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Figure 1: The fluid letters HPG 2016 (left) are dropped into a basin and cause a splashing effect (right). Our sparse, perspective particle access grid adapts to

the scene (middle).

Abstract

We present a fast and accurate ray casting technique for unstructured and dynamic particle sets. Our technique focuses on
efficient, high quality volume rendering of fluids for computer animation and scientific applications.

Our novel adaptive sampling scheme allows to locally adjust sampling rates both along rays and in lateral direction and is
driven by a user-controlled screen space error tolerance. In order to determine appropriate local sampling rates, we propose a
sampling error analysis framework based on hierarchical interval arithmetic. We show that our approach leads to significant
rendering speed-ups with controllable screen space errors. Efficient particle access is achieved using a sparse view-aligned

grid which is constructed on-the-fly without any pre-processing.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation— 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Lagrangian simulations like Smoothed Particle Hydrodynamics
(SPH) offer high spatial flexibility which is advantageous for
convection-driven flow effects, free surfaces, and dynamic fluid-
object interactions [I0S™14]. However, ad hoc rendering of large
unstructured and dynamic particle sets is still a challenging task.

Several techniques exist to reconstruct smooth surfaces for
SPH-like particle sets [SSP07, vdLGS09, OCD11, AIAT12, YT13,
RCSW14,ZD15]. However, sole surface rendering can only con-
vey the fluid’s geometric shape, but does not provide any infor-
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mation about internal fluid structures, e.g., in convection-diffusion
scenarios. Thus, volume rendering techniques [EHK*06, HLSR0S8]
have to be applied in order to provide full insight into the fluid dy-
namics. In the context of unstructured particle sets, mainly hybrid
splatting-slicing approaches have been proposed so far [FGE10,
FAW10]. Here, particle contributions [Wes90] are scattered onto
axis-aligned [SP09] or view-aligned [FGE10, FAW 10, NMM*06]
texture slices. These slices are then composited front-to-back yield-
ing the final image. Such texture-slicing approaches rely on the
GPU’s rasterization pipeline which makes it very hard to incor-
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porate adaptive sampling mechanisms for further rendering speed-
up. The more generic approach to volume rendering is ray cast-
ing [EHK"06] which, however, requires very efficient particle ac-
cess mechanisms that, in case of dynamic particle sets, cannot rely
on any kind of costly pre-processing.

In this paper we propose an on-the-fly volume ray casting for un-
structured particle data sets. Our ray casting makes use of an adap-
tive sampling scheme to allow for an efficient rendering of large
dynamic particle sets as shown in Fig. 1. In detail, the proposed
rendering approach incorporates the following contributions:

e An on-the-fly sampling error analysis framework based on hier-
archical interval arithmetic for ray bundles which is able to de-
rive strict bounds to the screen space error resulting from locally
adapting sampling rates in lateral and viewing directions.

o A greedy algorithm that optimizes the degree of adaptivity both
in viewing and lateral directions to yield significant speed-ups
for a user-controlled screen space error.

e We enhance the perspective, view-aligned grid known from
texture-slicing [FAW10] to an efficient sparse access structure
for particle data that is constructed on-the-fly.

The remainder of this paper is structured as follows: Sec. 2 dis-
cusses foundations in SPH and volume ray casting. Sec. 3 gives an
overview of our ray casting pipeline. Sec. 4 and 5 explain our sam-
pling error analysis framework applied to determine proper sam-
pling rates. Implementation details are given in Sec. 6. Sec. 7 dis-
cusses the results before conclusions are drawn in Sec. 8.

2. Foundations and Prior Work
2.1. Smoothed Particle Hydrodynamics (SPH)

In SPH, quantity fields are reconstructed by interpolating discrete
particle quantities ¢; in the local neighborhood of sampling posi-
tions x [Mon05]:

0(x) =Y q;ViW;(x). (1
J
Vi~ 1 is a particle’s dynamic volume. We use zero order con-
sistent interpolation (CSPH) to avoid volume underestimation
at fluid boundaries resulting from particle neighborhood defi-
ciency [BKO02]

. Wi(x)
W) = S Vo

where W;(x) = W(||x —x;l||,h;) is a radially symmetric smoothing
function with compact support radius /; [MCGO3].

@

2.2. Volume Rendering

Volume ray casting evaluates a physically-based model of light
transport by treating quantity fields as a participating medium. For
each viewing ray, emission-absorption values are integrated from
the camera through the fluid volume. Considering ray samples
at integer coordinates i = 0,...,N — 1 with associated quantities
Qo,--.,0n—1, discretization of the volume rendering integral de-
fines a ray’s composited irradiance and transparency as [EHK*06]

N— i—1

1 N—1
=Y L []7% and T=T] 75", 3)
i j=0 i=0

i=0

respectively, where irradiance values I; = 1;(Q;) and transparency
values 7; = t7(Q;) are defined via material-dependent transfer
functions T : [0, 1] — [0, 1]. Discrete samples Q; = Q(x(s;)) are dis-
tributed at distances s; € [snear, Sar] along viewing rays, where snear
and s, are the distances to the near and far clipping planes of the
view frustum. Note, transparency values given for a unit reference
length are corrected in Eq. 3 to match the sampling step size As.
In the following, we will omit opacity correction terms to improve
readability but in practice they have to be applied appropriately.

