. A., MARK W. R.: The
irregular Z-buffer: Hardware acceleration for irregular data structures.

ACM Transactions on Graphics 24 (2005). doi:10.1145/1095878.

1095889. 1

[MGAG16] MORA F., GERHARDS J., AVENEAU L., GHAZANFARPOUR
D.: Deep partitioned shadow volumes using stackless and hybrid traver-
sals. In Proceedings of the Eurographics Symposium on Renderings
(2016). doi:10.2312/sre.20161212. 2

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

[MT97] MOLLER T., TRUMBORE B.: Fast, minimum storage ray-triangle
intersection. Journal of Graphic Tools 2 (1997). doi:10.1080/
10867651.1997.10487468. 3

[SEA08] SINTORN E., EISEMANN E., ASSARSSON U.: Sample-based
visibility for soft shadows using alias-free shadow maps. Computer Graph-
ics Forum (Proc. of EGSR) 27 (2008). do1:10.1111/75.1467-8659.
2008.01267.x. 1

[SKOA14] SINTORN E., KAMPE V., OLSSON O., ASSARSSON U.: Per-
triangle shadow volumes using a view-sample cluster hierarchy. In
Proceedings of the Symposium on Interactive 3D Graphics (03 2014).
doi:10.1145/2556700.2556716. 2

[SOA11] SINTORN E., OLSSON O., ASSARSSON U.: An efficient alias-
free shadow algorithm for opaque and transparent objects using per-
triangle shadow volumes. ACM Transactions on Graphics 30 (2011).
doi:10.1145/2070781.2024187.2

[WBWI13] WooP S., BENTHIN C., WALD I.: Watertight ray/triangle
intersection. Journal of Computer Graphics Techniques (JCGT) 2, 1 (June
2013). URL: http://jcgt.org/published/0002/01/05/. 4

[WHL15] WYMAN C., HOETZLEIN R., LEFOHN A.: Frustum-traced
raster shadows: Revisiting irregular z-buffers. In Proceedings of the
19th Symposium on Interactive 3D Graphics and Games (2015), ACM.
doi:10.1145/2699276.2699280. 1

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. ACM
SIGGRAPH Computer Graphics 12 (1978). do1:10.1145/965139.
807402. 1

[Yaz06] YAZHENG S.: Performance comparison of CPU and GPU silhou-
ette extraction in a shadow volume algorithm. 2

[ZB11] ZERARI A. E. M., BABAHENINI M.: Shadow volume in real-time
rendering. In International Conference on Communications, Comput-
ing and Control Applications (CCCA) (2011). doi:10.1109/CCCA.
2011.6031479.2

https://doi.org/10.1080/10867651.2003.10487591
https://doi.org/10.1145/1468075.1468082
http://fabiensanglard.net/doom3_documentation/CarmackOnShadowVolumes.txt
http://fabiensanglard.net/doom3_documentation/CarmackOnShadowVolumes.txt
https://doi.org/10.1109/SIBGRA.1999.805714
https://doi.org/10.1109/SIBGRA.1999.805714
https://doi.org/10.1145/965141.563901
https://doi.org/10.1145/965141.563901
https://doi.org/10.1145/2504435.2504453
https://fabiensanglard.net/doom3_documentation/0301002.pdf
https://fabiensanglard.net/doom3_documentation/0301002.pdf
https://www.realtimeshadows.com/
https://www.realtimeshadows.com/
https://doi.org/10.1111/cgf.12583
https://doi.org/10.1145/1053427.1053459
https://doi.org/10.1145/1053427.1053459
https://doi.org/10.1145/1095878.1095889
https://doi.org/10.1145/1095878.1095889
https://doi.org/10.2312/sre.20161212
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1111/j.1467-8659.2008.01267.x
https://doi.org/10.1111/j.1467-8659.2008.01267.x
https://doi.org/10.1145/2556700.2556716
https://doi.org/10.1145/2070781.2024187
http://jcgt.org/published/0002/01/05/
https://doi.org/10.1145/2699276.2699280
https://doi.org/10.1145/965139.807402
https://doi.org/10.1145/965139.807402
https://doi.org/10.1109/CCCA.2011.6031479
https://doi.org/10.1109/CCCA.2011.6031479

