High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

A Fast, Massively Parallel Solver for Large,
Irregular Pairwise Markov Random Fields

D. Thuerckl’z, M. Waechterl, S. Widmerl’z, M. von Buelowl, P. Seemannl, M. E. Pfetsch!2 and M. Goesele!?

I'TU Darmstadt 2Graduate School of Computational Engineering; TU Darmstadt

Abstract

Given the increasing availability of high-resolution input data, today’s computer vision problems tend to grow beyond what has
been considered tractable in the past. This is especially true for Markov Random Fields (MRFs), which have expanded beyond
millions of variables with thousands of labels. Such MRFs pose new challenges for inference, requiring massively parallel
solvers that can cope with large-scale problems and support general, irregular input graphs. We propose a block coordinate
descent based solver for large MRFs designed to exploit many-core hardware such as recent GPUs. We identify tree-shaped
subgraphs as a block coordinate scheme for irregular topologies and optimize them efficiently using dynamic programming.
The resulting solver supports arbitrary MRF topologies efficiently and can handle arbitrary, dense or sparse label sets as well
as label cost functions. Together with two additional heuristics for further acceleration, our solver performs favorably even
compared to modern specialized solvers in terms of speed and solution quality, especially when solving very large MRFs.

Categories and Subject Descriptors (according to ACM CCS): [.4.m [Image Processing and Computer Vision]: Miscellaneous—

Probabilistic Models

1. Introduction

In the last two decades the framework of Markov random fields
(MRFs) and global inference proved to be a versatile tool for prob-
abilistic models [Szell]. Pairwise MRFs in particular have be-
come ubiquitous in computer vision. The MRFs in current com-
puter vision problems such as segmentation, deblurring, inpaint-
ing, global structure from motion [COSH13], or as part of bench-
marks [SZS*08,KAH* 15,SHK* 14] present new, tough challenges:
millions of nodes, hundreds of labels, arbitrary cost functions, or
even new classes such as label costs. A recent example is texturing
3D reconstructions from real-world images [WMG14] (Figure 1
shows an example), where MRFs have irregular topology, more
than 107 variables, and more than 500 labels. While restricting cost
functions or topologies allows using specialized algorithms that can
even solve very large MRFs efficiently, the general case—i.e. only
weak or no assumptions on costs and the topology—strongly en-
courages research toward general massively parallel solvers.

Solving the MAP inference problem on such MRFs with arbi-
trary structure in a massively parallel way suitable for GPUs is
hard due to the lack of regularity and readily available parallelism.
Therefore, Chen and Koltun [CK14] recently focused on MRFs
with grid topology and proposed a block coordinate descent (BCD)
solution. We present the first efficient massively parallel approach
and implementation for solving irregular MRFs, that is able to han-

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

DOI: 10.2312/hpg.20161203

Figure 1: Left: Citywall triangle mesh with a portion of the re-
sulting MRF (edges) overlaid in red. Right: Textured result. This
dataset’s size and structure stresses the need for an efficient, paral-
lel solver without a restriction to regular grid-based topologies.

dle even large MRFs with tens of millions of nodes and hundreds
of labels per node in less than a minute on a modern GPU.

One key motivation of our paper is that even though many prob-
lems initially have a regular structure (e.g., pixel-based MRFs from
computer vision problems), efficient solution strategies often re-
move this regularity: As Kim et al. [KNKY11] show, grouping vari-
ables into clusters in a cost-sensitive manner to restrict the solution
space, can be very effective. But only a solver that finds parallelism
beyond a regular topology can benefit from such insights.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/hpg.20161203

174 D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's

While some of our solver’s underlying concepts have been intro-
duced before, we extend and combine them in a way that is centered
on massively parallel computation suitable for modern GPUs. The
key contributions of this paper are as follows:

e We introduce the first efficient, massively parallel solver for
MRF MAP problems with minimal assumptions on their topol-
ogy, smoothness costs and label costs that excels for large prob-
lems. We only require the topology to be finite and pairwise.

e To this end we present a block coordinate selection scheme for
irregular topologies and its massively parallel implementation,

e an approach to integrate label costs in dynamic programming-
based optimization methods (such as belief propagation), and

e a description of how the mentioned components and two well-
known, adapted heuristics for rapid energy descent can be inte-
grated into an efficient, massively parallel framework.

Our solver implements a general-purpose method that handles
cases not efficiently covered by other solvers: Arbitrary (even non-
metric) smoothness costs, label costs, arbitrary topology (in the fol-
lowing, we assume a finite, pairwise graph when using this term),
and sparse cost tables (which avoids numerical instabilities com-
pared to solvers that handle sparse costs by assigning large costs
to infeasible labels). Further, it does not rely on expert knowl-
edge regarding, e.g., problem decompositions (in contrast to Ko-
modakis [Kom10]), yet solves large instances out of the box. For
small and medium-sized problems the resulting energies are close
to the state of the art, which is often considered to suffice for practi-
cal use [MYWOS5], while for very large datasets (e.g. in our datasets
withupto 1.5- 107 nodes, 7 - 10 edges, and > 500 labels) we excel
in terms of runtime—in several cases by 1-2 orders of magnitude—
and memory consumption. As our solver operates in the primal do-
main, it can be terminated at any time with a valid solution, which
is especially useful for very large datasets.

2. Related Work

There is a large body of work on MRF optimization. We refer to
Kappes et al. [KAH*15] for a comprehensive review and focus on
the most important techniques, with a special emphasis on parallel
algorithms for large problems. Compared to early approaches such
as Iterated Conditional Modes (ICM) [Bes86], today’s MRF solvers
have drastically improved in terms of solution quality and speed.
Currently, there are two main classes: primal and dual methods.

Primal methods begin with a feasible solution and generate a
labeling sequence with decreasing energy until a local minimum is
reached. We observe two approaches for calculating the next solu-
tion: label space reduction or simplification of the MRF topology.

A popular representative of the former is o-expansion [BVZ01],
which reduces multi-label MRFs onto sequences of min-cut/max-
flow computations with two labels. Its minima are optimal within
one Oi-expansion move neighborhood. It has been improved, e.g.,
by guided selection of labels per iteration [BK11] or warmstart-
ing [JBO6]. The original graph cut method restricts the binary
costs to (semi-)metrics to guarantee decreasing energy. Lempitsky
et al. [LRRB10] circumvent this by combining different indepen-
dent expansion moves for a lower energy using quadratic pseudo-

boolean cuts (QPBO). Label costs are supported in a modified
a-expansion via auxiliary nodes in the flow network [DGVB12].

The second class of primal methods builds on the idea of keep-
ing a subset of the variables fixed and optimizing only the re-
mainder of the MRF while taking the fixed variables into account.
The remaining topology is selected to be tractable for exact opti-
mization. This is known as block coordinate descent (BCD). ICM
is the simplest representative of this class, with its generalization
Block-ICM [KMMHO6] being a template for other algorithms.
Chen and Koltun [CK14] use alternating scanlines on grids and
optimize them using dynamic programming, whereas Andres et
al. [AKB*12] use a bounded depth-first search with candidate elim-
ination on larger, connected windows of the graph. Our method
falls into this class of purely primal methods.

For specific cost function classes such as the Potts model spe-
cial methods have been presented [Vek15]. When applicable, these
methods can speed up the solution process by orders of magni-
tude but since they are highly problem-dependent, they are out of
our work’s scope. Additionally, some techniques used in two-view
stereo could in principle be applied to the general MRF labeling
problem; for an overview we refer to Scharstein et al. [SHK* 14].

