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Figure 1: Our deferred architecture is able to produce high quality results based on image-space ray tracing while maintaining low
construction times and memory requirements, making it applicable to environments containing arbitrary complexity and motion. The last
two insets demonstrate non-rigid animation.

Abstract

We introduce a novel approach to image-space ray tracing ideally suited for the photorealistic synthesis of fully dynamic
environments at interactive frame rates. Our method, designed entirely on the rasterization pipeline, alters the acceleration data
structure construction from a per-fragment to a per-primitive basis in order to simultaneously support three important, generally
conflicting in prior art, objectives: fast construction times, analytic intersection tests and reduced memory requirements. In
every frame, our algorithm operates in two stages: A compact representation of the scene geometry is built based on primitive
linked-lists, followed by a traversal step that decouples the ray-primitive intersection tests from the illumination calculations;
a process inspired by deferred rendering and the path integral formulation of light transport. Efficient empty space skipping is
achieved by exploiting several culling optimizations both in xy- and z-space, such as pixel frustum clipping, depth subdivision
and lossless buffer down-scaling. An extensive experimental study is finally offered showing that our method advances the area
of image-based ray tracing under the constraints posed by arbitrarily complex and animated scenarios.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types 1.3.3 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

Ray tracing is widely considered as the most preferred method for
accurately and robustly simulating global illumination phenomena.
However, interactive rendering of fully dynamic environments
is still an open problem due to the various constraints involved
in the process. Typically, renderers involving ray tracing consist
of two stages, an acceleration data structure (ADS) construction
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stage for speeding up the ray-object intersection calculations and
a ray traversal loop, as shown in Figure 2. Throughout the years,
numerous ADSs have been proposed improving more or less
some of the key ray tracing characteristics: construction time, ray
traversal, memory requirements and parallelization. An ADS can
be classified either as spatial- or rasterization-based, depending
on the approach taken for spatial subdivision.

Spatial ADS methods provide an approximative primitive-
prioritized ordering to optimize ray intersection queries by
exploiting either spatial subdivisions (grids, octrees, kd-trees),
hierarchical clustering of bounding volume representations (BVH),
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Figure 2: Tracing pipelines overview. Our approach effectively
combines the advantages of rasterization- (fast construction times)
and spatial-based methods (analytic intersection tests) in a GPU-
and memory-friendly context using a deferred rendering pipeline.

or a combination of both strategies [Hav0O]. These methods
achieve high quality results along with efficient traversal times,
but are limited to work with mostly static environments, where
the resource-demanding construction stage is performed infre-
quently. Furthermore, interactivity becomes an issue in cases where
geometry is potentially modified (tessellated or deformed) in an un-
expected way in every frame since the ADS has to be dynamically
updated, or even worse, entirely rebuilt from scratch [WMG*09].

Conversely, rasterization ADS methods, which operate mainly
in the image domain [MMI14, WKP*15, VVP16] or, at a lesser
degree, jointly in a discrete volume domain [HHZ* 14], are able to
achieve real-time construction times by exploiting the hardware
rasterization pipeline. While they can elegantly support dynamic
scenes, they are, in general, prone to three major issues. First, for
image-space methods, the captured information is sampled in a
view-dependent uniform grid, which is potentially a sub-optimal
acceleration structure for efficient ray traversal. Second, fragment-
based approaches result in poor sampling of oblique geometry,
leading to rays passing between fragments and subsequently
intersecting with the wrong ones. This is illustrated in Figure 3.
As a result, the estimated radiance is approximate. Last but not
least, a potentially large and possibly wasted amount of storage
is allocated due to their strategy to fetch the shading properties of
each incoming fragment (or voxel), regardless if they are a part of
the illumination computations or not; a memory issue that, in this
paper, we refer to as over-fetching.

In this work, we attempt to bridge the gap between these
approaches, by unifying their strengths and lifting their limitations
(see table in Fig. 2). We introduce Deferred Image-based Ray
Tracing (DIRT), a generic solution for screen-space ray tracing,
able to simulate environments of arbitrary complexity in an
accurate, memory- and GPU-friendly manner. Opposite to prior
approaches, we apply the deferred tracing scheme of spatial-based
methods in a rasterization-based ray tracing framework. This is
achieved by disassociating the ADS with the shading data, which
are only required for illumination calculations. This modification
makes also feasible the conversion of the ADS construction from
a per-fragment to a per-primitive basis, hence, improving: (i)

fragments
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Figure 3: Rasterization-based methods fail to capture most ray-
object collisions due to their sparse geometry discretization. While
replacing fragments with frustum-shaped voxels (froxels) can im-
prove hit-ratio, it cannot guarantee accurate intersection behavior.

quality: ray-triangle intersections can analytically be performed
in screen-space, (ii) memory: lighting attributes are only fetched
for primitives that are intersected by a ray and (iii) performance:
build and traversal times are reduced since the ADS can be created
in a compressed representation and the excessive fragment sorting
stage during construction is not required.

Our ADS is initially built by performing multilayer rendering
in a cubemap configuration inspired by the work of Vardis et
al. [VVP16]. Contrary to fragment-based storage, the entire
information is captured on multiple linked lists of pixel-clipped
primitives. A coarser representation of this structure is also
explored through the use of conservative rasterization, providing
notable improvements in storage cost and rendering times without
sacrificing the final quality. During traversal, and for each light
bounce, rays are concurrently traced by efficiently skipping empty
space regions both in image and depth space [Ulul4, VVP16].
Concerning quality, analytic intersection tests are achieved by
adapting screen-space ray tracing [MM14] to our primitive-based
data structure. A deferred pass is subsequently performed, only for
the pixels that contain intersected primitives, gathering material
and intersection properties in an auxiliary shading buffer. Finally,
a resolve pass is responsible for computing the final illumination
based on the available shading information.