Adaptive Rendering of Grid Structures Adaptive sampling
is mainly applied for data on regular grids [BHMFO08, GS04,
KHW™*09]. Danskin and Hanrahan use importance sampling in or-
der to locally adapt sampling rates [DH92]. Although it is pos-
sible to substantially speed up rendering using importance sam-
pling, it is a stochastic approach and hence it is difficult to cal-
culate explicit bounds for the screen space error. Ledergerber et
al. [LGM*08] introduce a Moving-Least-Squares (MLS) approach
to reconstruct higher order continuous field functions, which can
also be applied to irregular grids. Similar to our approach, Guthe
and Strasser [GS04] estimate screen space errors due to adap-
tive sampling when uncompressing wavelet representations. How-
ever, their approach requires a costly wavelet transform as pre-
computation, which is unfeasible for on-the-fly visualization of dy-
namic particle data sets.

Volume Rendering for Particle Sets In contrast to sampling in
regular grids, efficiently accessing unstructured particle data that
contribute to a sampling position poses quite a challenge. This
is commonly addressed using spacial subdivision structures such
as object-aligned octrees [OKK10]. As all object-aligned access
structures require cell finding logic and may introduce thread di-
vergence, parallelism can be drastically reduced [PGSSO07].

Perspective, view-aligned grids can be employed to achieve
memory coherence and to remove traversal efforts [HMO8]. Start-
ing from a pre-computed multiresolution particle representation
Fraedrich et al. [FAW10] resample particle sets to a perspective
grid for further texture-based ray casting. Their approach adjusts
the sampling step size in viewing direction to be consistent with
the perspectively increasing lateral resolution (see also Sec. 6.1).
In a follow up work, Reichl et al. [RTW13] pre-process the SPH
particle set by resampling it onto an object-aligned octree hierar-
chy before ray casting.

Furthermore, particle upsampling can be applied in order to
reduce the overall particle count, and thus increase rendering
performance. Upsampling operators [APKGO07, ZSP08, HHKO08]
approximate particle subsets by fewer larger particles [HEO3,
FSWO09,FAW10]. Upsampling, however, may introduce visual arti-
facts [BOT01,KAG™*06] and should only be applied to avoid under-
sampling in case particle sizes fall below the pixel size.

Surface Rendering for Particle Sets Scalar field functions are
usually employed to implictly describe the surface which require
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an extra smoothing pass either by redistancing of surface par-
ticles [APKGO7], by distance [SSPO7] or density [OCD11] de-
cay functions or by using anisotropic smoothing kernels [YT13].
For instant rendering, either screen space techniques [ZPvBGO1,
ALDO06, MSDO07, vdLGS09] or direct rendering of the isosur-
face [GSSP10,FAW10] is employed. Recently, binary volume rep-
resentations have been used to efficiently render surfaces of particle
data [RCSW14,ZD15]. Reichl et al. [RCSW14] used attributed bi-
nary voxel hierarchies which, however, have to be pre-computed.
Similar to our approach Zirr and Dachsbacher [ZD15] use a per-
spective data structure that is constructed on-the-fly. However, they
only store entry and exit depths of rays passing through parts of the
fluid and do not allow for volume rendering of scalar fields. Large
data sets consisting of opaque particles can be efficiently rendered
using P-k-d-trees [WJP14]. However, this has not been shown to be
extensible to volume ray casting.

3. Proposed Adaptive Ray Casting Pipeline

Even though we focus on on-the-fly ray casting of dynamic SPH
data sets, our scheme can be applied to any kind of unstructured
particle sets based on local operators for recovering continuous
quantity fields. However, we restrict ourselves to particle sizes
which do not fall below pixel size in screen-space, thus, particle
upsampling cannot be applied.

Our ad hoc on-the-fly ray casting of dynamic SPH particle sets
uses the original particle set “as is” to prevent any additional error
due to re-sampling or interpolating particle quantities onto inter-
mediate data structures such as grids or coarser particles. Also, any
other kind of prohibitive and costly pre-computation is omitted.

The proposed ray casting pipeline comprises five components:

Sparse View-Aligned Grid Structure: Our enhanced perspective

grid subdivides the view frustum into cells that are aligned with
view rays. In contrast to Fraedrich et al. [FAW10], who resample
particle quantities into a dense grid, we use a sparse data struc-
ture to access the original particle data. Figure 2 shows the result-
ing sparse grid structure. The grid is built from scratch in every
frame using only raw particle data as input. The particles are as-
signed to all cells that intersect their volume and only cells that
contain particles are present in the final grid. During ray casting
each cell is traversed by a ray bundle covering Dyy X Dyy pix-
els in screen space. As the cells are aligned with the view rays,
all rays of a bundle traverse the same set of cells in viewing di-
rection. Using an inverse perspective mapping, the perspectively
distorted sampling positions in view space are described in uni-
form sample space (see Sec. 6.1).
Initially each cell contains Dxy X Dyy X D; samples, with Dyy > 1
and D; > 1. Each ray samples D; positions inside of each cell,
however, the sampling error analysis allows to locally reduce the
number of samples in powers of 2. Thus, the sampling level I
corresponds to D/ ple sampling positions per ray in cell C.