Dual methods maximize a lower bound on the optimal energy
and use rounding and other heuristics to generate feasible solu-
tions. Solvers are often based on the linear programming relaxation
over the local polytope, e.g. FastPD [KTO07], or the Lagrangian re-
laxation [Kol06]. Apart from this, especially the Lagrangian dual
can be regarded as a framework for decomposing the MRF into
smaller parts solved by dual decomposition [KPT07]. For some
problems these relaxations are quite loose, i.e., there exists a so
called integrality gap. Additionally, depending on the costs even
the relaxation solvers are sometimes unable to close the duality
gap, providing inferior feasible solutions. Therefore, a common
approach is tightening these relaxations by cutting-planes such as
cycle-repairing [KPO0S8], to an extent where MRF solvers more and
more resemble conventional branch-and-cut solvers.

If dual methods operate both in the primal and dual domain (e.g.,
for generating feasible labelings), the memory requirements for the
additional dual variables can have a negative impact on perfor-
mance. Nevertheless, they are useful to obtain lower energy bounds
to estimate the quality or prove the optimality of primal solutions.
Most dual methods support arbitrary energy functions.

2.1. Parallel Algorithms

Efforts to parallelize MRF optimization have so far concentrated on
parallelizing state-of-the-art sequential algorithms. The majority of
implementations with competitive performance is however limited
to specific MRF topologies. Due to its frequent use in stereo and
image processing, there are several efficient algorithms tailored to
pixel grids: On the graph cut side, Delong et al. [DB0S8] replaced
the underlying max-flow algorithm by a push-relabel-based method
that splits the graph into several regions and processes each in a
separate thread. The grid topology can be exploited to make the
max-flow algorithm more cache-efficient [JSH12]. Shekhovtsov
and Hlava¢ [SH13] present a hybrid max-flow algorithm that al-
lows arbitrary graph partitions, but do not investigate how to best

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's 175

split up irregular MRF graphs. Fishbain e al. [FHM13] note, how-
ever, that a great deal of the reported performance increase stems
from serializing heuristics such as global relabeling that forms a
bottleneck for large graphs. This problem can especially be seen in
GPU solvers [VNO8,STT10], unless the optimality criterion on the
flow is relaxed. In addition to leveraging fine-grained parallelism
in max-flow computations, Veksler [Vek15] uses parallelism on an
algorithmic level, decomposing o-expansion into a hierarchy of in-
dependent flow problems, solving each on a different CPU core.

Chen and Koltun [CK14] propose a BCD scheme for regular
grids. In each round, they use a subset of the horizontal or the ver-
tical lines that yield 1D MRFs, and optimize them with vectorized
dynamic programming. The resulting solver is often an order of
magnitude faster than general-purpose solvers. Their results’ qual-
ity is however 5-10 % worse than previous work, their approach is
limited to submodular functions, and the scanline concept cannot
be directly transferred to non-grid topologies.

Nonetheless, given dual methods’” memory requirements and
flow algorithms’ limited scalability, BCD seems suitable for very
large MRFs. Chen and Koltun [CK14] and Fix ez al. [FCBZ12] note
that generalizing BCD to arbitrarily shaped MRFs could be promis-
ing. Efficient selection of subgraphs is, however, still an open ques-
tion. In this paper we give a possible answer to this problem in its
most general form: we pay special regard to working on irregular
input even on hardware built for regular inputs, such as GPUs.

3. Goal of this Paper

A pairwise MRF is an undirected graph M = (P, N') where P =
{0,...,n} are the IDs of nodes corresponding to random variables.
In the following we use “node” and “variable” interchangeably. The
neighborhood relation N C {{i,j} : i,j € P,i # j} models pair-
wise dependencies between variables. With a set of labels £ C N,
the energy function for a labeling (or assignment) f: P — L is

E(f)=Y Di(f)+ Y, Vij(f@).f()+ Y 8(f)Me. (1)
i€P {i,j}eN el

Foreachi e P, D;: L — R are the unary (data) costs for assigning
a specific label to a given node. Moreover, Vy; ;} £? - Ry for
{i,j} € N are the binary (smoothness) costs defined on pairs of
neighboring nodes. Finally, M, € R is the fixed cost of label ¢,
which occurs as soon as ¢ is assigned to at least one node in the
graph, i.e., &y (f) = 1 iff there exists an i € P with f (i) = £. Further,
we optionally allow a different set of feasible labels £; for each
node i € P. In this case we define £ = U;cp L.

Our goal is to minimize E(f) in Equation (1) on arbitrary topolo-
gies and with arbitrary costs D;, V{i" e and M,, which is N'P-
hard [Shi94, BVZ01]. This problem is generally called the Maxi-
mum A-Posteriori probability problem (MAP in short). On special
topologies such as trees, it is solvable in polynomial time via belief
propagation [FHO6] or dynamic programming [Vek05, Szel1]—at
least if label costs are all zero. Otherwise it is A/P-hard even on
trees, as shown by Delong et al. [DGVB12] by reduction of the un-
capacitated facility location problem. In line with recent hardware
development, we focus on an algorithm—and explain its imple-
mentation in detail—which efficiently leverages modern, massively
parallel hardware to tackle this general class of problems.

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

4. Algorithm

BCD-based algorithms iteratively select a subset of nodes, keep
the labels of the remaining nodes fixed, and optimize the selected
subset. Hence, the key ingredient for optimization quality and per-
formance is the choice of coordinates for descent in each iteration.
When selecting the coordinates, one usually forces the resulting
subproblem to have a specific structure that makes solving it easier.
In that sense, the coordinate selection scheme (BCD scheme) sets
the stage for leveraging parallelism in solving the subproblems. As
we aim to keep our solver general-purpose, its BCD-scheme must
be designed with the requirements of massively parallel hardware
in mind. In the past, massively parallel MRF solvers were restricted
to regular structures such as grids [CK14] with BCD schemes that
are not trivially applicable to irregular structures. This section pro-
poses a BCD scheme coping with the latter and describes how the
resulting subproblems can be solved by dynamic programming—
and approximated when including label costs.

Applying a BCD scheme partitions the variable set P into two
disjoint subsets: The selected coordinates C (from here on called
coordinates) and the fixed variables F = P \ C. While the subprob-
lem given by C is solved, fixed variables do not change their label,
but keep the label assigned to them in the previous BCD iteration.
The partition into C and F gives rise to three types of edges:

o edges NV[C] between two coordinates, which we call links,

e edges N[C,F] between coordinates and fixed variables, which
we call dependencies, and

e cdges Nr = N[F] between two fixed variables.

A subproblem is specified by a subgraph (C,N¢) with Nz C NC]
and Ny C NV[C, F]. Given an assignment f with subset f# for the
fixed variables, subtracting terms from Equation (1) that only in-
clude fixed variables yields the objective:

Esub(g): ZDi(g(i))+ Z
ieC {i,j}eNC

Y Vi@ 7))+ Y 8u(e)(1=8e(fr))Mp. (2)
{iaj}GNA leL

An assignment g : C — L that minimizes Equation (2) yields a new
assignment [’ via f'(i) = g(i) if i € C and f’(i) = f(i) otherwise,
for which E(f’) < E(f) holds—if the subproblem is compatible
with the original MRF. Compatibility means that N = A[C] and
Np = N[C,F]. Otherwise, the second and third term of Equa-
tion (2) do not sum over all necessary binary costs. Therefore,
N = N UNA UNF must hold, which we call edge partition re-
quirement. Our solver respects it, whereas Veksler’s spanning trees
[Vek05] do not and therefore have no energy decrease guarantee.
The supplemental material elaborates on this in more detail (Sec-
tion B.3.1) and proves the energy monotonicity (Section B.3).

