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Figure 1: Backtracking from the current node with key 22 to the next node with key 3, which has been postponed most recently, by a) iterating
along parent and sibling references, b) using references to uncle and grand uncle, c) using a stack, or as we propose, a perfect hash directly
mapping the key for the next node to its address without using a stack. The heat maps visualize the reduction in the number of backtracking
steps.

Abstract
The fastest acceleration schemes for ray tracing rely on traversing a bounding volume hierarchy (BVH) for efficient culling
and use backtracking, which in the worst case may expose cost proportional to the depth of the hierarchy in either time or
state memory. We show that the next node in such a traversal actually can be determined in constant time and state memory. In
fact, our newly proposed parallel software implementation requires only a few modifications of existing traversal methods and
outperforms the fastest stack-based algorithms on GPUs. In addition, it reduces memory access during traversal, making it a
very attractive building block for ray tracing hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Ray Trac-
ing

1. Introduction

Hierarchy traversal is one of the crucial building blocks for appli-
cations working on large data sets. As an example, accelerated ray
tracing relies on traversing hierarchies in orders given by heuristics
to efficiently find intersections of rays and scene geometry. In fact,

† e-mail:nbinder@nvidia.com
‡ e-mail:akeller@nvidia.com

bounding volume hierarchies are most prevalent in ray tracing due
to a number of desirable properties such as flexibility, re-fitting, and
simplicity of construction. The most efficient traversal order heuris-
tics first visit the child node identified by the closer intersection of
its bounding volume and the ray. For shadow rays it may pay off to
first visit the bounding box with the larger surface area.

The conceptually most straightforward algorithm for binary hi-
erarchy traversal is to traverse the tree top-down using a stack for
backtracking: In each node the ray is intersected with the bound-
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ing volumes of both children. If both children are intersected, the
traversal order heuristic decides which one of them is postponed
and pushes it onto the stack. Whenever traversal ends in a leaf node
or no intersection with children has been found, a node is popped
from the stack.

While stack-based traversal on GPUs [AL09] is very efficient,
the main drawback is the maintenance of the stack that comes with
an overhead with regard to state memory and required bandwidth.
As shown in Tab. 2, we improve upon the current state-of-the-art
by introducing a new stackless traversal algorithm for GPUs that
relies on

• important optimizations based on statistical evidence of what
nodes are visited during backtracking (Sec. 2.1),

• a perfect hashing scheme to map keys of nodes of a binary hier-
archy to their addresses in memory (Sec. 2.2.1), and

• its parallel construction (Sec. 2.2.2) at moderate cost in time and
memory (see Tab. 1).

Furthermore, the early termination through the smart handling of
disjoint traversal intervals (Sec. 2.3) and the simple pausing and
resuming of hierarchy traversal (Sec. 2.4) are likely to deliver ad-
ditional benefit in potential ray tracing hardware.

1.1. Previous Work

Smits [Smi98] proposed a stackless traversal of hierarchies with
so-called skip pointers in every node. The tree is traversed by first
intersecting the ray with the bounding volume of the current node.
If an intersection is found, traversal continues to the first child; oth-
erwise the subtree below the current node can be culled and traver-
sal follows the skip pointer. As storing only one single skip pointer
per node fixes the traversal order, arbitrary traversal orders require
to store multiple skip pointers [BH06]. However, this comes with
a major increase of required bandwidth due to larger node size and
loading unused data. We evaluated a variant that processes rays
sorted by the octant of their ray directions: For each octant, all skip
pointers are replaced by the ones valid for the current octant. While
this replacement has almost negligible run time and resolves the
overfetching issue, rays must be partitioned or enqueued and per-
formance may suffer from poor load balancing and decreased ray
batch sizes. On current architectures, loading such nodes bears in-
efficiencies, as the nodes are small as compared to the cache lines
size.

With the availability of GPUs, many approaches to stackless
traversal of bounding volume hierarchies and k-d trees on the GPU
[FS05, TS05, CHCH06, GPSS07, HSHH07, PGSS07] followed the
original work of Smits. The most efficient stackless traversal meth-
ods perform iterative backtracking and therefore trade constant
state memory for a non-constant effort to find the next postponed
node: Laine [Lai10] marks tree levels in which a node was post-
poned in a bit trail. Backtracking then starts in the root node and
follows the current traversal path until the last level with a bit set in
the trail is found. Afterwards, traversal continues to the sibling of
the previously taken child. The cost for the iterative backtracking,
which is especially high in deep trees is ameliorated by also main-
taining a short stack [HSHH07], effectively resulting in a hybrid of
stackless and stack-based methods.