To summarize, the main contributions of this work are:

e A novel deferred approach to image-space ray tracing ide-
ally suited for the efficient rendering of arbitrary animated
environments by explicitly using the rasterization pipeline.

e An analytic solution for screen-space ray tracing against a
primitive buffer including several optimizations for the early ter-
mination of rays, such as primitive-based hierarchical traversal,
bucket storage and lossless buffer down-scaling.

The paper is organized as follows: Section 2 includes a detailed
summary of prior art. Sections 3 and 4 present the outline and
implementation details of our architecture respectively. Section
5 reports on the efficiency and robustness of our method and
discusses limitations and finally, Section 6 offers conclusions and
future research directions.
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2. Prior Art

Spatial ADS methods. While for non-interactive applications,
where geometry is fixed [VHB15], the ADS choice can easily be
determined solely based on its traversal stage complexity (build
stage can be seen as a preprocessing offline step), new issues and
challenges rise when attempting to support dynamic geometry. We
refer readers to a comprehensive survey by Wald et al. [WMG™(09]
that sketches the general problem environment as well as covers the
competing goals that even a present ray tracer has to face. Though
a large variety of different refitting and updating strategies have
been introduced for accommodating new geometry to the previous
frame’s ADS, most of them suffer from excessive ADS deterio-
ration and require the animation sequence to be either restricted
to coherent motion types and fixed connectivity or known a pri-
ori [Gar09, KIS*12, BM15]. Thus, the support of real-time anima-
tions, dynamically generated from interactive manipulation tools or
streamed from a shared distributed virtual environment, boils down
to the simple solution of completely rebuilding the ADS for each
incoming frame [Kar12]. Despite the impressive build performance
speedup of recent approaches, with the most popular being the
hierarchical linear BVH (HLBVH) [PL10,GPM11] and the treelet-
based BVH (TRBVH) [KA13], the construction process remains
computationally intensive for arbitrarily complex environments.

With interactive applications in mind, uniform grids are able to
achieve low construction times through regular subdivision of the
environment. While easy to implement, the lack of empty space
skipping available in hierarchical data structures can significantly
increase traversal times, especially for incoherent rays. Therefore,
they are mainly applicable to scenes with uniform distribution of
primitives. Second level adaptive subdivision [KBS11] can speed
up traversal on scenes with moderately non-uniform geometry dis-
tribution, while perspective grids [GN12] improve the coherence
on primary and shadow rays.

Rasterization ADS methods. By relying entirely on the ras-
terization pipeline, a user-centred regular grid, such as the deep
G-buffers (DGB) generalized by Mara et al. [MMNLI14], can
be considered as one of the fastest ADS to build. Although the
limited uniform discrete sampling rate of DGB can be mitigated by
replacing each fragment sample with a fixed-size frustum-shaped
voxel (a.k.a. froxel) [MM14], inaccurate hits and misses cannot
be totally avoided as illustrated in Figure 3. Several variants of
DGB have been utilized for screen-space ray tracing throughout
the years: G-buffer [SKS11], depth-peeling [MMNL14, MM 14],
k-buffer [WKP*15], cubemap G-buffer [GDI15], three or-
thographically projected A-buffers [HHZ*14] and cubemap
A-buffer [VVP16], listed here in a low-to-high build time, memory
consumption and result quality. Moreover, a binary voxelization
of the entire scene is often exploited to quickly identify a general
hit location followed by a traversal step to locate the intersected
fragment [HHZ" 14]. In constrast to DGB, which is always avail-
able as part of the rasterization pipeline, a voxelization structure
requires additional effort for the generation and processing of the
underlying data.

Considering ray traversal in screen-space, linear 3D ray
marching by Sousa et al. [SKS11] is the most widely-used
method in the games industry. A hit is identified if the pro-
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jected point, sampled from the marched ray in 3D space, lies
behind the depth value stored in the G-buffer. McGuire and
Mara [MM14] addressed under- and over-sampling limitations
of this method by ensuring perspective-correct interpolation
of the traced ray. An early-z skipping strategy accelerated this
process by representing the ADS in a hierarchical fashion [Ulu14].
Several simple multilayer and multiview methods sacrifice perfor-
mance [HHZ" 14, MMNL14, WKP*15] to counter the significant
information loss from inside and outside the viewing frustum when
a single depth layer is used. To this end, Vardis et al. [VVP16]
introduced a cubemap-based A-buffer variant with Z-interval
buckets, enabling the tracing of rays in multiple layers and
off-screen directions at interactive framerates.

Last but not least, these methods suffer more or less from
over-fetching, resulting at a waste of storage and high possibility
of fragment overflows. While a multitude of GPU-accelerated
geometry-based structures offer decoupled deferred shad-
ing [BH13,SD15], none of them consider handling multiple layers.
Finally, a deferred scheme with analytic intersection tests has
been recently proposed [ZRD14], but requires an undetermined
number of geometry passes and is limited to single bounce
indirect illumination. To the best of our knowledge, DIRT can
be considered as the first practical implementation of an accurate
image-space ray tracing system, supporting global illumination
effects in fully-dynamic scenarios of arbitrary depth complexity.

3. DIRT Architecture Overview

Akin to any ray tracing pipeline, our image-based algorithm
operates in two broad stages: the Build stage, where geometry
primitives are recorded in image-space data structures and the
Traversal stage, where arbitrary rays are traced and the light
transport is resolved in a breadth-first, iterative manner. By using
geometric primitives instead of sampled fragment data, analytic
tests can be performed, resulting in accurate image generation.
Similar to Guntury et al. [GN12], we also exploit per-view perspec-
tive grids. However in our case, cells are irregularly sized in the
depth dimension, based on the pixel’s depth bounds, and hierarchi-
cally organized in the image domain, enabling early space skipping
that significantly improves traversal in arbitrary environments.