Vi (8(i).8())) +

4.1. Coordinate Selection

Before discussing our coordinate selection scheme in detail, let us
review some requirements: First, it is desirable to add as many vari-
ables to C as possible to enlarge the resulting subproblem’s search
space, thereby allowing for more substantial energy decrease. Sec-
ond, the subproblem should remain tractable. Both goals are con-
tradictory. With respect to generality, the selection scheme should

176 D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's

(2)

Figure 2: (a) MRF, (b) maximal acyclic coordinate set (black: coordinates and links; solid gray: fixed variables and dependencies; dashed
gray: edges between fixed variables), (c) the same as (b) but with one node too many inserted which creates a conflict (red), (d) spanning
tree, (e) corresponding modified spanning tree with small, gray node copies and dashed dependencies for all removed links, (f) original MRF
with an initial solution f, and (g) corresponding region graph for a piecewise constant prior.

also not assume anything about the MRF topology. In the follow-
ing, whenever we talk of coordinate sets, this means the set C as
well as the topology of the subproblem resulting from adding (a
subset of) links and dependencies.

We trade both goals off as follows: To fulfill tractability we
choose coordinates such that the graph (C,A¢) is a tree, i.e., con-
nected and acyclic. Veksler [Vek05] and Szeliski [Szell] proved
that trees can be optimized in polynomial time with dynamic pro-
gramming. We thus restrict ourselves to tree coordinate sets. To
fulfill maximality we select compatible trees that are maximal in
the sense of set-inclusion, i.e., no variable can be added to C with-
out introducing cycles. Figure 2b shows such a maximal coordinate
set. Any two coordinates not sharing a link are separated by at least
one fixed variable. In Figure 2c we added one more variable to C,
which creates a conflict marked in red: The edge partition require-
ment forces the red edge to be in A, but this violates acylicity.
Thus, the tree in Figure 2b is already maximal. This “separated by
at least one fixed variable”-insight will be used in Section 6.1 where
we describe our parallel tree sampling implementation.

Next, we show how such a subproblem—a tree MRF with
dependencies—can be solved to optimality if no label costs M, are
used. We deal with label costs in a separate section afterwards.

4.2. Solving Tree MRFs with Dependencies via Dynamic
Programming

Our solution of Equation (1) follows Veksler [Vek05]. We assume
rooted, directed trees as input. Let i be a tree node, p; its parent, ¢;
its children, and ©; the nodes connected to it via dependencies. For
a leaf i, the energy of its optimal labeling f(i) can be tabulated for
all feasible parent labels ¢ € L:

E(f(i):lp) = ?élg (Di(£)+v{p[7i} (£P7€)+d§3iv{iﬁd} (&f(d)))
3

We now proceed up in the tree with the following recurrence. Node
i is an inner node and f (i) is the labeling of the subtree rooted at i.

E(f@):£p) = min (Di(0) + Vi (6.0 + ¥ Viiay (1(d))
’ deD;

+ ¥ E(fe):0). @)

ced;
Hence, an inner node can be processed and tabulated for all feasible
£p if all its children’s E(f(c);¢) are tabulated. The root is treated
like an inner node but without the parent term Vy, ;1. After comput-
ing its minimal energy, we obtain the tree MRF’s optimal labeling

Algorithm 1 Local search scheme (one sweep) for tree MRFs with
label costs with initial set £’.

1: e+ o0

20 AL

3: for { € L do

: A+~ AU{l}
fa < labeling by DP restricted to A
reduce labels not used in fa from A
if E(fa) < e then
e« E(fp)

9: else
10: A — AN\ {4}
11: end if
12: end for
13: return A

AN N

by traversing the tree top-down with lookups in the E table. This
dynamic programming instantiation has no cost function restric-
tions. Its complexity is O(|£|*Dmax) (Dmax is the maximal degree
of nodes in M). For some cost function classes one could further
reduce the complexity to O(|£| Dmax) for tree MRFs using fast dis-
tance transformations as in Felzenswalb and Huttenlocher [FHO6].

4.3. Label Costs

Equations (3) and (4) are based on the locality of unary and binary
costs for subtrees. Label costs, on the contrary, are global decisions
in the sense that using a label in one node during optimization in-
fluences all other nodes. As Delong et al. [DGVB12] show, intro-
ducing label costs makes even tree-shaped MRFs N P-hard.

Including label costs into the dynamic programming process in
a way that loses the optimality guarantee poses certain problems:
When considering the leaves in Equation (3), label costs can dom-
inate the unary and binary costs, thus forcing the solution to the
least-cost label, ultimately ignoring the localized costs, leading to
low-quality solutions. Instead, we strive to avoid these localized
decisions by borrowing an idea from o-expansion: Restricting the
set of feasible labels in subproblems. The rationale behind this can
be explained by the following idea: Let f* be the optimal solution
of the subproblem in Equation (2). Then there is a corresponding
optimal label set A%.. If we had this set at hand, setting £ := A%
and using dynamic programming as usual—without label costs—
delivers the optimal solution including label costs. Intuitively, re-
stricting the label set means the costs have already been paid for all
labels of the solution, hence using a label comes for ’free’.

To approximate A}t* we propose a greedy local search algorithm
(see Algorithm 1 for pseudocode): We start with an initial label set

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's 177

A, e.g. of size 1, and iterate over £. Adding each label, we deter-
mine the optimal solution of the new subproblem. If the resulting
solution has lower costs according to Equation (1) than the current
solution, the label is permanently added to A. These sweeps over
L are repeated until no further cost reduction is possible.

5. Heuristics

In addition to the presented, generic BCD scheme we include two
heuristics into our solver to improve solution quality and speed.
Both yield tree subproblems that are solved as shown above.

5.1. Spanning Trees

Our BCD scheme respects the edge partition requirement to guar-
antee monotonous energy decrease. Given a maximal acyclic coor-
dinate set, every extension of it leads to cycles in the subproblem
and we loose tractability—if we respect the partition requirement.
To allow for steeper energy descent we propose to drop the par-
tition requirement by removing some links from the subproblem
while adding the maximal amount of coordinates, i.e. C = P.

Removing only the minimum number of links necessary for
acyclicity yields a spanning tree on the original MRF as in Vek-
sler’s approach [Vek05]. Her approach is, however, non-iterative
and does not include information from a previous assignment—the
previous BCD iteration in our case. Thus, to iteratively improve a
prior labeling f, we propose to replace removed links by depen-
dencies on auxiliary variables. For each of the removed links {i, j}
with i < j, we modify the subproblem as follows:

1. Add auxiliary variable i’ (called copy of i) to X.
2. Set the assignment £(i’') to f(i).
3. Add a dependency {i’, j} to Na.

Figures 2d and e outline the result. The copies force the coordi-
nates to respect the prior labeling f via dependencies. Unless f
was a local optimum of M, the optimization will produce label
disagreements between coordinates and their copies. Thus, the sub-
problem’s objective is incompatible with the original MRF’s ob-
jective, leaving us with no formal guarantees. This implies that its
effectiveness can only be determined by experimental evaluation.

5.2. Region Graphs

The basic BCD scheme and spanning trees both operate on single-
node granularity, i.e., they calculate dynamic programming tables
per node. Many applications such as stereo or texturing favor, how-
ever, piecewise constant or smooth solutions where large MRF re-
gions have equal or mostly equal labels. In this case we can speed
up the optimization by grouping nodes, thereby changing the MRF
graph and adapting it to the inherent regularity of the problem.

This approach is often referred to as variable grouping (e.g.,
Kim et al. [KNKY11]) and is a standard approach in computer vi-
sion optimization. It is particularly often used in multigrid frame-
works [FHO06, BG12] that employ a whole hierarchy of variable
groups, propagating information about possible solutions through
the layers. While the concept of grouping variables and optimizing
them as if they were one variable is intuitively clear, the method

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

for selecting the groups-to-be is of vital importance. Mostly, vari-
ables are grouped upfront based on topology [FHO06], cost func-
tions [KNKY11], or based on a given assignment.