Hapala et al. [HDW⇤11] propose to perform backtracking with
additional parent pointers. While the resulting bounding volume
and triangle intersection tests are identical to a stack-based ap-
proach with the same traversal order and the number of iterations
to get to close-by subtrees is dramatically reduced compared to
restarting in the root, the method must re-evaluate the traversal
order in every node during backtracking and therefore may suffer
from the resulting restriction to cheap traversal order heuristics.

Áfra et al. [ÁSK14] and Barringer et al. [BAM14] introduce
stackless traversal algorithms for arbitrary binary trees and dy-
namic traversal order without restarting from the root. Both meth-
ods store an additional pointer to the sibling in each node and in
fact are very similar. However, Áfra et al. [ÁSK14] in addition test
whether there are any remaining postponed nodes by checking if
there are any bits set in the trail, which removes the need to return
to the root node to terminate traversal and makes it the currently
fastest stackless traversal method.

Yet, due to the overhead of iterative backtracking, all of the
above methods are still not competitive with the fastest stack-
based traversal kernels of Aila and Laine [AL09]. Combining the
strengths of both classes of algorithms, we introduce a new tree
traversal algorithm for ray tracing that determines the next node to
be processed in constant time, i.e. without iteration, and in constant
state memory.

Obviously, complete binary trees can be traversed with back-
tracking in constant time [MARG13, BAM14], because node ad-
dresses can be computed directly without chasing pointers. While
there are applications where complete trees pay off, see e.g. Binder
and Keller [BK15], the restriction to complete trees may result in a
large performance penalty due to the lack of the ability to adapt to
non-uniform geometry distributions.

Already Glassner [Gla84] had the idea of accessing nodes in a
tree by computing a hash function of the path from the root towards
a node in order to save memory for references and the stack. Today,
comparing keys to resolve collisions and loops to identify existing
nodes are too expensive to be competitive.

2. Efficient Stackless Traversal on GPUs

Alg. 1 shows the pseudocode of our traversal kernel that performs
backtracking in constant time. In fact the majority of references to
nodes to be processed next during hierarchy traversal can be re-
trieved using only one register instead of a stack (Sec. 2.1), while
the remaining fraction of references can be retrieved in constant
time using a perfect hash map (Sec. 2.2.1) that efficiently can be
constructed in parallel (Sec. 2.2.2). In Sec. 2.3 and Sec. 2.4 tech-
niques to further reduce the number of intersections are discussed.

2.1. Storing the Most Recently Postponed Node in a Register

First, the hierarchy (see the illustration in Fig. 2) is traversed down
until either a leaf node is reached or both bounding boxes of the
children are missed by the ray. Intersecting both children requires
to postpone one child, whose reference is stored in a register as the
most recently postponed node.

A second register is used as a bit trail [HL09,Lai10,ÁSK14] for
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Figure 2: a) Numbering convention for the keys of the nodes in the tree: The children of a node with key k have the keys 2 · k and 2 · k+ 1,
respectively. The parent of a node with key k is bk/2c, while the sibling has the key k�1, where � is the bit-wise xor operation. The dashed
arrows from node 2 · (2 · k)+ 1 point to the grand uncle and the node’s parent’s sibling b(2 · (2 · k)+ 1)/2c� 1 = 2 · k+ 1, which is the key
of the uncle. b) An example snapshot of the traversal state: The gray nodes are the ones touched during traversal. On the way from the root
with key 1 to the current node with key 22, the node with key 3 has been stored as the most recently postponed node, while the bounding
boxes of the white nodes have not been intersected by the ray. As the nodes with keys 44 and 45 have not been intersected, traversal has to
continue with backtracking - in this example - to the most recently postponed node with key 3. Note that the bit trail is relative to the current
node and has a zero entry on each level where the siblings are not to be visited. The length of the bit trail is identical to the length of the path
to the current node, which is indicated by the bits on the edges.

bookkeeping: Whenever descending a level in the hierarchy, the bit
trail is shifted one bit to the left and the last bit is set, if and only
if the ray intersected both bounding volumes of the children. Thus
the number of trailing zeros indicates how many levels up in the
hierarchy the next sibling has to be visited. For example, a set least
significant bit indicates that the sibling of the current node needs
to be visited, 102 as the least significant two bits references the
uncle, while 1002 refers to the grand uncle. We use the node data
structure published in the source code of Aila and Laine [AL09],
but in addition store siblings of ancestors like uncle, grand uncle,
etc. in unused padding memory as illustrated in Fig. 4 and Fig. 5.