To compute the contribution of each event, when a ray path
is traced through a virtual environment, we use the well-known
three-point light transport formulation and only allocate storage
for the previous, current and next hit points encountered. This
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Figure 4: To compute the illumination for point Gy, our shad-
ing structure contains information only for the three points
contributing to the current event iteration k.
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Figure 5: A detailed and illustrative diagram of the DIRT architecture stages. (left) Build: Geometry is clipped (i) to compute the mipmapped
depth bounds and, in a subsequent pass, (ii) to perform primitive occupancy discretization. (iii) Optionally, a deferred pass is performed
to resolve direct visibility. (right) Traversal: Rays (vi,r;) are analytically traced in screen-space (starting from p;, p ;) storing intersection
attributes at the hit pixel location (py;; ). A geometry pass is subsequently performed at the masked pixels ( ppi; ) to fetch the shading properties
of all hit primitives (idyx,idy). Finally, the illumination contribution at path node (iteration) k is computed and hit point data are shifted in
preparation for the next event (k+ 1). Note that several passes can be performed in lower resolution via conservation rasterization.

way, we overcome the over-fetching issues of prior image-based
approaches. Instead of storing fragment-based shading data for
the entire environment before the tracing operation, we only
retain minimal information about the primitives registered in the
image buffers that is required exclusively for analytic ray-primitive
intersection tests. After the valid hit point of each ray has been
determined, shading information is updated only once for each
event (see Fig. 4). For multiple events, this update operation
involves shifting the currently stored shading attributes of the three
path points and appending the newly discovered hit attributes.

Build Stage. The construction of the ADS captures the geometric
information of the entire scene by rasterizing the scene in a multi-
view setup. Two main and one optional steps are required. First, a
Fill & Mipmap Depth step is employed, which stores mipmapped
per-pixel minimum and maximum depth values based on the
incoming primitives. This operation is required for two reasons:
(i) screen-space ray tracing can be performed in a hierarchical
manner, significantly reducing the cost of screen-space traversal
and (ii) uniform depth subdivision can be exploited, allowing for
efficient empty space skipping in the depth dimension. Next, a
Fill Primitives pass captures the detailed geometric information
by storing vertex information and primitive indices. Optionally, a
Direct Visibility pass can be executed in order to cache surface data
for direct lighting calculations, when camera shading effects such
as depth of field are not enabled. Note that in order to accommodate
dynamic environments, the Build stage occurs in every frame.
However, for the multiple view setup, if the geometry is static, only
the (trivial) Direct Visibility pass needs to be executed per frame,
as the captured image buffers already contain all scene primitives.
The entire construction process is explained in detail in Section 4.1.

Traversal Stage. This stage is executed in an iterative manner,
requiring three passes for each path event: a Trace, Fetch and Re-
solve pass. The key idea here is that during each event k, per-pixel
material information for the three required points (Gy_1, Gg, Gg41)
is stored in a shading buffer instead of the ADS (see Fig. 4), sig-

nificantly reducing the memory requirements. Rays are generated
based on the current point Gy, while any identified hits are fetched
through a rasterization process and stored at Gy 1. At the end of
each event, a left shift operation is performed to set the identified
hit as the starting location of the next event (see Fig. 5 - Shade).

Initially, in the Trace pass, rays are generated based on either
the cached data from the Direct Visibility pass or the camera
lens. Tracing is performed hierarchically in screen space on the
mipmapped per-pixel depth bounds. When a depth-based ray
intersection is found, the primitive linked lists associated with the
corresponding pixel are traversed until the closest ray-primitive
collision is located. At each bounce, all intersections with a
particular pixel from multiple rays are stored in an auxillary
bufter (the hit buffer in Fig. 5 - Trace), in the form of a linked-list
associated with the hit pixel’s location. In the next pass, called the
Fetch pass, each stored hit is retrieved, rasterized and the resulting
attributes are stored in the shading buffer. Finally, the Shade pass
accumulates the lighting contribution at these points based on the
properties stored in the shading buffer, according to the three-point
form of the light transport equation, and prepares its contents
for the next path event (iteration). Further details regarding the
Traversal Stage are discussed in Section 4.2.

Data structures. Our deferred approach requires six structures in
total, three for the ADS construction and another three for traver-
sal. The ADS consists of (i) a depth bounds texture, storing the per-
pixel min-max depth information created during the Fill & Mipmap
Depth pass, (ii) a linked-list structure storing primitive indices,
called the id buffer and (iii) a vertex buffer holding per-primitive
vertex attribute information. The last two buffers are filled during
the Fill Primitives pass. Note that if no new primitives are gener-
ated within the rasterization pipeline, e.g. through a tesselation or
geometry shader, the vertex buffer already available as part of the
rasterization process can be used instead. During tracing, intersec-
tion and shading information is associated to two new storage units:
a hit buffer, containing ray-primitive hit information; and a shading
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buffer, storing per-pixel material properties only for the three hit
points (G_1, Gy, Gi+1) associated with the path event (iteration) k.

Acceleration Techniques. Similar to spatial ADS approaches,
efficient exclusion of empty space is crucial for fast ray traversal.
To this end, we apply several Z-culling optimizations in both the
image plane and depth direction by adapting Hierarchical-Z (Hi-Z)
traversal [Ulul4] and uniform depth subdivision [VF13] in our
primitive-based pipeline. This is accomplished through primitive
clipping operations against each pixel’s frustum boundaries during
the Build stage. A notable improvement in the efficiency of Hi-Z
is also obtained by downscaling the ADS through conservative
rasterization, where each group of shading pixels is represented
as a tile in the ADS, reducing the total image-space steps required
during ray marching in the Trace pass. Last but not least, a no-
ticeable performance optimization is achieved by a pixel rejection
scheme; all pixels with no associated intersections are marked in
a mask texture and are subsequently discarded during the Fetch
pass, where shading takes place. The entire pipeline is illustrated
in Figure 5 and discussed in further detail in the following section.