Sampling Error Analysis: To locally adapt the sampling rate for
each cell, we introduce a formulation of the rendering equation
based on hierarchical interval arithmetic. Inside of each cell,
we determine upper and lower bounds to irradiance and trans-
parency values due to adaptive sampling. This is efficiently real-
ized by mapping particle data onto one representative ray that is
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Figure 2: Sparse access structure. Cell merging ensures a constant num-
ber of Dyy X Dyy X D, samples per cell. The image plane is split into ray
bundles of size Dyy X Dyy each storing cells C; and Cp in a look-up table.
M, X My x M is the maximum number of cells present in a dense grid.

cast through the cell instead of sampling all nyz rays. The cell
bounds are then composited in front-to back to efficiently predict
screen space errors due to adaptive sampling and to compute an
optimal combination of per-cell sampling levels (see Sec. 4).
We further extend the interval arithmetic so that adaptive sam-
pling in viewing and lateral directions can be combined. To that
end, we calculate a representative irradiance and transparency
for each cell. Lateral adaptivity is then realized by rendering the
cell’s irradiance and transparency as a super-pixel that spans all
pixels the cell covers in screen space (see Sec. 5).

Greedy Optimization: In order to achieve an efficient adaptive
ray casting, the degree of adaptivity has to be maximized for each
cell for a user-defined screen space error tolerance (see Sec. 4.4).
To yield higher speed-ups, the error prediction can be relaxed by
removing the lateral error in the sampling error analysis. This
leads to a performance optimized greedy algorithm which prac-
tically still satisfies the error bounds while allowing for higher
sampling levels in viewing direction and for an alternative super-
pixel rendering (see Sec. 5).

Cell Merging: Consecutive cells in viewing direction that support
higher sampling levels are merged to reduce the number of par-
ticles to be sampled and keep a constant number of samples per
cell (see Sec. 6.2).

Adaptive Ray Casting: The final volume ray casting algorithm
simplifies to an entirely thread-coherent front-to-back traversal
of cells. Cells are either rendered as super-pixels or else all rays
only sample the necessary subset of particles that has been as-
signed to the cell (see Sec. 6.3).

4. Sampling Error Analysis Framework

The goal of our sampling error analysis is to determine sampling
levels for each cell so that a user-defined error tolerance E; is not
exceeded by the screen space error. Therefore, we propose a hier-
archical interval arithmetic scheme to determine upper and lower
bounds to the irradiance and transparency on the level of ray bun-
dles. These bounds determine the screen space error via the vol-
ume rendering equation (Eq. 3). In the following, upper and lower
bounds will be denoted with superscripts ' and - respectively, and
intervals with T. We use standard interval arithmetic operations on
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Figure 3: A radially increasing concentration profile rendered with a complex transfer function. The center of the concentration profile is in the upper right
of all images. High-frequency transfer functions introduce visible artifacts if sampling rates are naively reduced (left). Our screen space error analysis locally
adjusts sampling rates to retain visible features (middle). Only the volume covered by gray cells has to be sampled at the highest sampling rate to give correct
rendering results, yellow cells are rendered as super-pixels and green cells by reducing the sampling rate in viewing direction (right).

I-quantities and denote the width of an interval xT for quantity x
as w(xT) :=x —x [MKC09].

Our error analysis works hierarchically on the level of samples,
of cells and finally of whole ray bundles. Inside each cell, we first
compute bounds to the quantity field at each sampling depth along
the ray bundle. The quantity bounds QI are mapped to irradiance
and transparency sample bounds iI,tI that bound the irradiance
and transparency of all rays of the bundle (see Sec 4.1). Sam-
ple bounds are composited inside cells to cell bounds / I, Tt (see
Sec. 4.2). The screen space error analysis (see Sec. 4.3) composites
bounds of traversed cells in viewing direction to ray bounds It , T+
using different combinations of cell sampling levels. Note that only
D; lower and upper bounds have to be composited inside each cell
to yield cell bounds and only one upper and lower cell bound has
to be composited per cell along the cell sequence to efficiently cal-
culate the bounds for all rays of a ray bundle.

Based on the error analysis, we determine cell sampling levels
lgpt for all cells C for the final adaptive ray casting. As a direct or
analytic identification of the optimal sampling levels is not possi-
ble, we greedily optimize sampling levels keeping the width of the
error bound below a user defined error tolerance E; (see Sec. 4.4).
Alg. 1 gives pseudocode of the sampling error analysis. Tab. 1 gives
an overview of all symbols that will be used throughout the paper.

foreach cell c € perspective grid do
foreach sample 0 < k < D; do
Qff = lateral_quantity_bounds(particle quantities g, )
L i, ] = sample_bounds (Q;")
foreach sampling level | do
|15, 75 = cell_bounds ({i },{r" },1)

foreach ray bundle b do
L I = greedy_optimization(E;, {ICI’I 1 {TcI A H

Algorithm 1: Our sampling error analysis determines bounds for particle
quantities and samples in cells, composites sample bounds to cell bounds
and finally composites cell bounds along ray bundles to determine ray bun-
dle bounds and thus to the screen space error. Our greedy algorithm finally
returns appropriate cell sampling levels I

4.1. Lateral Quantity and Sample Bounds

First, we determine the maximum and minimum of all nyz sam-
ples at each sampling depth s; inside of cells. Since CSPH quan-
tities are affine combinations of particle quantities (cf. Sec. 2.1),

sample quantities are bounded by the particle quantities contribut-
ing to the lateral neighborhood at depth sy, i.e.
T 1 .
QO = max gj, QO = min g,
|zj—se| <h; |zj—scl<hj

where z; is the z-coordinate of particle j in view space and A; its
radius. As transfer functions can introduce high frequencies (see
Fig. 3), the bounds QkI of the quantity field are mapped to irra-
diance bounds using exhaustive search for extremes in T;(Q) as
shown in Fig. 4:

T
iy = max _ 1/(0),
0€[oi-.0]

In practice, iT,iJ‘ are accessed from a 2D-texture using QJ‘ and

QT as lookup coordinates. Analogously, transparency bounds t,}
are computed and stored by analyzing tr(g). Note that only D;
sample bounds are calculated each of which strictly bounds the
nyz samples of the ray bundle passing through the cell.