In our implementation, we opt for the latter: To facilitate the for-
mation of large, homogeneous label clusters, we group adjacent
variables that have the same or a similar label (depending on the
prior). In the resulting region graph we represent such clusters with
a single node and add edges between these region graph nodes such
that the original topology is reflected: If two adjacent variables end
up in different clusters, we connect their region graph nodes by an
edge. Unary and binary costs are added up accordingly.

For optimizing the region graph we then execute either a BCD
or a spanning tree step and propagate the resulting labels to the
corresponding variables in the full MRF. Iterating this successively
fuses smaller regions, yielding large homogeneous regions.

6. Parallel Implementation

Now that we have all four algorithmic building blocks (coordinate
set selection, dynamic programming on trees, spanning trees, and
region graphs) at hand, we give a short overview of how these are
combined (see Figure 3): To quickly reach the neighborhood of
high-quality solutions, we initialize the MRF’s labeling with a sin-
gle iteration of our spanning tree heuristic without dependencies
(since there is no prior labeling). With the result we then optimize
region graphs until they fail to decrease the energy. Since region
graphs cannot be applied for priors that do not prefer homogeneous
regions, our implementation detects this case and automatically
skips region graph optimization if necessary. The solution now ex-
hibits large homogeneous regions, and further energy decrease can
only be achieved by exchanging nodes between regions. Therefore,
we alternate between five iterations of spanning trees with depen-
dencies to disturb regions and one region graph iteration to combine
new regions. When these methods do not yield further improve-
ments, inclusion-maximal trees are used to refine the solution. In
terms of the solution space, using spanning trees can be thought
of a step that could potentially worsen the solution, but escapes an
otherwise enclosed neighborhood; whereas the inclusion-maximal
trees represent classical coordinate descent.

All four building blocks can be efficiently implemented on
many-core architectures. In the following we describe our imple-
mentation, not focusing on a particular architecture but assuming
a generic, SIMD-structured machine with the following features:
The available processing elements (PE) can be divided into groups.
PEs within a group can share local, fast memory. All groups share
the main memory and can perform simple atomic operations on it.
Many popular platforms such as GPUs, FPGAs, Xeon Phi or multi-
core CPUs satisfy these requirements. We implemented our algo-
rithm for CPUs using Intel’s TBB runtime and GPUs using CUDA.

As all following algorithms operate purely on graphs—the
MRF’s topology or subsets thereof—we mostly use the terms
graph, tree, node and edge instead of optimization-specific terms.
To represent the MRF’s topology, we use an adjacency list structure
packed as structure-of-arrays in device memory.

178 D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's

skip (if not piecewise constant/smooth)

skip (if not ...)

5 iterations of
maximal, acycl.
coordinate sets

5 iterations
of spanning
trees with
dependencies

spanning
tree w/o
depen-
dencies

energy
decrease?

energy
decrease?

energy
decrease?

(b)

1 1

Figure 4: Sampling maximal tree coordinate sets: (a) Markers on a
non-maximal coordinate set. (b) Concurrently adding the two red
nodes causes an edge partition requirement violation (dashed red).

6.1. Sampling Maximal Acyclic Coordinate Sets in Parallel

We now describe our parallel coordinate set selection algorithm that
runs in O(|P|) steps and later show how spanning tree selection is
derived from this. We start with the full MRF graph as input and
then select nodes as coordinates such that the graph formed by the
coordinates and links is a maximal, rooted, directed tree that obeys
the edge partition requirement. We start with an empty coordinate
set Cp and iteratively add nodes that violate neither acyclicity nor
the edge partition requirement (recall Section 4.1 and Figures 2b
and 2c about both requirements). When adding a node to C both
requirements can be formalized as a necessary condition:

Invariant 1 Let C be a (not necessarily maximal) acyclic coordinate
set. A node i is a candidate for inclusion into the coordinate set if
and only if it is a neighbor of at most one node in the current tree.

If Invariant 1 does not hold for a node (such as the bottom right
node in Figure 2c), it is adjacent to at least two nodes in the current
tree and its inclusion would violate either acyclicity or the edge par-
tition requirement. For serial execution, the invariant is necessary
and sufficient. We add node after node until there is none left sat-
isfying the invariant. Note that the resulting tree is not unique and
depends on the node adding order. We make use of this to avoid get-
ting trapped in local minima by sampling coordinate sets uniformly
at random, thereby optimizing on varying subproblems.

To obey Invariant 1 during serial execution we can simply use
counters for each non-coordinate counting the number of adjacent
coordinates. However, for parallel execution the invariant is not suf-
ficient and using the counters fails when nodes are added simulta-
neously, as illustrated in Figure 4: In Figure 4a, the black nodes and
links form a non-maximal coordinate set. All nodes not in the tree
store a counter for adjacent tree nodes. All nodes having a counter
of zero or one are candidates for inclusion into the tree. However, if
both nodes at the bottom with a counter of one are added at the same
time, the dashed red edge in Figure 4b connecting both nodes leads
to a cycle in the resulting subproblem. Thus, we need to add a sec-
ond concept on top of the counters. The first idea coming to mind is
locking certain regions around nodes. Since we explicitly support
irregular inputs, locking a minimal number of nodes in each step is
not straightforward. Therefore, we propose an alternative based on

Algorithm 2 Parallel algorithm for sampling maximal, acyclic co-
ordinate sets (code for one SIMD unit identified by its id, working
on qUeues Win, Wout)-

1: i< win(id)

2: Phase I: try growing a new branch

3: if i successfully locked then

4: select random adjacency table entry e, where r € [0,d(i)) NN
5: J < neighbor of i via e,

6: if j successfully locked and j not in tree and m(j) < 2 then

7 .

8

p(j) i
put j into wou if dy(j) > 1
9: release j’s lock
10: end if
11: if dy(i) > 1 then
12: swap e, with adjacency table entry at d (i) — 1
13: dp(i) < dy(i) — 1
14: put i into wout
15: end if
16: release i’s lock
17: end if

18: Phase II: update markers and detect collisions
19: for n € N(j) do

20: if 7 in tree then

21: record conflict (j,n)
22: end if

23: m(n) < m(n)+ 1 (atomic)
24: end for

25: Phase III: resolve conflicts

26: (c1,c¢2) < conflict for 1d

27: ¢* +random{cj,cp}

28: if ¢* in tree then

29: remove ¢* from tree (invalidate parent)
30: end if

trial and error. We describe this algorithm in textual form, referenc-
ing the pseudocode in Algorithm 2 by line numbers for clarity.

We start with an empty coordinate set and extend it in rounds,
growing a tree step by step. To organize the growing process, we
keep track of two work queues, w;j, and wout, which switch their
roles in every iteration. The queue wy, contains the nodes that are
already in the tree and have at least one adjacent non-coordinate
node. We call them gateways. We parallelize over this queue’s con-
tent, each PE selecting one node from wj, in each round.

Having selected a node, each PE locks its node i using an atomic
exchange instruction. If locking was successful, an adjacent inclu-
sion candidate j (i.e., a node with counter < 2) is chosen at ran-
dom (Algorithm 2 line 4). If the PE then also obtains j’s lock, j
and the edge {i,j} are included into the tree. This constitutes a
round’s first of three phases: growing. At this point the case illus-
trated in Figure 4b (a violation of Invariant 1) may have happened.
In the second phase—checking—the markers of nodes adjacent to
the newly added nodes are updated (line 23). If we encounter an
adjacent node that is in the tree as well, we found the case from
Figure 4b and record that node pair as a conflict (line 21). In the
final phase—resolving—each PE selects one of the reported con-
flicts and resolves it by removing one node of the conflicted pair
from the tree (line 29). Which of the two gets removed is chosen
randomly to rule out selection bias. Markers of adjacent nodes do
not need to be updated: Nodes once removed from the tree already

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's 179

have two neighbors in the tree and will keep violating Invariant 1.
After all three phases, nodes with neighbors that could be included
into the tree, are pushed to wout and both queues change their roles.