4. Method Details
4.1. Build Stage

Overview. Briefly, the first stage of DIRT samples the scene
primitives in a user-centric manner as follows: First, 6 views
vj,j = 0...5 arranged in a cubemap configuration are created
covering the entire scene extents, using the multiview setup
proposed by Vardis et al. [VVP16]. Second, the ADS is efficiently
constructed by performing two geometry passes for all views: the
first one is responsible for computing the depth bounds texture that
is subsequently mipmapped to retain the aggregate min/max depth
values per texel. The second pass fills the vertex and id buffers.
Finally, an optional geometry pass, executed only for the primary
camera view, is employed to initialize the shading buffer with
the direct lighting results. This pass can be omitted when camera
shading effects such as depth-of-field are present, increasing the
Traversal stage steps by one.

ADS downscaling. To reduce the redundant data generated at
neighboring pixels corresponding to the same rasterized primitive,
a more compact lossless representation of the ADS is constructed
via conservation rasterization. This mechanism, exposed as an
OpenGL extension for the NVIDIA Maxwell architecture, allows
rasterization to generate fragment samples for all pixels intersected
by a primitive. Thus, the ADS can be constructed (Fill & Mipmap
Depth and Fill Primitives passes) and traced (Trace pass) at a lower
resolution R; = R;,/S by associating each high-resolution pixel py,
that belongs to the framebuffer’s resolution Ry, to a pixel tile p;
with size S X S, § =2", m € Z>(. While this data structure holds
the same primitives as the high-resolution ADS due to conservative
rasterization, a smaller number of fragments are generated. This
is because although a tile S intersects more primitives, only a
single copy of a pixel-clipped primitive is generated and stored
(Sec. 4.1.2), reducing the memory requirements and construction
times. However, due to the reduced portability of conservative
rasterization, downscaling can be optionally omitted (m = 0).

(© 2016 The Author(s)
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Figure 6: Handling primitives in screen-space. Per-pixel primitive
clipping is exploited for correct ADS building including (a)
depth range computation and (b) multi-bucket placement. (c)
Empty-space skipping is performed when either rays pass outside
depth boundaries (ra,rg) or a valid hit is found in a bucket where
traversal order is defined by the ray’s direction (rc). Note that
intersections detected outside the pixel frustum are discarded (rp).

4.1.1. Depth Bounds Passes

Fill Depth. The first geometry pass is responsible for gener-
ating a depth bounds texture, which stores the depth extents
Zmin(P1), Zmax(p;y) of all primitives spanning each pixel p; of every
view. Since the ADS stores primitive ids instead of depth-ordered
samples, correct calculation of depth extents is achieved by
clipping primitives against each pixel’s boundaries (see Fig. 6(a)).
This operation is required for two reasons. First, uniform depth
subdivision (bucketing) can be exploited, where primitives are
assigned to multiple linked-lists spanning equally sized depth
intervals, during the Fill Primitives Pass (Sec. 4.1.2). A primitive
is assigned to all buckets its depth bounds overlap with (see
Fig. 6(b)). Second, Hi-Z can be performed after constructing a
mipmapped version of the depth bounds buffer (Sec. 4.2.1).

From an implementation point of view, a geometry shader
outputs each primitive pry to the fragment shader, which clips
it against the pixel’s frustum planes, resulting in a new primitive
pr;. Then, the new primitive’s depth extents update the respective
pixel’s depth bounds via atomic min/max operations. The geometry
shader is required for emitting primitives to multiple views and is
not required in a single-view implementation.

Mipmap Depth. The depth bounds texture is downscaled and
filtered, independently for both the min and max values, into
multiple levels d by performing a fast full-screen quad rendering
pass. The modest increase in texture memory usage (~ 1.5X)
provides a significant ray tracing speedup.
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4.1.2. Fill Primitives Pass

Once the mipmapped depth bounds texture is computed, a second
geometry pass is employed to construct the core structure of
our ADS: the vertex buffer, a linear array that contains the three
per-vertex attribute structures v;(idy),i = 0, 1,2 of each incoming
primitive pr, with unique identifier idy; as well as the id buffer,
an unsorted multiple linked-list structure that contains the unique
identifiers for all primitives rasterized in every pixel p; of every
view v;. Specifically, at the geometry shader invocation, the incom-
ing vertex information (such as positions, normals, texture coordi-
nates, etc.) are stored sequentially in the vertex-buffer. The value of
id, can be based either on the unique primitive identifier provided
by the corresponding API for single draw call operations or on a
global atomic counter, when multiple draw calls are required. In
the following fragment shader invocation, each pixel’s p; depth
range Zrange(P1) = Zmax(P1) — Zmin(py) is split into B uniform sub-
intervals bg,...,bp_1. Then, each incoming rasterized primitive
is clipped against pixel’s p; frustum boundaries and the resulting
(clipped) primitive pr; is atomically added to all buckets in the
range [bin, bmax] overlapping its depth extents (see Fig. 6(b)) :

bmin(plaprl) = |_B' (Zmin (prl) — Zmin (P]))/Zrange(P[)J (1a)
bimax(p1,pr1) = | B+ (zmax(Pr1) — Zmin(P1))/zrange(p1)]  (1b)

4.1.3. Direct Visibility Pass

When simple perspective primary rays are generated, a quick ren-
dering pass is performed first, storing the material properties of the
tracing starting point for each pixel p;, in the camera view shading
buffer G|. The primary ray hits are created via direct rendering and
stored in the shading buffer. In our implementation, this buffer write
operation exploits a semaphore-based spin-lock mechanism since
the shading buffer contains structures and is therefore not a regular
frame buffer, where conventional fragment depth testing operations
can be performed. After this step, we also initiate a Shade pass
to quickly compute the direct illumination and then continue
iteratively the Traversal stage as discussed in the following section.