Loading the bounding boxes for intersection testing then also
loads the references to the children, uncle, and grand uncle. So if
no most recently postponed node has been stored, yet, the uncle
reference is stored if its corresponding bit in the bit trail was set,
or otherwise the reference to the grand uncle is stored if its corre-
sponding bit in the bit trail was set.

When all threads of a warp either reached a leaf node or the
descent could not be continued as none of the bounding boxes were
intersected, traversal of nodes is paused. Then, all threads which
have to intersect with data in leaf nodes perform the intersection
test with the primitives it references. Using the same data structure
as published in the source code of Aila and Laine [AL09], there

are three unused 32-bit elements after the termination marker (see
Fig. 5). We use the available space to store references to the uncle,
grand uncle, and grand grand uncle of the current node. If the most
recently postponed node is not set and the bit trail indicates that
at least one of these three must be visited, it is set to the one on
the lowest level which also has the corresponding bit set in the bit
trail. Afterwards, all threads must perform backtracking to resume
traversal.

2.2. Backtracking in Constant Time

Taking a look at the statistics in Fig. 3 reveals that in fact sib-
lings, uncles, and grand uncles are the most likely backtracking
targets. References to these nodes are always stored in the most re-
cently postponed node register and consequently these targets are
accessed in constant time. Unless overwritten, even targets higher
up in the tree may have been stored in the most recently post-
poned node register. If not set, this register is updated whenever
a node is loaded including siblings, uncles, grand uncles, and po-
tentially grand grand uncles and thus extends the concept of a short
stack [HSHH07, Lai10].

In order to enable backtracking in constant time for all remaining
uncles, a numbering convention for the nodes in a binary tree is
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Figure 3: The histogram of the distances from the current node to
the most recently postponed node during backtracking (black) and
the cumulative number up to and including the ancestor (green),
averaged over multiple test scenes and camera positions, reveals
that backtracking to the sibling, uncle, and grand uncle are most
common. Optimizing for short distances therefore pays off most.
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Figure 4: Node data structures for the traversal kernels: Stack-based
traversal with padded elements due to memory alignment and cache
efficiency (top), stackless traversal with parent and sibling refer-
ences (middle), and uncle and grand uncle references (bottom) in
the same memory footprint.

required: As illustrated in Fig. 2, the root node has the key 1, while
each left child is double the key of its father, and its sibling, the
right child, has the key twice of its father plus one. Note that the
position of the leading one of the binary representation of the key
of a node in fact is the length of the path from the root to this node,
while the sequence of digits following the leading one identifies the
branches taken along the path down the tree.

During traversal, we keep the key of the current node in an addi-
tional register. Updating the key is identical to updating the bit trail
as described before: While descending the tree, the key is shifted
one to the left. If traversal continues with the right child, the last bit
in the key is set using binary xor/or with one.

The selected numbering convention allows for directly comput-
ing the key of the node that would be reached by the backtracking
loop: Bits at identical positions in the key of the current node and
the bit trail relate to the same level in the tree (see Fig. 2b). There-
fore, going up in the hierarchy by shifting the bit trail to the right

by the number of trailing zeros, the key of the resulting node is
obtained by applying the identical shift operation to the key of the
current node, i.e., just shortening its key. In the same way, toggling
their least significant bits switches both the key and the bit trail
to the other sibling. Note that the shift can be determined in con-
stant time on the GPU using native instructions that reverse bits and
count the leading zeros.

2.2.1. Perfect Hashing

Using a perfect hash map, the updated key is mapped to the ad-
dress of the next node in constant time. As a consequence, the code
divergence due to a backtracking loop is completely removed. In
fact, the hash tables may be considered a complementary accelera-
tion data structure.

We chose a simple perfect hash method [TY79,FHCD92,LH06]
to map a key k to the index

h(k) := (k+dk mod D) mod H

in the hash table of size H that contains the address of the associated
node. Selecting the size D of the additional displacement table d to
be a power of two allows one to replace the inner modulo operation
with a cheaper bit-wise and operation &(D - 1). If furthermore
D < 232, only the 32 least significant bits of the key need to be
considered. As the table d will require only a small fraction of the
overall data, the above optimization is often desirable.