One algorithm step can cause major branch divergence and hurt
performance especially on SIMT systems such as GPUs: selecting
an adjacent node with marker <2. A naive implementation requires
a linear search through each gateway’s adjacency list, which causes
uneven workload on irregular graphs. To avoid this, we propose
modifying the adjacency lists in the growing phase (lines 11-15):
We keep all edges to tree inclusion candidates at the list’s front
and set the node’s degree d to the number of inclusion candidates.
To achieve this, after growing along edge (i, j) we modify i’s ad-
jacency list by swapping j with the element at position d — 1 and
decrease d by one. By packing edges to inclusion candidates to the
adjacency list’s front we can select a random inclusion candidate
in constant time, and each edge between a gateway and an inclu-
sion candidate is considered at most once in the whole algorithm.
During execution of the algorithm, invalidities may arise from mod-
ifying only one node’s adjacency table per PE, but not necessarily
its adjacent node(s)’ tables. In this case adjacency table entries rep-
resenting edges to invalid nodes are dangling, but we detect this in
a later iteration and remove them on demand. This scheme avoids
costly searching for nodes in their respective adjacency tables.

Spanning Trees can be grown similar to coordinate sets, but since
they clearly violate Invariant 1 anyway, we drop the checking and
resolving phase. Only random gateway selection and growing re-
mains. Since for spanning trees C =P holds, we can count nodes
not yet in the tree and terminate early when that counter reaches 0
regardless of the queue’s content. After termination, we just ignore
all edges that were never traversed.

6.2. Creating Region Graphs in Parallel

Our region graph heuristic groups nodes in a cost-sensitive manner,
hence conditions for grouping nodes into supernodes depend on the
input energy. For smoothness-enforcing priors grouping adjacent
nodes that currently have the same label is the natural choice. We
now describe a massively parallel procedure for this case. Others
can be constructed accordingly.

The key step in region graph construction is assigning a common
ID to all nodes that are to be fused. Initially, we assign a unique ID
to each node. We then proceed iteratively: In each iteration, each
MREF edge is assigned to one PE which checks whether the incident
nodes should be fused according to the fusion criterion. If so, their
current IDs are set to the minimum of both nodes’ previous ID.
Iterating this until no more changes occur leads to all nodes in a
future supernode having the same ID. Next we collect all these IDs
and map them to a contiguous sequence of supernode IDs: All PEs
write their current ID into a list and we sort this list. In this sorted
list L; we check each position i with a separate PE, create a new
list L, of the same size, and set L (i) to 1 if Ly (i) # L1(i+ 1) and
0 otherwise. Using the parallel primitive of exclusive scan on Ly,
we finally obtain the contiguous list of supernode IDs. Given each
node’s ID from after the iteration stopped (which we save in device
memory while processing L and L), we use the resulting mapping
from L; to L; to their respective new supernode IDs.

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

Algorithm 3 Organization for bottom-up tree dynamic program-
ming for a group of PEs.

: i 4 id for current node
1 p < idof i’s parent
: optimize(i, p):
Ly < p’s set of feasible labels
:if |£,] > |Li] then
get spill-over memory from stash for DP(i, -)
end if
s forly, € L), do
9: run Algorithm 4 for (i,£,)
10: end for
11: d(p) +d(p)—1
12: if d(p) == 0 then

0N U A WN —

13: i+p

14: p < id of i’s parent
15: goto optimize(i, p)
16: end if

After obtaining supernode IDs for every node we can construct
the graph of supernodes and sum up the supernodes’ unary costs.
To stay compatible with the original energy function, we add the
binary costs of edges inside a supernode to the supernode’s unary
costs. Also, we sum up binary costs of multiple edges between su-
pernodes and assign them to the corresponding superedge.

6.3. Solving Tree MRFs with Dependencies in Parallel

After sampling a coordinate set, we use dynamic programming to
solve the resulting subproblem. Our implementation follows rela-
tively straightforward from Equations (3) and (4). In general we
follow Veksler [Vek05] and restrict this section to presenting the
technical details of GPU parallelization.

As Equations (3) and (4) suggest, we can compute all E(f(i);£p)
in parallel over the £,s and handle different branches of a subtree
in parallel up to the subtree root. We do this as follows (see Algo-
rithm 3 for pseudocode): On the leaf level each node i is optimized
by one PE group. Within a group, each PE performs the optimiza-
tion of one feasible parent label ¢, (Algorithm 3 line 9). For each
non-leaf we maintain a counter of unprocessed children which a
PE group decrements atomically when it finishes computation on a
child (l. 11). The PE group setting this counter to 0 adopts the node
for optimization (1. 12ff.). This communication-less scheme offers
enough independent tasks as long as the tree width and |£| are large
enough. If |£| is particularly large, we assign multiple labels to one
PE. By sharing unary cost tables and feasible label sets among a
group’s PEs we benefit from high-bandwidth local memory.

After filling the dynamic programming table DP and saving the
indices of minima in a separate index table, we execute a top-down
traversal on the tree to find the optimal solution’s corresponding
labeling. Algorithm 4 implements the processing of a leaf or inner
node in the tree—according to both Equations (3) and (4)—in a
straightforward manner. Again, the tree’s width bounds the number
of independent task. In most applications, the first stage of filling
the DP and index tables offers enough work to saturate the GPU. In
contrast, the second stage of climbing down the tree and assigning
labels according to the index tables suffers from its inferior ratio of
overhead to computation.

180 D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's

Algorithm 4 Parallel dynamic programming for a node i and table
DP(, ¢), i € P,{ € L;; PE with parent’s label £.

1: emin < 00

2: for { € L; do

3: e+ Dj(0)

4: €<—€+V{p'i}(£7[p)
5: for c € ¢; do

6: e < e+DP(c,{)
7. end for

8: ford € ©; do

9: E(—eJrV{i?d}(Zd,Z)
10: end for

11: emin < min{e, eyin }
12: end for

13: DP(i,{p) < emin

The proposed approach is seemingly easy and work-balanced if
all (or most) nodes share the same label set. If they do not, per-node
label sets introduce a need for memory management, as DP table
sizes vary between nodes. To avoid global synchronization when
using the GPU’s heap, we reserve a contiguous chunk of device
memory as spill-over for local DP tables. Additionally, we allow
each parent to overwrite its children’s DP cost tables. Whenever a
parent’s DP table needs more space than the children’s tables com-
bined, we provide a chunk from this spill-over, which in turn is
organized as a ring-buffer. A small spill-over area usually suffices
and we can detect overwrites; in this case we repeat the computa-
tion with a larger amount of spill-over for an exact solution.

Finally, in order to avoid bottlenecks near tree levels with low
tree width, we increase the number of independent tasks by sam-
pling forests instead of trees in the algorithm of Section 6.1. To
ensure that the forest still maintains acyclicity and the edge parti-
tion requirement, we start with a random set of roots that obeys the
edge partition requirement, store their IDs in the initial queue wj,
and continue the algorithm of Section 6.1 as usual.

7. Experimental Evaluation

We evaluate a GPU (using CUDA) and a CPU implementation
(using Intel’s TBB and manual SSE vectorizations) of our algo-
rithm on a dual Xeon E5-2650 (256 GB RAM) and a GeForce Ti-
tan X (12GB VRAM, 3072 CUDA cores). We compare against
some of the computer vision community’s most popular solvers:
GCO [BVZ01], FASTPD [KTO07], Belief Propagation (BP) and
TRW-S [Kol06], Chen and Koltun’s BCD [CK14] (CK-BCD),
and o-expansion with two different parallel max-flow algorithms:
DGCO [SH13] and GRIDGCO [JSH12]. We omit parallel BP and
TRW-S versions since Kolmogorov [Kol06] noted they generally
perform worse than their sequential counterparts. For all competing
solvers we wrapped the respective authors’ downloadable code.