4.2. Traversal Stage

Overview. This stage is executed in an iterative manner, computing
the illumination contribution of each scattering event per iteration
k > 1. Briefly, it consists of three different passes:

e Rays are traced in screen space by traversing the downscaled
ADS until the closest ray-primitive intersection is analytically
found and captured in the hit buffer. The hit buffer stores
intersection data for all rays intersecting a particular pixel
during iteration k. This information includes the primitive
ID, intersection position and barycentric coordinates. Since
the number of registered hits is unknown a priori, a per-pixel
linked-list structure was preferred as a storage container.

e The shading properties for each identified hit are fetched and
stored at the shading buffer by performing a geometry rendering
pass. Conceptually, the shading buffer’s contents correspond to
three points for each pixel: Gx_, holding the previous point’s
position, Gy, pointing to the current event’s shading attributes
(essentially the starting ray location); and finally, Gy, storing

the new intersected point’s fetched material properties. A pixel-
rejection mechanism is also exploited to prevent unnecessary
invocations of non-intersected pixels.

e A full-screen quad rendering pass is finally employed to
compute the shading of the current event by evaluating the
three-point light transport formulation at the shading buffer. To
support a complete path tracing implementation, an additional
operators texture is employed during the Trace and Shade
passes, storing the updated probability of path segment k as well
as the cumulative transport operators respectively.

4.2.1. Trace Pass

Screen-space ray tracing. This step starts with the generation of
a new ray ry, for each pixel pj, based on the contents of shading
buffer G;. G stores either the camera position or the attributes
stored in the direct visibility pass during the Build stage, depending
on whether direct rendering is used for the primary rays or not.
Rays are clipped against the viewing frustum and subsequently
traced via ray marching up to the screen-space projection of their
clipped endpoint until the closest intersection is found in the id
buffer. If no valid hit is found within the current view, the process
is repeated for each subsequent view the ray intersects. Readers
are referred to [MM 14, VVP16] for further details on screen-space
ray tracing in one or more views respectively. Generally, the
image-space ray tracing performance relies heavily on how well
the empty space regions of the scene can be avoided, by exploiting
the available min-max depth maps. Efficient empty space skipping
is achieved by moving in hierarchical steps on the image plane and
by avoiding uniform sub-intervals in the depth domain.

Hi-Z tracing. Single-layer hierarchical screen-space tracing is
commonly carried out by switching between tiles of different sizes,
belonging to different mip levels d € [0,d] of the high-resolution
(Rp) Z-buffer [Ulul4]. We revise accordingly this operation
with respect to our compact primitive-based pipeline with two
modifications: (i) reaching the lowest mip level does not define
an intersection, but initiates a lookup procedure in the id buffer
and (ii) the lowest mip level d; depends on the resolution of
the ADS buffer: d; € (0,dy,). The last modification essentially,
trades traversal overhead in the image-space with larger lists in
the depth domain. Specifically, starting at mip level d = dj, the
ray’s eye-space Z coordinates are compared against the tile’s depth
extents. For each successful intersection, the mip level is decreased
and iteratively refined until reaching the lowest value d;, where
primitive traversal in the id buffer is initiated (see Alg. 1, Ln 1 —6).
Otherwise, the current tile is skipped and the mip level is increased
for the next tracing iteration (see rays rq, ry4 at Fig. 6(c)).

Bucket tracing. Once the process enters the primitive traversal
phase, analytic ray-primitive intersection tests are performed be-
tween the ray and the primitives stored in each bucket of the
id buffer. To ensure the closest valid hit, the following opera-
tions take place. First, we identify the range of pixel bucket IDs
brange(P1,7n) = [bmin(P1,71)sbmax(py,ry)] intersected by the ray
via equations la and 1b. Rays that move towards the near plane
are checked in back-to-front bucket order, while rays towards the
far plane are checked in the opposite order. Note that while this op-
eration is similar to Vardis et al. [VVP16], it is applied here in order

(© 2016 The Author(s)
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to skip any remaining buckets during the traversal operation rather
than to ensure correct multi-hit behaviour of ray-fragment colli-
sions. Second, we linearly iterate through all primitives of each in-
tersected bucket in order to find the closest ray-primitive collision.
For each successful intersection test between a ray rj, and a primi-
tive pry, we keep the hit if both of the following conditions are met:

e The hit point lies within the candidate pixel tile pfl’ . We check
this by projecting the hit location in the image space of the tile’s
associated view (see ray ry, at Fig. 6(c)).

e The intersection distance #; is the shortest one acquired up to
this point (t; < ;).

For any accepted hit, we maintain the primitive ID idy, the
barycentric coordinates bry and intersection position posy. If at
least one valid hit is found in one bucket, the remaining buckets
are omitted (see ray r. at Fig. 6(c)). The details of this method are
shown in Algorithm 1 (Ln 7 — 22).