Although in principle hashing node keys is sufficient for traver-
sal, storing uncle, grand uncle, and the most recently postponed
node improves performance. As mentioned before, this does not
increase the memory footprint, memory is loaded anyhow, and the
cost is only one more register.

As a side note, storing uncle and grand uncle references in the
nodes instead of parents and siblings [ÁSK14] allows for faster iter-
ative backtracking: Then, backtracking may advance by two levels
in one step (see Fig. 1b). As backtracking could also go over leaf
nodes, it is then required to determine uncles and grand uncles of
leaf nodes without having to search for the data beyond the termi-
nation marker. Fortunately, the used data structure has still empty
space in the triangle identifier array, which can be used for this pur-
pose. The evaluation of this approach reveals that on the average it
is slightly faster than the method of Áfra et al. [ÁSK14]. Neverthe-
less, the bottleneck from iterative backtracking remains.

2.2.2. Parallel Construction of the Hash Tables

The two required tables for perfect hashing can be constructed in
time linear in the number of nodes to be hashed [FHCD92]. A min-
imal perfect hash would increase memory requirements by about
7% of the size of the BVH. However, taking into account the over-
all scene data including geometry, materials, and textures, it is af-
fordable to use larger tables that in turn allow for a much faster
construction. In addition, only keys of nodes whose references are
not always stored in the most recently postponed node register need
to be hashed: Keys are only hashed if their corresponding node has
at least a grand nephew, which is an internal node, or at least a
grand grand nephew that is a leaf node.

The size D of the displacement table d is set to the highest power
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Figure 5: Original leaf data array for stack-based traversal (top) and layout with uncle and grand uncle references in place of padding memory
(bottom) after the termination marker represented by the ground symbol. Note that marking the end of the leaf data arrays instead of storing
their actual number n0,n1, . . . of primitives (like for example triangles) is more efficient on a GPU.

of two smaller than half the number of BVH nodes, and the size of
the perfect hash table is selected as the smallest co-prime number
greater than twice the number of BVH nodes. This means that ob-
viously H must be odd. If D and H were sharing a common factor
2n  D, according to the Chinese remainder theorem the number
of collisions that can be resolved would be reduced by this factor,
which is not desirable.

Observing the sequential construction algorithm for a perfect
hash function [FHCD92], it turns out that the number of displace-
ment values with the same number of dependencies is extremely
large, which allows for a very simple and fast parallel construction
method: We first map all keys k to their associated displacement
values with index k mod D and count the number of dependencies
in parallel. Then, the displacement values are sorted in parallel by
decreasing number of dependencies. Finally the displacement val-
ues are processed in parallel in batches with the same number of
dependencies to resolve all conflicts in the hash table: Conflicts
are resolved by first hashing all dependent keys of a displacement
value, checking if the resulting cells in the hash map are empty.
If this test fails for at least one of the keys, linear search is per-
formed to find an appropriate displacement value that resolves the
collisions for all keys simultaneously.

Given the BVH, this relatively simple parallel construction algo-
rithm allows one to construct all required hash tables in less than 4
ms on an NVIDIA Geforce GTX Titan X (see Tab. 1).

As a simple optimization, we store the node address of displace-
ment values with only one dependent key directly in the displace-
ment value and mark these cases using the integer sign. As leaf
nodes are also indicated by negative integers and can also be ref-
erenced, we shift the addresses to allow for a distinction. While
this shift halves the number of primitives that can be referenced,
it is still beyond available space for current hardware and the near
future. This optimization not only improves construction perfor-
mance, as it leaves more empty space in the hash table, but also
removes the second dependent load operation for that case.

One indirection can also be removed by storing all data of inter-
nal nodes directly in the hash table. Then, all references to children
and uncles in the node data must be updated to the new positions.
However, there are two drawbacks: First, as we do not generate
minimal perfect hash tables, the BVH size is increased. Second,

the hash table must also reference leaf nodes, whose size is neither
equivalent to internal nodes nor constant. In summary, the resulting
special case together with efficient latency hiding of the load oper-
ation we just tried to omit eliminated the benefit in our evaluation.

2.3. Disjoint t-Intervals Mask

During the determination of the closest intersection of a ray and the
scene boundary, traversal must continue after a first hit point has
been found, because even though traversal is ordered along the ray,
bounding volumes of adjacent subtrees may overlap, and therefore
it cannot be guaranteed that all subtrees rooted by a postponed node
are completely behind this point of intersection.