]TI(Q)‘

r = min
oelot.0f

Figure 4: For each sampling depth s;, quantity bounds Q,;r , Q,f- are deter-
mined by finding the maximum and minimum quantities of the particles
that contribute to s; depicted by the red arrows (left). We then search the
transfer function’s maximum and minimum ikT,ikl in the parameter range

(010 ] (righv).

Table 1: Symbols and their interpretation as used throughout the text.

Symbol Interpretation

w(xT) Width of interval xT

E; Error tolerance € [0, 1]

qi Quantity of particle i

Q,E: Quantity bounds at sampling depth k

il tkI 7 Irradiance / Transparency sample bounds at sampling depth k and level /

k
ICI i TCI 71 Irradiance / Transparency cell bounds of cell C and level /

]IE’I / TLI‘[ Irradiance / Transparency ray bundle bounds for cell sequence o, ... /.

1 Maximum sampling level of cell C

1 Vector of sampling levels of cell sequence Iy, ... /a5
Dyy | D; Resolution of a cell in xy- and z-directions

Aip = 2! Discrete sampling step size at level /
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4.2. Cell Bounds

The second stage of our hierarchical interval arithmetic calculates
bounds for cell C at sampling level /. For [ = 0, cell irradiance and
T0 IO
C
bounds i" P tk using the volume rendering Eq. 3. Note that the sam-
ple bounds already include the lateral variation of the ray bundle.

transparency bounds I are found by compositing sample

If a cell is sampled at a higher level /, less samples are used.
Each of these coarser samples, however, represents a larger span of
A= 2! samples of level O along the ray. Thus, samples of higher
levels are bounded by the minimum and maximum of the original

samples at level O they span. For samples k =0, ...,D, — 1 we get
i = {if}-
sefl 4 a4 )
For ié"l, min is used instead of max. Analogously, t,;T"l is calcu-

lated using transparency samples. After determining the proper set
of sample bounds for level / in cell C, the samples are composited

using the volume rendering Eq. 3, to yield cell bounds ICI ! and
I, -
T;"" as shown in Fig. 5.
2
.T,0 T2
iy ly
|
lo
.12
+———F lo
50 K 5 53 54 S0 51 52 53 54
— —
Aie =1 Aip =2 Ai. =4
(a) Levell =0 (b) Levell =1 (c) Levell =2

Figure 5: Computation of irradiance bounds of cell C for three sampling
levels. With larger sampling step sizes Aic = 4, bounds (right, green area)
differ from accurate bounds at Aic = 1 (left, gray area) to the signal (red

area) This may lead to sampling errors. Compositing sample bounds ikI’l

and tk y1elds cell irradiance and transparency bounds I TCI 4

High irradiance variations, i.e. w(I;‘— ’l) > 0, strongly influence
the error bounds. Thus, we limit the sampling level of each cell C to

o ICI k) < EI} , according to the cell’s maximum

= argmax; {w(
potential error. Thus, we prevent that coarser sampling of a single
cell exhausts the error tolerance, yielding a better distribution of the
error tolerance between cells. The more cells are sampled coarsely

the higher the speed-up.

An important aspect is the handling of cells C which contain
surface particles. As particles only model the fluid but not the
air phase, irradiance and transparency bounds cannot be computed
correctly. We detect surface particles using the approach of Orth-
mann et al. [OHB*13].If, e.g., only one particle is sampled inside a
cell and it is only hit by some rays while all other rays pass through
empty space, the cell bounds would still yield w([éE ’0) = 0 although
visible errors can be introduced into the image. In order to prevent
erroneous adaptive sampling in surface cells, we set 7™ = 0. Apart
from this, surface particles are treated just like bulk particles.
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4.3. Screen Space Error Analysis

The final stage of our hierarchical interval arithmetic computes
bounds for ray bundles by compositing cell bounds. As ray bun-
dle bounds automatically bound each single ray of the bundle, they
also naturally bound the screen space error. To calculate ray bundle
bounds over a cell sequence Cy,...,Cr with cell sampling levels
I= (l,...,I1), we again apply the volume rendering equation as

- L Cc—1
T Tl T, T/ i/
L =Y i1, T}, HT R )
C= D=1

The width of the ray bundle bounds W(HE’I) is an upper bound to
the screen space error that sampling at cell sampling levels Tmay
introduce. However, we still have to find an optimal choice of /

that satisfies the user’s error tolerance w(]ILI"l) < EJ. Therefore, we
propose the following greedy algorithm.