Final Storage. After testing all primitives in the intersected bucket
for ray-triangle collisions, the closest hit location posy; is pro-
jected to the high-resolution hit buffer location pj;, where a new
hit record is atomically inserted in the linked list at that location.
Each record contains the hit data information acquired during trac-
ing, the view v; in which the intersection occurred and the shading
buffer pixel location pj,. The latter is the pixel location in which the
tracing started (Gy [py,]) and also the location where the fetched data
will be stored at the next pass (Gg. 1[pp]). The view information is
required since lighting calculations are performed in eye space. To
reduce the overhead of unnecessary fragment invocations of non-
intersected pixels, a pixel-rejection scheme is employed, by flag-
ging the pixel py;; as occupied, through the use of a mask texture.
In terms of implementation this can be either a depth or a stencil
texture, essentially used as an early culling testing mechanism.

Algorithm 1 int analytic_ssrt (Pixel p, Ray r, Mip-level d)
> (1) Hi-Z tracing
s if Zmin(rd) > Zmax(Pd) or Zmax(rd) < Zmin (Pd) then
return no_hit; > skip complete pixel tile
. elseif d > d; then

return invalid_level;
end if

> (2) Bucket tracing

¢ brange = [bmin(P7 1), bmax (P, r)];
9: for each bucket b; € byunge do
10: for each primitivepr, € b; with id id; do

> large mip-level, decrease & retry

PRIN AR

11: {tx,br} < hit(r, pre); > ray-primitive intersection test
12: posi < orig(r) + 1 - dir(r);

13: D < project(posi);

14: if 4 € (0,4;) and p; = p? then > new best hit found
15: {thit s idnic, brnie, POSi } < {tx, idy, bry, posi };

16: end if

17: end for

18: if hit found then

19: break; > skip remaining buckets
20: end if

21: end for

22: return {posp,brpi,idpi }s > return closest hit info

(© 2016 The Author(s)
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4.2.2. Fetch Pass

A full geometry rendering pass is responsible for retrieving the
shading information for all intersected primitives identified in the
previous pass. For each incoming rasterized primitive, we search
the linked-list at that hit buffer location for a match between the
stored primitive ID and the incoming one. For every successful
comparison during each iteration, we compute the vertex attributes
using the stored barycentric coordinates, thus avoiding the attribute
extrapolation problem of conservative rasterization. The primi-
tive’s shading data are then retrieved through common texture
fetching operations. Finally, the primitive’s shading data are stored
in the shading buffer, at Gy 1.

4.2.3. Shade Pass

The last step of the iteration initiates a quick full-screen quad
rendering pass, which computes the lighting contribution of the
current scattering event k. Using the shading buffer contents and
the operators texture, the three-point light transport is evaluated
and stored in the framebuffer. Afterwards, a left shift operation
on the shading-buffer is performed, essentially setting the current
intersection point as the starting ray position for the next iteration:
Gi—1 = Gi, G = Gy 1.

4.2.4. Notes on conservative rasterization

If conservative rasterization is not available, the entire pipeline
is slightly modified: (i) the comparison during the Fetch pass
requires both primitive and view information and (ii) barycentric
coordinates are not required since attribute interpolation is based
entirely on the rasterizer.

5. Results and Discussion

We have implemented DIRT solely on the OpenGL rasterization
pipeline, which is compatible with common graphics engines.
Due to the design philosophy of the algorithm, a full path tracing
solution was implemented and evaluated. We offer a detailed eval-
vation in terms of quality (Sec. 5.1), performance (Sec. 5.2) and
memory (Sec. 5.3) against: (i) the most recent rasterization-based
ray tracing DGB method by Vardis et al. [VVP16] since it offers
the best quality to date but also suffers from the highest memory
consumption and over-fetching issues and (ii) two fast and highly
optimized spatial-based data structures, HLBVH [PL10, GPM11]
and TRBVH [KA13] on a GPGPU path tracer implemented with
NVIDIA Optix [PBD*10]. We have run our tests on an NVIDIA
GTX980Ti GPU and all images were rendered at a resolution of
R, = 1024 x 512, R; = R), unless specified otherwise. The node
size in bytes for each of our buffers was size(node;;) = 8 for
the ADS and size(nodey,;;) = size(nodeg,) = 32 for the hit and
shading buffers respectively. Note that the size of the shading
buffer is specific to our path tracing implementation, containing
packed material attributes such as diffuse and specular reflectivity,
opacity and emissive parameters. All quality results were rendered
at ~ 1000 spp, where each sample corresponds to a complete
tracing path, including both the direct and indirect illumination
events. The Dirt, Candy, Hangar and Cloth scenes are presented in
Figure 1 while the Bunny scene is shown in Figures 7 and 9.
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Figure 7: Quality comparison (2-indirect bounce lighting) between fragment-based collisions (a,b,c) and our analytic approach (d). High
[frequency phenomena cannot be accurately captured by manually adjusting the view-dependent thickness parameter. This is mostly visible in
the reflections of the lamp power cord (orange inset) and the cyan chair (green inset) at the floor and walls, which appear stripped or extruded.
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Figure 8: Comparison with two spatial-based data structures in
the Sponza Atrium, where construction occurs on every frame.

5.1. Quality Evaluation

Fragment-based ray tracing. Tracing methods, which approxi-
mate the environment based on discrete samples (fragments), are
able to produce plausible results in most typical scenarios. How-
ever, they are susceptible to view dependencies due to rays passing
through sparsely sampled geometry. While this can be mitigated
by assuming each sample is a frustum-shaped voxel of non-zero
thickness, inaccurate misses cannot be totally avoided. Even
worse, the thickness parameter is view-dependent and requires
manual adjustment. As a result, these methods are approximate
and their error is mostly visible when high frequency phenomena
are present. Figure 7 demonstrates this on a scene, where perfect

reflections are dominant. Rays which would intersect with the
seat of the cyan chair end up passing through (a). Increasing the
thickness eventually resolves this issue but results in extruding
the reflected objects (b, c), which is especially noticeable when
compared with the correct result captured by our method (d - see
for instance the power cord).