However, after an intersection has been found, postponed nodes
for which t0 is greater than the distance to the point of intersection
can be pruned [Dam11]. Unfortunately, the overhead of loading and
storing t0 for every postponed node in practice often outweighs the
benefit.

We therefore propose a cheaper, but at the same time less strict
criterion: While disjoint bounding volumes of siblings guarantee
that the entire subtree rooted by a postponed node is behind the
one processed first, it is sufficient to check for each ray whether
the t-intervals of the intersections with the bounding boxes of the
two children are disjoint (see Fig. 6). This more general criterion
is simple to check as all information is available during traversal,
does not require any additional information in the hierarchy data,
and not only covers the case of disjoint volumes (e.g. enforced by
an SBVH builder), but also allows for pruning in cases similar to
the upper example ray in Fig 6.

Using a second bit trail, we store one bit per level that indicates
that the current t-intervals are not disjoint. After a point of inter-
section has been found inside the current bounding volume, this
trail is used to mask out all subtrees that cannot be reached any-
more: bitTrail &= disjointIntervalsTrail. Special
care needs to be taken if the most recently postponed node refer-
ence is set: If the corresponding bit in the trail – the least signifi-
cant bit – is masked out, the most recently postponed node refer-
ence must be unset. This test can be performed by checking (bit-
Trail & -bitTrail) & disjointIntervalsTrail.

Fig. 7 shows how the number of postponed nodes that need to
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Algorithm 1: Pseudocode for efficient stackless traversal with
backtracking in constant time.

nodeAddr rootNode;
nodeKey 1;
bitTrail 0;
mrpnAddr unknown; // address of most recently postponed node
while nodeAddr 6= done do

while nodeAddr is an internal node do
(boxes, L, R, uncle, grandUncle) nodeData[nodeAddr];
if mrpnAddr = unknown then

if bitTrail & 0x6 then
if bitTrail & 0x2 then mrpnAddr uncle;
else mrpnAddr grandUncle;

(hitL, hitR, closest) intersectBoxes(ray, boxes);
if hitL or hitR then

if ¬ hitL or closest = R then nodeAddr R;
else nodeAddr L;
nodeKey nodeKey⌧ 1;
bitTrail bitTrail⌧ 1;
if hitL and hitR then

bitTrail bitTrail � 1; // xor
if closest = L then

mrpnAddr R
else

mrpnAddr L

if nodeAddr = R then
nodeKey nodeKey � 1; // xor

else
break;

if nodeAddr is a leaf then
(primData, uncle, grandUncle) leafData[nodeAddr];
intersect(ray, primData);
if mrpnAddr = unknown then

if bitTrail & 0x6 then
if bitTrail & 0x2 then mrpnAddr uncle;
else mrpnAddr grandUncle;

if bitTrail = 0 then
nodeAddr done;

else
// Backtracking
numLevels ctz(bitTrail); // count trailing zeroes
bitTrail (bitTrail� numLevels) �1; // xor
nodeKey (nodeKey� numLevels) �1; // xor
if mrpnAddr 6= unknown then

nodeAddr mrpnAddr;
mrpnAddr unknown;

else
d displacement[nodeKey & (D - 1)];
if d < 0 then

nodeAddr d;
if (unsigned int) nodeAddr < 0xc0000000u then

nodeAddr nodeAddr - 0x80000000u;

else
nodeAddr hashMap[(nodeKey + d) mod H];
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Figure 6: In ordered traversal, subtrees rooted by a postponed node
can be pruned if an intersection has been found inside the current
subtree and the t-intervals of the intersection of the ray with the
postponed node and its sibling were disjoint (upper ray). While
this is always the case for non-overlapping bounding volumes, in
the general case there may be intersections of rays with the two
bounding volumes that result in overlapping t-intervals (lower ray).
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Figure 7: Accounting for disjoint t-intervals (right) reduces the
number of postponed nodes that need to be checked again.

be visited is reduced when this mask is used in practice. However,
we found that the bookkeeping overhead is slightly greater than the
benefit for a an implementation in software on current generation
hardware.