4.4. Greedy Optimization of Sampling Levels

We start by compositing bounds from Eq. 4 using /- = 0 for all cells
C,ie.,l=0=(0,...,0). Walking backwards from cell Cr,...,C,
we then greedily increase sampling levels, while the error toler-
ance Ej for the ray bundle is not exceeded. Given bounds ]ILI“'O
'IF{"O over the full cell sequence, we decompose Eq. 4, split off
the last cell and replace it by coarser sampling level /; to get the

T.(0.0.1)

new bounds I} The sampling level is increased while

W(HLI’(O""’O’IL)) < Ej until level []"™ is reached. Hence, it sets
l(’lDt =arg m?n)é.x {W(Hf’(o"”’o’m) < E]} . 5)

Having decided on the sampling level for cell Cy, we collect the

opt
final results for cell Cy, in background irradiance ]Ib ack = III

As shown in Fig. 6, the algorithm proceeds backwards sequentlally
testing coarser sampling levels /¢ in cell C in back-to-front order:

T,(0,....00c 4% ol ]IIO

Tl i/ I
HL 1+T (IC'C‘I’TC’C']Iback)-

Analogously to Eq. 5 we compute the optimal level lgp " and, finally,

I,(0....,0)
HC—I Hback
I | I |
T T c | - cL |
L ]
T 1
]II (-
L

Figure 6: Back to front exchange of sampling levels for an unknown signal
(red). In the depicted step, the greedy algorithm estimates the screen space
error (green and gray areas) for different sampling levels /¢ of cell C, i.e.
by compositing cell bounds /- Tle with foreground irradiances ]Ig;ol and the

already adaptively sampled background ]I,mk

update the background irradiances:

opt opt
T,

T,
Hback ~ I T+ T I[balck
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Our derivation of error bounds using interval arithmetic guarantees,

if w(]II’l) < Ej, the screen space error stays below E; for levels I.

5. Performance Optimizations

Although the sampling error analysis framework reveals proper
bounds to the screen space error, in practice the bounds are too
strict and, thus, the resulting speed-up is rather limited. Further-
more, so far only adaptivity in viewing direction is considered. In
this section we propose two extensions to the error analysis frame-
work that allow to combine adaptive sampling in viewing direction
and lateral adaptivity and result in significant performance speed-
ups while causing only negligible violations of the screen space
error bounds.

5.1. Relaxed Error Estimation

While cells with a large width w(II’O) strongly increase the er-

ror estimation along rays, they do not cause any screen space error
if sampled at the highest sampling rate. We interpret W(Ig '0) as
a measure of lateral variation and by removing it from the inter-
val widths of higher levels, we can separate the effects of adaptive
sampling in viewing direction from potential errors due to lateral
variation. We thus propose a relaxation approach that partially sub-

stracts w(I"-) from the lower bounds of / = 0 as
1.0 T.0 T.0
IC.relax = IC - (1 _ErelaX)w(IC )7

and for higher levels [ > 0 as
Ll . 410 10 410

IC,relax T IC,relax + (IC - IC )
The user-defined relaxation parameter Ejx € [0, 1] controls the
influence of cell bounds on level / = 0 on the error estimation of ray
bundles. Ee1ox = 1 completely removes the influence of the width
of level / = 0 and E\ejox = 0 gives a strict error estimation without
relaxation. Transparency is adjusted analogously.

As relaxing, i.e. decreasing, the upper transparency bound could
lead to severe underestimates for the errors behind the current cell,
we leave the upper error bounds unchanged. Thus, we ensure that
errors in the background remain visible and are adequately ac-
counted for in the error analysis.

Note, that our relaxation approach does not affect the maximum
sampling levels I7®* per cell, as they also account for the lateral
error in the ray bundle (cf. Sec. 4.2).

5.2. Additional Lateral Adaptive Sampling Using Super-Pixels

In cells that contain large differences in viewing direction but sam-
ple bounds iT of small width, reducing the sampling rate in view-
ing direction causes large errors. In these cases, adapting the lateral
sampling rate instead, i.e., the number of cast rays, is a promis-

ing alternative. To this end, we can directly utilize the non-relaxed
1.0

cell bounds and render the mean irradiance <—“— =: Isp and

TT,0+TL;O
transparency -“——5-“— =: Tgp as super-pixels in the final image.

Instead of sampling any particles we just composite (Isp,Tsp) to
the accumulated image for all pixels covered by the cell. This ap-
proach optimally reuses the previously calculated cell bounds.

Apparently, super-pixel rendering is by far faster than sampling
particles but causes larger screen space errors. To estimate this er-
ror, the relaxation scheme cannot be used. By relaxing bounds, the
lateral error is removed from the error estimation, however, render-
ing super-pixels introduces exactly these lateral errors. To properly
bound errors due to the reduced lateral resolution of super-pixels,
we have to use the original cell bounds of level 0.

5.3. Combined Greedy Optimization

The lateral sampling optimization using super-pixels can be com-
bined efficiently with the adaptivity in viewing direction using the
proposed error estimation. In order to decide between super-pixel
rendering and adaptive sampling in viewing direction, we sort the

relaxed cell bounds 1=

Cietaxe L = 05, and the non-relaxed cell

bound IC‘T‘ in ascending order. The greedy algorithm just works as

described in Sec. 4.4, only if ICI 0 is found to be the largest accept-
able error, the super-pixel will be used during ray casting.

In Fig. 3, we rendered a radially increasing concentration pro-
file using both optimizations. Areas where concentration gradient
and viewing rays run perpendicularly have small sample bound
widths, hence, they are rendered using super-pixels (yellow cells).
In other areas only adaptive sampling in viewing direction is appli-
cable (green cells).