GPGPU ray tracing. Figure 8 (top) provides a quality comparison
of our method against a path tracing using two spatial data struc-
tures, based on NVIDIA Optix. We show results with primary and
shadow rays (left), primary and secondary rays without shadow
rays (middle) and primary and secondary rays with shadow rays
(right). We are able to achieve identical results with the reference
images, demonstrating that our method can also be employed
for quality renderings, a fact that is also validated through all
experiments shown in the paper.

5.2. Performance Evaluation

Figure 10 (bottom) presents performance results under different
depth subdivision settings and tile sizes as well as the correspond-
ing cost of the Fetch and Shade passes for three test environments.
Since these two depend only on the resolution Ry, they are also
reported separately (right). Note that we do not provide measure-
ments for different path lengths (k > 1) as our tests showed that
the increase is linear in closed environments and, as expected,
sub-linear in open environments, due to excessive ray misses.

With respect to the number of buckets, we observed an expo-
nential benefit in traversal times while construction is increased
linearly by a slope of ~ 2% due to primitives overlapping more
buckets. Regarding changes in the tile size, the performance benefit
depends on the number of generated primitives during construction
and on the tile density of the generated primitives during traversal.
Therefore, an increase in the tile size provides notable traversal
improvements in scenes where the geometry tessellation is low or
medium. Environments containing many finely tessellated objects,
however, such as the foliage in the Dirt scene, can benefit from a
larger tile size mainly on high resolutions.

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.



K. Vardis & A. A. Vasilakis & G. Papaioannou / DIRT: Deferred Image-based Ray Tracing 71

Impact of ray coherence. Table 1 presents the performance on
four scenes with different types of rays, such as visibility, perfect
reflection, highly glossy and pure diffuse. These measurements
were taken in practical scenarios by changing the material prop-
erties of the objects in each scene and rendered with our prototype
path tracing implementation by spawing rays. Note that we
performed our tests on the first path event since the cost of primary
rays is minimal due to rasterization. Visibility rays were spawned
towards a predetermined location outside the scene’s extents and
terminated at the first intersection, specular rays towards the re-
flection direction, glossy rays through BSDF importance sampling
and finally, diffuse rays using cosine hemisphere sampling. The
performance drop observed when moving from specular to glossy
and, finally, diffuse rays is justified by the increasing incoherence
caused by rough surfaces. The latter is also an indication of the
improvement we can achieve with further research in the area.

Table 1: Mrays/sec of DIRT under different ray types for the first
path event.

Scene/Ray | Primitives | Visibility | Specular | Glossy | Diffuse
Cloth 93k 65.5 26.7 26.6 15.2
Bunny 156k 40.3 249 14.58 11.6
Hangar 266k 39.9 14.7 9.6 9.6
Candy 420k 249 14.9 12.0 9.6

Fragment-based ray tracing. Table 2 presents a detailed compar-
ison against fragment-based ray tracing in terms of both perfor-
mance and memory consumption, where the thickness parameter
was adjusted to produce the optimal quality result for each scene.
For a fair performance comparison against DIRT, conservative ras-
terization was disabled (R; = Ry,) and the number of buckets B was
the same as in the fragment-based approach in order to produce a
similar number of fragments and clipped primitives. We observed
that: (i) the memory was reduced by 7 — 21% while the generated
fragments (np) was increased by ~ 5% due to our multi-bucket
placement, (ii) the construction times dropped by 15% since no
fragment sorting occurs and finally (iii) tracing times dropped by
an average of 15% in scenes where the average distances between
objects were larger than the thickness parameter. The latter did not
occur in the Bunny scene where many rays terminated prematurely,
due to the thickness extrusion (see also Fig. 7). Enabling conser-
vative rasterization, which is required by our method, doubles in
most cases the tracing times due to the significantly larger number
of fragments generated, which consequently results in an irregular
increase of the primitive lists in cases of oblique geometry.

Table 2: Performance and memory comparison of a DGB-based
method and DIRT.

[VVP16] / DIRT
Scene | Fragments (M) | Memory (MB) | Build (ms) | Traversal (ms)
Bunny 3/3.1 161/150 8/6.5 28/53
Hangar 4.5/4.7 201/184 13.7/11 57/47.9
Candy 8.9/10.2 317/250 18/16.8 75/62

GPGPU ray tracing. Figure 8 (bottom) provides a performance
comparison against two spatial-based data structures, TRBVH and

(© 2016 The Author(s)
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HLBVH, provided by the NVIDIA Optix. We report times on the
rendered stills shown at the top, with one primary and one shadow
ray (left), a primary and a secondary ray (middle) and one primary,
one secondary and two shadow rays (right). Note that the tile size is
increased gradually with the resolution from 1x1 to 8x8 pixels. Our
results show that our method can maintain much lower construction
times (dashed lines) even at high resolutions. In cases of incoherent
rays, here the secondary camera path segments and their shadow
rays, we observe a steeper increase in traversal times which dimin-
ishes the benefit of low construction as the resolution increases.

Single-view ray tracing. Our approach can be also used in a
single-view configuration, where image accuracy is traded for
speed by skipping out-of-view geometry and respective view
traversals. Performance can be further improved by replacing
visibility calculations with shadow maps (see Fig. 9).

5.3. Memory Evaluation

Table 3 presents the total memory requirements for all structures
used in our pipeline, where ¢ € [0, B] is the average intersected
buckets per primitive and np is the number of clipped primitive
samples. We omit the storage cost of the vertex buffer since it is
already required as part of the vertex buffer creation in a common
rasterization pipeline. Also note that the mipmap generation of the
depth bounds texture slightly increases the memory consumption.
By following a deferred tracing strategy, our method reduces
significantly the memory required by the large amount of fragment
information generated, when the entire scene shading information
is captured, instead. This is achieved by (i) bounding the tracing
information (nodey,) and disassociating it from the scene’s
geometric complexity (node;;) and (ii) down-scaling the ADS.