2.4. Pausing and Resuming

Stackless methods allow for efficiently pausing and resuming
traversal, because only a small state of constant size must be saved.
For example, traversal may be paused to perform intersection in
separate kernels or to reorder rays for divergence reduction. Traver-
sal may be resumed after an intersection has been found, which of-
ten is desirable for handling transparency, translucency, or for path
tracing [MARG13, GMOR14].

With stackless traversal, as describe before, pausing and resum-
ing can be realized by providing at least a value for nodeKey (see
Alg. 1). Then, nodeAddr can be determined from the hash map
and the bit trail is set to ones for all bits below the most signifi-
cant one in the key. Unless the ray direction or origin have been
changed, storing the bit trail in addition avoids revisiting uncles
that already have been culled. The address mrpnAddr of the most

c� 2016 The Author(s)
Eurographics Proceedings c� 2016 The Eurographics Association.

46



N. Binder and A. Keller / Efficient Stackless Hierarchy Traversal on GPUs with Backtracking in Constant Time

0

15

30

45

Figure 8: Heat map illustrating the reduction of the number of ac-
cessed nodes when continuing light transport paths from the node
of intersection (right) instead of starting traversal from the root
node (left). As close occlusions are found faster, the image on the
right resembles an ambient occlusion rendering.

recently postponed node does not need to be stored, because one
backtracking step needs to be performed before leaving the traver-
sal loop as the current node address has already been processed.
Then, mrpnAddr is either not set or nodeAddr is set to mrp-

nAddr.

Instances can be handled similarly: The original ray state is
stored, while a new one is initialized for traversing the instance.
On return, the previously stored state is used to resume traversal.
Note that while it is simple to extend the number of bits in a bit
trail to accommodate deep trees, instances also can be used to ex-
tend traversal depth at the cost of just a few registers.

Unless the ray direction changes, transparent surfaces can be
handled as discussed. However, changing the origin or direction
of the ray upon resuming in a point of intersection, as for example
in path tracing, the bit trail becomes invalid and all uncles up to
the root node need to be checked for intersection. While continu-
ing paths right from the last intersection without restarting from the
root notably reduces the number of box intersections as illustrated
in Fig. 8, the performance of the software implementation did not
improve. This may be attributed to worse cache hit rates, as mem-
ory access across SIMD units now is more divergent. A realization
as latency hiding hardware, however, may turn out to be superior.

3. Discussion and Performance

Our traversal implementation is based on the code as published by
Aila et al. [AL09] and uses their SBVH builder, which has been
extended to write uncle and grand uncle, or parent and sibling ref-
erences to node padding memory (see Fig. 4) and to the end of leaf
data (see Fig. 5). Besides the original stack-based traversal kernel
(the “while-while” code variant [AL09, Sec.3.2]), the previ-
ously fastest stackless traversal kernel by Áfra et al. [ÁSK14] using
parent and sibling references has been added for comparison pur-
poses. All measurements were performed on an NVIDIA Geforce
GTX Titan X card and all kernels have been optimized for best per-
formance by finding the optimal combination of cache qualifiers
for the memory load operations.

For a fair comparison, we picked the best compiler version for

each method: Stack-based traversal and stackless traversal with par-
ent pointers achieved best speed with NVCC 6.5, while our new
stackless approach showed almost the same performance for all
compiler versions with a slight advantage for NVCC 7.5.

We use 32-bit data structures for scenes with a tree depth less
or equal to 32 to maximize performance. Instead of using 64-bit
types for deeper trees, it is beneficial to perform a custom over-
flow management: Each value that can overflow gets extra data in
the shared memory of the GPU and an overflow is indicated by the
most significant bit of the value. Only if this bit is set, shared mem-
ory is actually loaded and stored. Note that all operations except for
the modulo operation of the current key do not require 64 bit op-
erations. Still, a performance penalty can be observed when going
beyond 32 bits.

As explained by Laine et al. [LKA13], a separation into spe-
cialized kernels often is favorable. We therefore evaluated the per-
formance of isolated traversal kernels instead of measuring overall
path tracing time using a megakernel. We averaged the throughput
of several camera views in 100 passes after 50 warmup passes to
avoid outliers. In each pass, 4 million rays were traced. Primary
rays were enumerated in Morton order over the screen resulting in
more coherent memory access. We also measured intersection per-
formance for diffuse scattering, determining either closest or any
intersections (shadow rays).