Since we propose a solver applicable to the vast majority of large
datasets, we supply costs in their most general form: as sparse ta-
bles in memory. For a fair comparison we do this for all solvers.
Using costs modeled by a function limits a solver’s applicability
(e.g., if costs were learnt). In this paper we concentrate on general
solvers, but note that Kappes et al. [KAH*15] observed that spe-
cialized solvers can be several orders of magnitude faster.

We evaluate on a variety of datasets. Not all solvers are applica-

ble to all datasets due to restrictions on cost type (e.g., (semi-)met-
rics for GCO and FASTPD), restrictions on topology type (grid for
GridCut and CK-BCD), or memory consumption beyond our test
systems’ capabilities. We omit solvers from the plots that fail to
find a feasible solution within reasonable time. Since we zoomed
in to focus on important plot parts, some solvers’ results may not
be visible, which we mark with ‘*” in the graph legends in Figure 5.

Quantitative performance evaluation requires datasets with dif-
ferent properties. Since we especially focus on large-scale opti-
mization, we prefer large datasets. To quantify dataset size we use
the average number of feasible labels per node times the number of
nodes. We use some of the largest benchmark [KAH* 15, SZS*08]
datasets: Teddy, Tsukuba, Venus, Brain_9mm, Brain_5mm, and
Brain_3mm. Since they all have a grid topology and are two orders
of magnitude smaller than some datasets arising from real-world
applications, we add further datasets, which we describe shortly
with respect to their challenges in the following. The supplemen-
tal material gives key figures about their size etc. (Table A.1) and
descriptions of the applications they arise from (Section A.1).

Our sparse plane sweep datasets have grid topology, sparse
unary costs (i.e., not all labels are valid for all nodes) and the two
larger instances are much larger than all of Kappes’ datasets that
we tested. Our mesh segmentation datasets have irregular topol-
ogy, their sizes range from small (4- 103) to medium (4-10°), they
have small label sets which is challenging on the GPU, and one
of them (Dragon with label costs) uses label costs. Our fexturing
datasets have irregular topology (see Figure 1), their sizes exceed
Kappes’ datasets by far (3.5- 107 to 7-108), their label set is large
and unary costs are sparse. Our graph coloring datasets have irreg-
ular topology, are also much larger than Kappes’ datasets (up to
2.4-10%), have anti-metric binary costs, and one instance employs
label costs. Note that the combination of anti-metric binary costs
with label costs is not supported by any of the competing solvers.

We now discuss our GPU and CPU results with a focus on the
GPU. All plots in Figure 5 have logarithmic time on the x-axis and
relative energy offsets to the best solver on the y-axis. Due to space
considerations we only show a subset of all datasets. The supple-
mental material contains larger plots for all datasets (Figures A.1,
A.2, and A.3), absolute final energies (Table A.1) to avoid bias in
the plots from adding large constant offsets as well as a more in-
detail evaluation for each class of datasets (Section A.2).

On small datasets such as Brain_5Smm (Figure 5b) or Dolphin
(5e) our solver is slower than the best competitors since the low
number of nodes or labels does not offer enough parallelism to
fully utilize the GPU’s processing groups. Also, for many datasets
(Venus (5a), Brain_3mm (5c), Planesweep_1280_1022_96 (5d),
Dolphin (5e), Dragon (5f), and Citywall-20 (5g)) our solver’s final
energy is higher than the best competitor’s. This difference is, how-
ever, usually very small. Especially for plane sweeping we refer to
Meltzer et al. [MYWO5], who argued that in stereo instead of the
“last percent” in energy one should rather improve the stereo model
to obtain results closer to ground truth. A visual comparison in the
supplemental material’s Section A.3 confirms this observation. In
some problem classes, e.g. stereo, dual solvers such as TRW-S suf-
fer from loose LP relaxations; it is especially here where primal
solvers such as ours can excel (see also Kappes et al. [KAH*15]).

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's

(a) (b))
Kappes et al. - Venus Kappes et al. - Brain 5mm
+1.00% . +0.010%
. [Ours-GPU —— : Gurs - GPU —+—
. Ours - CPU —x— ! Ours - CPU —x—
\ 8P H 8P
! TRW-S —8— : TRW-S —8—
+0.80% ¥ GCO - -= - +0.008% i GCO - - -
! FASTPD H FASTPD
\ DGCO - - - | DGCO --# -
' GRIDGCO - & - p| H |
+0.60% . CKBCD +0.006% :
\%\ \ : '\
+0.40% L b! +0.004% 1R
I\
+0.20% +0.002% s
~ |
+0.00% . +0.000% Lot - .
0.1 1 10 1 10
e)) f .
© Mesh segmentation - Dolphin ® Mesh segmentation - Dragon
+0.80% +0.50%

Ours - GPU —+—
ours - CPU* ——
BP

+0.70%

+0.60%

\ Ours - GPU —+—
\ Ours - CPU* —x%—
\ BP —¥%—
\ TRW-S —8—
+0.40% \

+0.30% \ \

+0.50%

+0.40%

+0.20% \ \ &

.-
-

+0.30%

+0.20%

+0.10%

+0.00%

\
+0.10% :.\

+0.00%
0.001 0.01 0.1

; .
® Kappes et al. - Knott-3D-300 @
+80.00%

+80.00%

(k) (O]

ours - GPU —+—

+70.00% +70.00%

+60.00%

+60.00%

+50.00% \

+50.00% \

+40.00% \

+40.00%

+30.00% \ +30.00% \

+20.00% \

+20.00% [

\ ———— ~-—--ﬂ
+10.00% +10.00%

+0.00% L \ L \’\\ +0.00% L L \'
1 10 1

100 10 100 1000

181

c) d
© Kappes et al. - Brain 3mm @ Plane-Sweep Stereo - 1280 1022 96
+0.20% +4.00%
' v Ours - GPU ——
H A ours - CPU —x—
| +3.50%
! . TRW-S —8—
| [GCO - - -
+0.15% ! +3.00% - FASTPD
| o N DGCO - -# -
' I\ 1 GRIDGCO = =& -
H +2.50% » i <
+0.10% + +2.00%
i
— \\“)
: +1.50%
1 Ours - GPU —+—
+0.05% i Ours - CPU —x— +1.00%
| BP
: TRW-S —&—
| GCO - -m - +0.50%
' FASTPD
[DGCO* - - -
+0.00% L +0.00%
1 10
)) h
(® Texturing - Citywall-20 ()

+4.00%

+30.00%

Ours - GPU —+—

T\

+3.50%

+25.00%
+3.00%

+20.00%

+2.50%

+2.00%

+15.00%

l‘

.

1

.

w
+1.50% \
x +10.00%

+1.00%
]

MWW +5.00%
+0.50% \ \\A’\u\‘m
+0.00% — y

10

+0.00%
100 1 10 100 1000

Graph Coloring - 15M nodes, 4 labels Graph Coloring - 15M nodes, 16 labels
+300.00% +1.00%

Ours - GPU —+—
Ours - CPU —»—
BP —%—

TRW-S —8—

+250.00% |- +0.80%

\ &\ +0.60%
+150.00% \ \
\ \\ +0.40%
+100.00% \ X&M \ \
+0.20%
e \\)
+0.00% -
10

+0.00%
100 1000 10

+200.00%

100

Figure 5: Relative energy difference to best solver’s final solution over logarithmic time (in seconds) for different datasets. Figures A.1, A.2,
and A.3 in the supplemental material additionally show datasets that we had to exclude here for brevity.