Table 3: Per-pixel memory formulation of the DIRT architecture.

Memory Requirements (in bytes) Unit
depth bounds texture 11~8x1.33
- - Vpr €v;j
id buffer 4-B+c-np-size(nodeq)
hit buffer 4 + size(nodey;; )
shading buffer 3 - size(nodeg) Vpu
mask texture 2

size(node;y) = 8, size(nodey;) = size(nodeg,) = 32

Figure 9: A single-view setup in conjuction with shadow maps can
provide view-dependent, high quality rendering at higher frame
rates. Construction/Traversal times (per spp): Sms/37ms (left) and
9ms/59ms (right) respectively at IMPixel, R; =512 x 512.
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Figure 10: Detailed measurements regarding memory (top) and performance (bottom) with variable number of depth subdivisions (B) and
tile sizes on scenes of different fragment complexity. Separate timings for the Fetch and Shade passes are also shown on the right.

3 _. - [vvPle] Impact of decoupling. While the over-fetching issue is present in
B 25 /’ — DIRT all variants based on DGB, memory problems are mainly evident
@ 2 /,/ in cases where the entire scene geometry is captured [HHZ" 14,
'u_; 15 P VVP16]. In the following, we do not compare our method with
5 ’ 4% variants where only a few layers are handled [MM14, WKP*15])
e 1 7% 512x512 : . . . .
S g since, while their memory overhead is small, the geometric
s 05 27 — 1024x1024

= information and resulting quality is very approximate. Figure 11

0 — 1920x1080 illustrates the memory allocation superiority of our method when
M 8M 16M 24M 32M 40M compared to a recent fragment-based ADS [VVP16]. We were
Fragments unable to provide a correct comparison against the method by Hu et

al. [HHZ™14] since it was not discussed by the authors. However,
we assume that the total cost would be similar with the currently
compared method due to the three orthographic A-buffers used for
capturing the entire scene. Both methods allocate the id and shad-
ing data as part of the ADS construction resulting in a huge and
wasteful memory demand. While DIRT has an initial overhead due
Impact of down-scaling. Figure 10 shows the memory gain when to the fixed memory cost of the decoupled hit and shading buffers,
the tile size is increased from 1 x 1 pixels to a tile of 2 x 2 and it exhibits a near constant relation with the fragment generation as
opposed to a linear one in DGB. This results in reduced memory
requirements in most typical cases since the number of generated

Figure 11: Correlation of ADS memory cost of [VVP16] and DIRT
methods under increasing screen resolutions (R, = R;, B=1).

4 x 4 pixels respectively on three test cases of different fragment
complexity. For a bucket size B > 8, which is a practical minimum

for our approach to achieve relatively decent performance, we fragments is usually much higher than the number of pixels. This is
observed that the fragment generation is reduced initially by 56% even more noticeable when conservative rasterization is employed,
when moving to a 2 x 2 tile and a further 37% to a tile size since the number generated fragments increases significantly.

of 4 x 4 pixels, while the memory required was 50% and 32%
respectively. Note that the fragment generation drop is justified

5.4. Limitati
by the reduction in the number of clipped primitive samples np, tmitations

when larger tile sizes are used. On the other hand, increasing the While our method is able to achieve high quality results, there
number of buckets by 8 corresponds leads to a memory increase are several issues that require further research. The most notable
of 15%, 8% and 4% for each tile setting. The main observations improvement can be achieved in the traversal times, mainly in
here are: (i) an increase in the tile size provides similar memory incoherent rays, when compared to spatial-based data structures.
benefits on all scenarios regardless of the fragment complexity, This is an expected outcome of our shallow acceleration struc-
(ii) an increase in the number of depth subdivisions consequently ture (one-deep regular subdivision), the overhead caused by the
increases the memory required, since more buckets are being increase of our linked lists due to conservative rasterization and
intersected per primitive and more head pointers are required for the fact that we do not explore any coherence strategies. Also,
the linked lists, and finally (iii) a combination of tile size 2 x 2 and an overhead is caused in both construction times and memory
depth subdivisions B € [20,40] provides a good overall setting in consumption due to the duplicate primitive information currently
terms of both performance and memory gain. present in multiple buckets of the same tile, which is currently

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.



K. Vardis & A. A. Vasilakis & G. Papaioannou / DIRT: Deferred Image-based Ray Tracing 73

a requirement for accurate traversal when depth subdivision is
involved. We aim to target these issues in the future by exploiting
adaptive depth subdivision techniques, clustering algorithms and
strategies for ray coherence [MBJ*15].

6. Conclusions

In this work, we have demonstrated that a strong continuum be-
tween rasterization and ray-tracing approaches is actually possible.
Considering the issues when ray tracing is performed over fully
dynamic scenes with undefined motion pattern and unknown topol-
ogy modification behavior, we have introduced DIRT, a deferred
rendering solution to image-based ray tracing. In the heart of our
framework lies a novel ADS designed to simultaneously maintain
three, commonly conflicting, criteria: (i) fast construction times via
(conservative) rasterization in conjunction with (ii) analytic inter-
section tests using (clipped) primitives as storage nodes and (iii) re-
duced memory consumption. A wide spectrum of testing scenarios
has been explored showcasing the low GPU resources consumed
as well as the compelling graphics effects generated when DIRT
is demonstrated under a physically-based path tracing platform.
Despite the tremendous progress on the landscape of ray tracing
field, we believe that our approach provides a novel insight at a
key area with renewed research interest, where high potential for
software and hardware improvements is feasible in the near future.
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