Dynamically fetching new rays and speculative traversal reduce
divergence on SIMD architectures in stack-based traversal [AL09],
especially in scenes with a highly varying number of internal nodes
on the path to the first unculled leaf node within a warp, see e.g. the
“Hairball” scene in Tab. 2. In stackless traversal, speculative traver-
sal did not improve performance as already discovered by Áfra et
al. [ÁSK14]. Furthermore, we observed that dynamically fetching
rays is slower for primary rays in stackless traversal in all of the
tested scenes. Depending on the implementation it either results
in more instruction divergence or lower SIMD utilization during
backtracking and therefore has been omitted in the implementation
of the stackless traversal.

Note that all traversal methods included in the comparison enu-
merate the same nodes in the same order. The only exception is
speculative traversal, which improved performance for the stack-
based approach, but was slower for our stackless traversal method.
If we disabled speculative traversal, the measurements would only
point out the speed difference due to the different backtracking
methods, but at the same time we would no longer compare against
the state-of-the-art.

Besides operating in state memory of constant size, there are
three fundamental differences between the presented final method
using the perfect hash and the state-of-the-art method using a stack:
First, the new method does not need to access global memory
whenever nodes are postponed, but only requires operations on
registers. Note that the same applies to the method of Áfra et
al. [ÁSK14] and our briefly suggested variant which works with
uncle references only. Second, the determination of the address of
the next postponed node requires one or two potentially scattered
memory fetches. However, memory access to the hash map is read
only, wheres a stack-based approach also needs to store in global
memory. Third, the extra memory for the hash tables is linear in the
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number of nodes, whereas the extra stack memory for a stack-based
approach is linear in the number of rays times stack size.

While in theory a stack-based approach for most cases generates
more traffic to global memory, the cache hit rate for these requests
is often very high and together with the latency hiding hardware
results in an overall moderate penalty.

The number of read operations to find the next node in back-
tracking is the same if the node address is directly found in the
displacement table. Otherwise another scattered load operation is
required. On the other hand, postponing a node requires a write
operation for stack-based approaches while stackless methods only
operate on registers. As on GPUs a stack is not guaranteed to reside
in the cache all the time, our measurements showed that the overall
number of memory dependency stalls is smaller for our method.

We measured the performance for a number of freely available
scenes with varying complexity. Tab. 1 summarizes their properties
and shows the tiny overhead for setting up perfect hashing. Prelim-
inary experiments using only a register for the most recently post-
poned node and the uncle references almost reached state-of-the-art
performance. With the addition of perfect hashing, the measure-
ments in Tab. 2 point out that the new stackless traversal method
not only closes the gap between previous stackless algorithms and
the state-of-the-art stack-based traversal kernels, but in fact outper-
forms all compared methods. The different performance speedups
also show that the different behavior under varying conditions are
sometimes advantageous for one method or the other: The overhead
of bookkeeping and the divergent, scattered access to the hash ta-
bles are the main limiting factors for the new stackless method. On
the other hand no global memory access is required when a node
is postponed. Especially if traversal must only load very few to no
postponed nodes, the new method is often superior to stack-based
traversal. The speedup ranges between 2% and 35%. We observed
that the largest speedups are likely achieved in scenes with a single
object. However, even in closed scenes with many objects and a
tree depth greater than 32 our method beats the-state-of-the-art by
around 10 percent.

Pausing and resuming and the disjoint t-intervals mask reduce
the number of nodes that need to be loaded as well as the number
of postponed nodes at a very low overhead. However, the software
implementation suffered from additional bookkeeping and register
pressure on current generation GPUs, which only in rare cases im-
proved performance. Obviously, this is an issue that would not be
present in hardware. We speculate that different BVH construction
methods with more aggressive split criteria might improve the situ-
ation and make the method worthwhile even in a software traversal
kernel.

4. Conclusion and Future Work

We introduced a new stackless traversal method that outperforms
the state-of-the-art stackless and stack-based traversal method due
to its efficient backtracking in constant time. Besides the use of
uncle references and storing the most recently postponed node in a
register, perfect hashing is central to the approach as it completely
eliminates one source of divergence on wide SIMD architectures.
The only tiny extension of the ray state is especially interesting

when huge numbers of rays are in flight during rendering [LKA13,
ENSB13, McC14].

It is straightforward to apply the techniques to other hierarchy
traversals such as many-light-hierarchies and occlusion culling. Fi-
nally, the read-only memory access during traversal and the sim-
plicity of the algorithm lend themselves for an implementation in
hardware which we plan to explore.
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Table 1: Test scene information, hash table size with relative increase in total memory (without textures and materials), and construction time
of the hash tables.