On very large datasets our solver outperforms the others by far:
For Reader-100 (Figure Sh) it provides a better energy after 4 s than
GCO (one of only two other solvers handling datasets of this size)
does after 1.4 h. For 3D segmentation problems (5i and 5j)—both
symmetric, purely smoothness cost based problems with extremely
high label count of 4,000 resp. 16,000—we dominate the only com-
petitor GCO in terms of solution quality. In both cases however, due
to the size of the DP tables, the GPU reverts to solely global mem-
ory based computation. For Graph Coloring (5k) both competitors
only found a solution that is 250 % worse than our solution.

We want to stress that in contrast to other solvers there is no
dataset where our solver failed completely in terms of runtime or
energy. Further, there is a range of datasets that many competitors
cannot handle due to cost type, topology, or size. Notably, no com-
petitor handles the combination of label costs and non-metric bi-
nary costs in Figure 7c. Especially among the parallel solvers (CK-
BCD, DGCO, and GRIDGCO) our solver’s generality stands out.

7.1. Influence of Heuristics and Randomization

In addition to coordinate sets our solver uses the spanning tree
and region graph heuristics. This raises the question of how much

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

(@) plane-sweep Stereo - 320 256 96 (b)

+3.00%

Kappes et al. - Teddy

Both heuristics ——

Only Region Graph —x—

Only Spanning Tree —»
No heuristics —8—

+2.50% [+0.50% [

No heuristics —&—

+2.00% - +0.40%

N

+0.20% |-

+1.50% [

+1.00%

+0.50%

+0.10% [

+0.00% - - +0.00% -
0.1 1 10 1 10

Figure 6: Heuristics’ influence on smallest plane sweep and Teddy.

the performance can be attributed to them, especially compared to
Chen and Koltun’s [CK14] scanlines. Since the success of heuris-
tics is problem-dependent, the answer varies between datasets. In
plane sweeping (Figure 6a) there is 1.5 % difference between the fi-
nal results with both and with no heuristics, which is mainly due to
the region graph enforcing large homogeneous regions. The span-
ning tree heuristic only leads to a faster descent, not to a signifi-
cantly lower final energy. The green and the red line in Figure 6a
show the results when only spanning trees or region graphs are used
before continuing with coordinate sets. For the Teddy (Figure 6b)
the heuristics do not influence the result much.

182 D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's

(Zl) Label cost on trees - fixed to 50 labels (b) Label cost on trees - fixed to r = 50

16000 4600 |-

14000 4400 i

12000 i
4200

¥
11

3800

10000

8000

6000

4000 3600

1 2 4 8 16 32 5 10 15 20 25 30 35 40 45 50
Cost ratio r Number of labels

(C) Graph Coloring - 15M Nodes, 16 Labels (d) Mesh Segm. - Dragon w/ Label Costs

Wo [C —— Ours - GPU —+—
with LC —se— +6.00% [Gco

+5.00% [

+0.40%

+0.30%

il
I\
\

0.25% \ +4.00% [

+0.20% \\\\ +3.00%
015% NG
\k +2.00%
+0.10%
\\ +1.00%
+0.05%

+0.00% L +0.00% L
10 100 1 10

Time in sec Time in sec

Figure 7: Label cost approximation performance: (a) and (b) are
randomized tests (y-axis: absolute energy), (c) and (d) are real-
world datasets (y-axis: energy relative to best solution).

These two datasets reflect the heuristics’ properties quite well:
In our experience, the region graph leads to a lower final energy,
while the spanning tree heuristic only contributes to speed. Espe-
cially in graph coloring region graphs are not applied at all and yet
we outperform TRW-S and BP. As our goal was rapid descent to-
wards a competitive solution, we use the heuristics to speed up our
BCD scheme. Without them, performance depends strongly on the
dataset. We conclude that the combination of all three approaches
is the key to good performance on different kinds of datasets.

As described in Section 6 each iteration of our solver samples a
new coordinate set. This circumvents the sensitivity to local min-
ima usually associated with tree MRFs. As mentioned, we initialize
the process with a randomly sampled spanning tree without depen-
dencies. Further experiments show that the initialization has only a
negligible influence on the final results, independent of the dataset.

7.2. Evaluation of Label Costs

In Section 4.2 we described an algorithm that handles label costs on
trees with local search on candidate label sets. We now examine its
behavior by executing a range of experiments on random trees and
trees from real-world problems. To examine the quality of approx-
imate solutions, we first introduce upper and lower energy bounds
on the optimal solution: Removing label costs from Equation (1)

E(f)=Y Di(f)+ Y Vi (f@).f0), ®)

i€P {i,j}eN
we obtain the bounds of Proposition 1:

Proposition 1 Let f be an optimum of Equation (1) and f an opti-
mum of Equation (5). The following holds for non-negative unary,
binary and label costs (proof in supplemental material Section B.4):

E(J)<E(f)<E(f)<E(f)+ Y, M. (©)

el

An acceptable algorithm should at least be better than the upper
bound. Both bounds can be calculated explicitly: For the lower
bound we optimize Equation (5) without label costs and for the
upper bound we add the costs of all labels. The bounds are closer
to the global optimum if the ratio between label costs and unary/bi-
nary costs is small. Furthermore, if label costs (which are global)
are much higher than most unary/binary costs (which are local),
decisions done in early stages of the local search may turn out
to be suboptimal in later stages. In order to quantify the behav-
ior of our label cost approximation, we introduce the ratio r =
Yiep Loer Di(0) / Ly My between unary and label costs as key
property of MRFs. Another key property is the number of labels.

In Figures 7a and b we show experiments where we analyzed
these properties’ influence. Each data point was generated by run-
ning 100 independent runs on random trees with 10° nodes. In Fig-
ure 7a we fixed the label count to 50 and varied r (x-axis). With
growing r the label cost influence declines and the gap between up-
per and lower bound closes. The local search shows constant per-
formance independent of r: It is always better than the upper bound,
in many cases strongly superior. In Figure 7b we fixed r to 50 and
varied the label count (x-axis). With more labels the gap between
the bounds widens but local search shows constant performance: It
is always better than the upper bound. Quality-wise, we conclude
that the local search is useful for handling label costs on trees.

Beside these synthetic experiments we include two real-world
datasets with label costs in Figures 7c and d. The graph coloring
problem in 7c¢ has a very small r. Our label cost algorithm finds
a conflict-free labeling with only 9 labels (instead of 16 as deter-
mined by the algorithm without label costs). In the mesh segmen-
tation problem in Figure 7d r is of medium value. There are only
5 labels, hence the multiple optimization runs of the local search
scheme have no negative influence on the result. Thus, we outper-
form GCO in terms of quality and speed.

7.3. Discussion

Creating an efficient massively parallel software system poses
many challenges. For the case of our MRF solver, we identified two
key aspects for high performance: availability of a sufficient num-
ber of SIMD tasks to avoid under-utilization and efficient strategies
to cope with frequent random memory access. Our GPU imple-
mentation addresses both: Since we parallelize over the feasible
labels per node in the dynamic programming, the number of fea-
sible labels determines how many SIMD tasks can be distributed
on the GPU’s PE groups. Given a sufficient ratio between tasks and
PEs, the hardware can hide memory latency with computation. This
is crucial for the performance of the memory-intensive dynamic
programming procedure. Fast on-chip memory can furthermore be
used for efficient data sharing among SIMD tasks. We found this
to greatly reduce accesses to device memory. In combination with
modern hardware that is able to coalesce parallel memory accesses,
this helps to reduce the memory bandwidth bottleneck.

8. Conclusion

MREFs are an important and versatile computer vision tool, that can
now be efficiently applied to even larger problems using our solver.