6. Implementation Details

We implemented our algorithm using Nvidia CUDA 7.5 and
OpenGL. We will first give the details of the particle-to-cell map-
ping which in fact constructs the perspective grid as particle ac-
cess structure (Sec. 6.1). Then, we will present our cell merging
approach which allows to reduce the sampling rate at a constant
number of samples per cell and prevents unnecessary duplicate par-
ticle accesses (Sec. 6.2). Last we will give some details of our ray
casting (Sec. 6.3).

6.1. Particle Access via Perspective Grids

In the perspective grid structure, each cell C stores references to
particles that overlap the cell’s volume Q¢ := {x | C(x) = C} which
is defined via the indexing function C : R — No

C(x) = (Cx(x) My + Cy(x)) Mz + Co(x), (6)

which subdivides the view space into Mx X My x M view-aligned
cells. The cell coordinates (Cx(x),Cy(x),C;(x)) at position x =
(x,y,2)T in view space are given as

: n{5e
] 252 pe(EE])]) o

Here, C; is derived using the inverse of the following perspective
transformation that maps samples from uniform sampling space to
non-uniform view space [FAW10]:

i
Star \ ¥

Si = Snear . (3
Snear
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Cy and Cy are defined by the window’s aspect ratio Y.
oz) = AZ/TZV tan (§) is the cell height at distance z, which depends

also on the current field of view & of the view frustum.

Assigning particles j to cells C yields a list of particle-cell-pairs
(j,C). Sorting the particle-cell pairs by the cell index C yields cell-
particle-pairs that describe the perspective access structure. Only
cells are referenced to which at least one particle contributes and
only particles are present that contribute to at least one cell. Thus,
empty cells are skipped implicity and frustum culling is performed
(cf. Fig. 2).

As ray bundles always sample a whole cell sequence in view-
ing direction, we also store the indices of the first and last cell of
the sequence. To allow for a fast access to particles inside cells,
we store the first index jo and the number N of the relevant cell-
particle-pairs for each cell. During error estimation and ray casting,
the “traversal logic” reduces to a simple loop over the relevant cells
in the sequence of cell-particle pairs.

6.2. Cell Merging

Although our adaptive sampling can increase the sampling level
along rays inside cells, this results in a different number of sam-
ples per cell and complicates the ray casting. Furthermore, particles
in subsequent cells often are redundantly sampled. We thus pro-
pose to pairwise merge neighboring cells that allow for sampling
at a higher level. Thus, overlapping particle references in the newly
merged cell can be removed and, instead of adjusting the number of
samples per cell, only the sampling distance is adjusted. This both
simplifies the ray casting and reduces the number of particles that
have to be sampled redundantly.

Merging of cells is realized level by level, starting from level 0.
Figure 7 shows two subsequent merging steps. Neighboring cells
are only merged if they both allow for sampling at the next higher
level. During the process of setting up the grid, we bit-shift the lin-
ear cell index C one bit to the left and set the least significant bit if
a particle contributes to samples of the subsequent cell C + 1. The
cell index then also directly indicates if a particle is redundantly ref-
erenced in the subsequent cell. After sorting the particle-cell-pairs,
all redundantly referenced particle indices of a cell contiguously lie
in memory and can be removed easily.

We only merge cells that are sampled adaptively in viewing di-
rection. Cells that are rendered as a super-pixel would not benefit
from merging because no particles are accessed during ray casting.

6.3. Adaptive Ray Casting

Alg. 2 depicts the pseudocode of our ray casting algorithm. Since
consecutive cells in viewing direction are neighbors in memory,
no specific cell finding logic is required. Either a super-pixel can
be rendered or particles have to be sampled. As all rays then have
to sample the same set of particles, particle data for all Dyy X Dxy
adjacent rays can efficiently be cached using shared memory (cf.
red lines in Alg. 2) and each particle has to be read only once per
cell. Using a small thread-local cache, particles scatter their data to
D; samples of a ray at once to further reduce memory traffic. In our
GPU-implementation of Alg. 2, we use Dxy = 8 and D; = 16 so the
maximum sampling level is log, D; = 4.

(© 2016 The Author(s)
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Figure 7: Two iterations of our proposed cell merging. The number of sam-
ples remains constant inside the merged cells, however, the distance be-
tween samples (red) is doubled. Redundant particle references (rose) be-
tween cells are removed and uniquely referenced in the merged cell (white).

7. Results and Discussion

In order to demonstrate the performance and to evaluate the im-
age quality, our proposed adaptive ray casting has been tested in
five scenarios: The Checker Board scene with cubes of varying
concentrations that diffuse over time (see Fig. 8), the Mixer scene
simulating the mixing of solvent with dye streaming from an inlet
(see Fig. 9), the HPG 2016 scene with fluid letters splashing to the
ground (see Fig. 1), the static Radial Concentration scene of a fluid
with radially increasing concentrations rendered with an extreme
transfer function (see Fig. 3), and the Flubber scene with two fluids
mixing while orbiting a virtual center of gravity (see Fig. 10). The
relaxation factor for the error analysis was set to Epejax = 1 in all
examples and super-pixel rendering was enabled if not stated other-
wise. Simulations and renderings were carried out on an NVIDIA
GeForce GTX Titan with 6 GB of VRAM. All scenes were ren-
dered on a 1024 viewport. Surfaces were also ray cast using our
view-aligned access structure. However, to get smoothed surfaces,
an increased particle support radius was employed. As our focus
lies on the adaptive volume ray casting, timings are not included.