Scene URL k triangles hash tables [MB] [ms]
Tears In The Rain http://forums.cgsociety.org/forumdisplay.php?f=185 credit: Steven Stahlberg 18 0.2 +6% 0.33
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Conference http://graphics.cs.williams.edu/data/meshes.xml 282 1.9 +6% 0.49
Powerplant http://graphics.cs.williams.edu/data/meshes.xml 296 2.9 +7% 0.48
Arabic-City https://3dwarehouse.sketchup.com/model.html?id=809c028285022519b6b5161efde62bf9 407 3.1 +7% 0.54
Classroom https://www.blender.org/download/demo-files/ 606 3.8 +6% 0.54
Persian-City https://3dwarehouse.sketchup.com/model.html?id=58f399c96e04552fde1c31612629d3dc 761 5.9 +7% 0.77
Dragon http://graphics.cs.williams.edu/data/meshes.xml 871 5.7 +7% 0.65
Emily http://gl.ict.usc.edu/Research/DigitalEmily2/ 888 5.6 +7% 0.71
Buddha http://graphics.cs.williams.edu/data/meshes.xml 1,088 6.7 +7% 0.66
Levi https://www.blender.org/download/demo-files/ 1,710 11.8 +7% 1.09
Bubs http://www.cs.utah.edu/ rvance/cs6620/final/ 1,888 11.9 +7% 1.24
Soda Hall http://www.cs.princeton.edu/ funk/walk.html 2,169 13.3 +7% 1.25
Hairball http://graphics.cs.williams.edu/data/meshes.xml 2,880 30.6 +6% 1.94
Pipers Alley http://forums.cgsociety.org/forumdisplay.php?f=185 credit: Clint Rodrigues 4,053 24.0 +7% 2.08
Enchanted Forest http://forums.cgsociety.org/forumdisplay.php?f=185 7,521 48.4 +7% 3.58
San-Miguel http://graphics.cs.williams.edu/data/meshes.xml 10,501 58.5 +6% 3.92

Table 2: Performance for primary rays (P), diffuse shadow rays (S) and diffuse closest hit rays (D) in M rays/s and relative to [AL09].

Algorithm [AL09] [ÁSK14] our new algorithm
P S D P S D P S D

Tears In The Rain 947 338 310 823 87% 302 89% 267 86% 1042 110% 431 128% 393 127%
Sibenik 790 292 231 628 79% 247 85% 169 73% 803 102% 316 108% 237 103%
Fairy-Forest 426 232 188 351 82% 189 81% 147 78% 452 106% 254 109% 207 110%
Armadillo 837 236 214 731 87% 212 90% 191 89% 981 117% 312 132% 288 135%
CrytekSponza 514 246 165 413 80% 207 84% 125 76% 541 105% 275 112% 178 108%
Conference 786 399 253 662 84% 392 98% 221 87% 820 104% 498 125% 304 120%
Powerplant 692 250 189 578 84% 233 93% 158 84% 743 107% 297 119% 225 119%
Arabic-City 673 332 261 543 81% 279 84% 206 79% 698 104% 384 116% 300 115%
Classroom 457 234 175 399 87% 190 81% 135 77% 513 112% 263 112% 195 111%
Persian-City 570 304 201 461 81% 255 84% 144 72% 587 103% 337 111% 203 101%
Dragon 743 212 194 624 84% 184 87% 164 85% 866 117% 280 132% 254 131%
Emily 676 254 234 542 80% 224 88% 201 86% 737 109% 320 126% 293 125%
Buddha 1237 210 185 1089 88% 187 89% 162 88% 1419 115% 281 134% 245 132%
Veyron 752 180 144 610 81% 157 87% 114 79% 829 110% 224 124% 167 116%
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Soda Hall 649 362 262 513 79% 323 89% 192 73% 666 103% 414 114% 266 102%
Hairball 190 77 65 147 77% 72 94% 57 88% 192 101% 96 125% 79 122%
Pipers Alley 558 199 164 464 83% 175 88% 134 82% 580 104% 232 117% 186 113%
Enchanted Forest 237 81 64 205 86% 77 95% 56 88% 250 105% 99 122% 76 119%
San-Miguel 246 149 81 198 80% 138 93% 65 80% 257 104% 184 123% 89 110%
Average 83% 88% 81% 108% 120% 117%
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