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

D. Thuerck et al. / A Fast, Massively Parallel Solver for Large, Irregular Pairwise MRF's 183

Our goal was to create an algorithm leveraging modern massively
parallel hardware to quickly solve large irregular MRFs. With this
in mind, our evaluation yields two main insights: First, for large
graphs and label spaces our solver is highly effective in terms of
solution quality and speed. Especially the texturing datasets (with
sizes > 107) are very large real-world problems and yet our solver
solves them in under a minute with energies better than state of the
art solvers. Second, on small MRFs we achieve a solution quality
and runtime that is in the worst case only slightly inferior to state
of the art solvers. In fact (and in contrast to other solvers) there
is no dataset where our solver failed completely. It instead fails
gracefully on all tested datasets for which it was not designed.

We combine several interesting features in a single approach
which enables our solver to handle arbitrary (including irregular)
topologies, sparse cost matrices, arbitrary (including anti-metric)
costs and label costs. This makes it applicable even to problems,
where most other solvers cannot be used. Note that dual solvers are
not always an option here, since they tend to be too memory in-
tensive for large datasets or suffer from loose LP relaxations. Our
label cost approximation on tree-shaped MRFs proved to be effi-
cient and can even be applied to other dynamic programming based
techniques such as belief propagation. In future work we plan to im-
prove the coordinate set sampling, which is currently performed at
random and to develop heuristics that guide the sampling towards
the most effective coordinate sets in terms of energy decrease.

Acknowledgements. D. Thuerck and S. Widmer are supported by
the ‘Excellence Initiative’ of the German Federal and State Gov-
ernments and the Graduate School of Computational Engineering
at TU Darmstadt. M. Waechter is grateful for support by the Intel
Visual Computing Institute through the project ‘RealityScan’.

Source Code. The source code for this paper is available at www .
gcc.tu-darmstadt.de/home/proj/mapmap.

References

[AKB*12] ANDRES B., KAPPES J. H., BEIER T., KOTHE U., HAM-
PRECHT F. A.: The Lazy Flipper: Efficient depth-limited exhaustive
search in discrete graphical models. In ECCV (2012). 2

[Bes86] BESAG J.: On the statistical analysis of dirty pictures. Journal
of the Royal Statistical Society. Series B (Methodological) (1986). 2

[BG12] BAGON S., GALUN M.: A multiscale framework for challenging
discrete optimization. In NIPS (2012). 5

[BK11] BATRA D., KOHLI P.: Making the right moves: Guiding alpha-
expansion using local primal-dual gaps. In CVPR (2011). 2

[BVZ01] BOYKOV Y., VEKSLER O., ZABIH R.: Fast approximate en-
ergy minimization via graph cuts. PAMI (2001). 2,3, 8

[CK14] CHEN Q., KOLTUN V.: Fast MRF optimization with application
to depth reconstruction. In CVPR (2014). 1, 2,3,8,9
[COSH13] CRANDALL D., OWENS A., SNAVELY N., HUTTENLOCHER

D.: SfM with MRFs: Discrete-continuous optimization for large-scale
structure from motion. PAMI (2013). 1

[DB08] DELONG A., BOYKOV Y.: A scalable graph-cut algorithm for
N-D grids. In CVPR (2008). 2

[DGVBI12] DELONG A., GORELICK L., VEKSLER O., BOYKOV Y.:
Minimizing energies with hierarchical costs. IJCV (2012). 2, 3, 4

[FCBZ12] Fix A., CHEN J., BOROS E., ZABIH R.: Approximate MRF
inference using bounded treewidth subgraphs. In ECCV (2012). 3

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

[FHO6] FELZENSZWALB P., HUTTENLOCHER D.: Efficient belief prop-
agation for early vision. IJCV (2006). 3,4, 5

[FHM13] FISHBAIN B., HOCHBAUM D. S., MUELLER S.: A competi-
tive study of the pseudoflow algorithm for the minimum s-t cut problem
in vision applications. JRTIP (2013). 3

[JBO6] JUAN O., BOYKOV Y.: Active graph cuts. In CVPR (2006). 2

[JSH12] JAMRISKA O., SYKORA D., HORNUNG A.: Cache-efficient
graph cuts on structured grids. In CVPR (2012). 2, 8

[KAH*15] KAPPES J. H., ANDRES B., HAMPRECHT F. A., SCHNORR
C., NowozIN S., BATRA D., KiM S., KAUSLER B. X., KROGER T.,
LELLMANN J., KOMODAKIS N., SAVCHYNSKYY B., ROTHER C.: A
comparative study of modern inference techniques for structured discrete
energy minimization problems. IJCV (2015). 1, 2, 8

[KMMHO06] KELM M., MUELLER N., MENZE B., HAMPRECHT F.:
Bayesian estimation of smooth parameter maps for dynamic contrast-
enhanced MR images with block-ICM. In CVPR (2006). 2

[KNKY11] KiM T., NowozIN S., KoHLI P, Yoo C. D.: Variable
grouping for energy minimization. In CVPR (2011). 1,5

[Kol06] KOLMOGOROV V.: Convergent tree-reweighted message passing
for energy minimization. PAMI (2006). 2, 8

[Kom10] KoMODAKIS N.: Towards more efficient and effective LP-
based algorithms for MRF optimization. In ECCV (2010). 2

[KPO8] KOMODAKIS N., PARAGIOS N.: Beyond loose LP-relaxations:
Optimizing MRFs by repairing cycles. In ECCV (2008). 2

[KPT07] KOMODAKIS N., PARAGIOS N., TZIRITAS G.: MRF optimiza-
tion via dual decomposition: Message-passing revisited. In /ICCV (2007).
2

[KTO7] KOMODAKIS N., TZIRITAS G.: Approximate labeling via graph
cuts based on linear programming. PAMI (2007). 2, 8

[LRRB10] LEMPITSKY V., ROTHER C., ROTH S., BLAKE A.: Fusion
moves for Markov random field optimization. PAMI (2010). 2

[MYWO05] MELTZER T., YANOVER C., WEISS Y.: Globally optimal so-
lutions for energy minimization in stereo vision using reweighted belief
propagation. In /CCV (2005). 2, 8

[SH13] SHEKHOVTSOV A., HLAVAC V.: A distributed mincut/maxflow
algorithm combining path augmentation and push-relabel. ZJCV (2013).
2,8

[Shi94] SHIMONY S. E.: Finding MAPs for belief networks is NP-hard.
Artificial Intelligence (1994). 3

[SHK*14] SCHARSTEIN D., HIRSCHMULLER H., KITAJIMA Y.,
KRATHWOHL G., NESIC N., WANG X., WESTLING P.: High-reso-
lution stereo datasets with subpixel-accurate ground truth. In GCPR
(2014). 1,2

[STT10] SOLOMON S., THULASIRAMAN P., THULASIRAM R. K.: Ex-
ploiting parallelism in iterative irregular maxflow computations on GPU
accelerators. In HPCC (2010). 3

[Szell] SZELISKI R.: Computer Vision — Algorithms and Applications.
Springer London, 2011. 1, 3,4

[SZS*08] SZELISKI R., ZABIH R., SCHARSTEIN D., VEKSLER O.,
KOLMOGOROV V., AGARWALA A., TAPPEN M., ROTHER C.: A
comparative study of energy minimization methods for Markov random
fields with smoothness-based priors. PAMI (2008). 1, 8

[Vek05] VEKSLER O.: Stereo correspondence by dynamic programming
on a tree. In CVPR (2005). 3,4,5,7

[Vek15] VEKSLER O.: Efficient parallel optimization for Potts energy
with hierarchical fusion. In CVPR (2015). 2,3

[VNO8] VINEET V., NARAYANAN P.: CUDA cuts: Fast graph cuts on the
GPU. In CVPR Workshops (2008). 3

[WMG14] WAECHTER M., MOEHRLE N., GOESELE M.: Let there be
color! Large-scale texturing of 3D reconstructions. In ECCV (2014). 1

www.gcc.tu-darmstadt.de/home/proj/mapmap
www.gcc.tu-darmstadt.de/home/proj/mapmap