Figure 8: 3D checker board of increasing concentrations from left to right
and front to back.
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A

(b) Frame 330

(a) Frame 130

(c) Frame 530

(d) Frame 642 (e) Frame 930

Figure 9: A mixer is causing a stream of green dye to mix with solvent in the fluid tank. Above, five of the 1000 frames we rendered are shown.

I=0,T =1, //initialize ray irradiance and transparency

x|D;] =0, Q[D;] =0, V[D;] =0 // sampling positions, sampled quantities
foreach cell Cin Cy,...,Cr do

Jc, Nc  //index to particle array and number of particles (cf. Sec. 6.1)
ic, Aic //linear cell index (cf. Eq. 6) and cell sampling distance
lic,Nc,ic,Ai.] = read_celldata(C);

Super-pixel Rendering

if C can be rendered as Super-pixel then
L [1,T] = composite(1, T, Isp, Tsp)) //(cf. Sec. 5.2)
continue

Sampling

foreach sample kin 0,... D, — 1 do
Q|k] =V[k] =0 //initialize sampled quantity and volume

| x[k] =x(s(ic+Aick)) /igetray sampling position x in view space
foreach particle jin jc,...,jc +Nc—1do
[xj.hj,q;,V;] = read_particledata();
foreach sample kin 0,....D, — 1 do

L QO[] = O[K] +g; V; W (x[k])

VK] = VIk] +V; W;(x[k])

foreach sample kin 0,... D, — 1 do
| if (V[k] > 0) Q[k] = Q[k]/V[k] //CSPH normalization (cf. Eq. 2)

Compositing

foreach sample kin 0,... D, — 1 do
As = s(ic +Ai¢ (k+1)) — s(ic +Aic k) // view space distance
[1,T] = composite(/, T, 7/ (Q[k]), tr (Q[K])**)

Algorithm 2: Thread-coherent volume ray casting featuring adaptive sam-
pling step sizes (green), super-pixel rendering and efficient shared memory
access (red). Particles contribute to D, ray samples at once using a thread-
local cache.

Tab. 2 shows particle counts, timings and speed-ups as well as
errors using different tolerances Ej averaged over all frames of the
respective scene. Errors are given as maximum absolute difference
over all pixels in any color or alpha channel € [0, 1] compared to the
non-adaptive rendering Ej=‘-". Values of {0.001,0.004,0.01} re-
late to error values {0.255,1.02,2.55} in the respective 8-bit value
range [0,255], respectively.

The following discussion addresses the image quality and the
performance characteristics of our adaptive volume ray casting ap-
proach and will also compare our method to previous work.

(a) Flubber

(b) Sparse grid

Figure 10: A frame of our Flubber scene and the respective sparse grid
showing the large surface to volume ratio of this scene.

Table 2: GPU timings and speed-ups of our adaptive (E; > 0) and non-
adaptive (Ej = ‘=) volume rendering. ‘Grid’ is the particle-cell assignment
and setting up the view-aligned grid, ‘Adapt’ is the sampling error analysis
and the merging of cells, ‘RC’ is the ray casting and “Total’ gives the total
time to render. ‘Error’ is given as maximum absolute single pixel differ-
ence in any color or alpha channel compared to the non-adaptive rendering.
‘Speedup’ relates the timing to timings for E; = ‘~’. Results are averaged
over all frames of the given scenes.

Image quality Timing (in ms) Speedup
Scene (#Part.) Er Error € [0,1] | Grid | Adapt | RC (Total) | RC (Total)
Flubber - - S - 66 (73) 1 )
(500 K) 0.004 7.2¢-04 5 44 (56) | 15 (1.3)
No surface 0.004 >Ef 7 8 19 (34) 3.5 (2.15)
- - - B34a5) | 1 ()
g::‘;‘” 0.001 3.3¢-05 ” 14 | 109 (146) | 1.23(1.08)
(L2M) 0.004 2.1e-04 15 87 (125 | 1.54(1.26)
0.01 0.0011 16 | 75 (114) | 1.79(1.38)
- - - 297 346) | 1 (D)
. 0.001 7.4e-04 28 | 181 (254) | 1.64(1.36)
g‘;‘i’d) 0.004 0.0027 e 29 | 164 242) | 1.81(1.43)
. 0.01 0.0056 29 | 152 (230) | 1.95 (1.5)
No greedy alg. | 0.004 0.016 49 23 121 (193) | 2.45(1.79)
Object space 0 75 [ 981(1056) | 0.3 (0.33)
- - - 317 388) | 1 (D)
HPG2016 0.001 5.4¢-04 31| 217 319) | 146 (1.21)
(53M) 0.004 0.002 71 32 | 191 294) | 1.66(1.32)
0.01 0.0035 33 | 173 (280) | 1.83(1.38)
. - - - 598 677) | 1 (D
gz:‘cfmraﬁons 0.001 6.2e-04 49 | 460 (588) | 1.3 (1.15)
oM 0.004 0.0013 79 50 | 340 (469) | 1.76 (1.44)
0.01 0.002 50 | 290 (419) | 2.06(1.62)
Only z-Adapt | 0.004 0.0014 59 | 389 (527) | 1.54(1.29)
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Regarding image quality, the errors due to our adaptive volume
ray casting of the Flubber, the Checker Board, and the Radial Con-
centration scenes always stayed below the error tolerance. For both
the Mixer and HPG 2016 scenes, errors of all frames stayed below
the error tolerance for £; = 0.01 and E; = 0.004. For E; = 0.001,
however, the error exceeded the tolerance for 1 of the 1200 frames
of the Mixer scene and for 1 of the 1500 frames of the HPG 2016
scene. Table 3 summarizes the errors of our approach for all frames
of all scenes. Figure 11 shows the error behaviour for the Mixer
scene over the full 1200 simulation frames. The sampling error
analysis allowed the adaptive sampling to very precisely exhaust
the error tolerance E;. We additionally rendered the Mixer scene
using [ for all cells C (cf. Sec. 4.2), i.e., we only locally limited
the sampling level for each cell without applying the greedy algo-
rithm to control the screen space error along cell sequences of rays.
The error of 0.016 exceeded the user-defined tolerance E; = 0.004
(cf. row ‘No greedy alg.” in Tab. 2) which indicates that the error es-
timation has to consider the whole cell sequence along ray bundles.

Error E; = 0.00T

0.01+ Error E; = 0.004 . n q

---Error E; & 0.01
T

0.004

0.001

Image error (Maximum pixel difference)

200 400 600 800 1000 1200

Figure 11: Errors of the 1200 simulation frames (x-axis) of our Mixer scene.
Errors are displayed as dotted lines against the right y-axis.

400 T T T T T

—Non-Adaptive
Adaptive E; = 0.001]
Adaptive E; = 0.004

—Adaptive £ = 0.01

200 400 600 800 1000 1200

Figure 12: Timings of the 1200 simulation frames (x-axis) of our Mixer
scene. Timings are displayed using solid lines against the left y-axis.

Considering performance, our adaptive sampling yields total
speed-up factors between 1.08 and 1.62 in all scenes (cf. Tab. 2).

Figure 12 shows the detailed time analysis of the Mixer scene.
We observed speed-up factors of about 2 for all values of E7 within
the first 100 frames. With increasing scene complexity (appearance
of iso-surfaces and spreading of dye) the speed-up factors for E; =

(© 2016 The Author(s)
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Table 3: Error statistics of our adaptive sampling for different scenes and
tolerances Ej. ‘Errmax’ gives the maximum single pixel error of all frames,
‘9Rays>E;’” gives the maximum percentage of erroneous rays over the to-
tal number of cast rays for the respective frame and ‘#Rays>E;’ gives the
number of frames of the scene that exceeded the error tolerance.

Scene E; Erelax Errmax JoRays>Ep #Frames>E;

Flubber * 1 <Ef 0 0
Checker Board * 1 <Er 0 0

Mixer 0.001 1 0.00106 | 0.0125 % 1/1200
0.004, 0.01 1 < E; 0 0

0.001 1 0.00101 0.0004 % 1/1500
HPG 2016 0.004, 0.01 1 < Ej 0 0
Radial Concentrations * 1 < Ey 0 0

0.001 drop to 1.15 and for E; = 0.01 to between 1.18 and 1.4.
Towards the end of the sequence, the scene complexity decreases
again (cf. Fig. 9, right) allowing for increasing speed-ups.

Apparently, the variation in the speed-up factors depends on the
homogeneity of the irradiance and transparency and the given error
tolerance. Also, large surface to volume ratios impair speed-up fac-
tors as surface cells are excluded from adaptive sampling. To show
this effect, we rendered the Flubber scene with surface detection
disabled (cf. row ‘No surface’ in Tab. 2) and achieved a speed-up
of 2.21 for E; = 0.004. Although this causes visible artifacts where
super-pixels are rendered for cells that are not fully covered with
particles, it indicates that there is potential for further speed-ups.

In order to demonstrate the benefits of combined lateral adap-
tivity and adaptivity in viewing direction, we rendered the Radial
Concentration scene using only adaptivity in viewing direction with
Erelax = 1 and E; = 0.004 and achieved a speed-up of 1.28 (cf. row
‘Only z-Adapt’ in Tab. 2). The speed-up with lateral adaptivity us-
ing super-pixels was 1.44 at an even lower screen space error.

A comparison to previous work was done for the Mixer scene
which we rendered using an object-space particle access struc-
ture [OKK10] (cf. row ‘Object space’ in Tab. 2). We observed a
speed-up of about 3 using only our view-aligned access structure.

8. Conclusions

In this paper an adaptive on-the-fly volume ray casting for unstruc-
tured particle data has been presented. The approach comprises a
sparse perspective, view-aligned grid as access structure for parti-
cles and does not require any pre-computations. Inside each grid
cell, sampling rates can locally be adapted both in viewing and lat-
eral direction. The presented on-the-fly sampling error analysis for
volume rendering of SPH-based quantity fields allows to precisely
estimate screen space errors due to adaptive sampling. A greedy
algorithm optimizes the adaptive sampling for each cell according
to a user-defined error tolerance. The per-cell sampling informa-
tion is used during ray casting to shift computational resources to
salient regions of the fluid volume. Our proposed algorithm leads to
significant rendering speed-ups without sacrificing image quality.
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