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Abstract

We present an efficient implementation of a Dwyer-style Delaunay triangulation algorithm that runs in O(N) ex-
pected time. An implicit quad-tree is constructed directly from the floating point bit patterns of the input points by
sorting the corresponding Morton codes with a radix sorting procedure. This unique structure adapts elegantly to
any (non-)uniform distribution of input points and increases the accuracy of the merging calculations by grouping
floating point values with similar bit patterns. Our implementation allows for easy parallelization and we demon-
strate a record construction speed of one Billion Delaunay triangles in just 8s on a many-core SMP machine.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Geometric algorithms

1. Introduction

The Delaunay Triangulation (DT) is a fundamental method
in the field of computational geometry. Applications include
point location, path finding and visual computing, in par-
ticular image processing and mesh generation. Various algo-
rithms in three categories have been proposed to compute the
DT efficiently. The Sweepline algorithm has been invented
by [For86], incremental algorithms have been proposed by
[GKS90], [ACRO3], [Buc09] and divide-and-conquer algo-
rithms are due to [GS85], [Dwy87], [She96b]. All these al-
gorithms were designed with sequential execution in mind.
Since their introduction computer hardware has evolved, but
publications concerned with the adaption of the dated algo-
rithms are sparse, at least on the CPU. On the GPU multi-
ple parallel algorithms have been proposed by [RTCSO0S8],
[QCT12] and [CNGT14] that have successively increased
DT construction speed well beyond the publicly available
counterparts on the CPU such as CGAL [CGA14] and Trian-
gle [She96b]. Our goal is to adapt one of the aforementioned
sequential algorithms to the parallel capabilities of modern
CPUs. We chose the Dwyer style divide-and-conquer algo-
rithm as it is considered the ’strongest overall’ of the se-
quential algorithms [SD95] and is very well suited for task-
parallelism. Furthermore this algorithm has been proven to
have a time complexity of O(N) for the uniform distribution
of N coordinates under specific conditions [KK87]. We ver-
ify experimentally that our algorithm exhibits the same time
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complexity for various point distributions.

Our key contribution is the linear floating point quad-tree, an
implicit data structure that allows our DT implementation to
scale up to 32 CPU threads and beyond. The result is a highly
efficient CPU implementation that substantially outperforms
the GPU alternatives proposed by [QCT12] and [CNGT14].
In the following section we describe the floating point quad-
tree data structure in detail. The implementation of the DT is
topic of section 3 and in section 4 we present our experimen-
tal results and an exhaustive analysis. Section 5 concludes
the paper with a summary of the key points and a proposal
for future work.

2. The linear floating point quad-tree

The linear floating point quad-tree is a data structure based
on Morton codes, which are derived from the binary repre-
sentation of floating point values. We assume the represen-
tation to conform with the IEEE 754 standard.

2.1. Morton codes

Morton codes are indices along the space-filling z-order
curve. The z-order curve maps n-dimensional coordinates
(here n = 2) to a scalar value, the Morton codes. The map-
ping is performed in such a way that the resulting order of
Morton codes is equivalent to a depth-first traversal of a par-
ticular quad-tree constructed from the coordinates. A Mor-
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ton code is computed by interleaving the bit patterns of the
components of a coordinate. This representation of a quad-
tree was referred to as ’linear quad-tree’ by [Gar82] and suc-
cessfully applied by [LGS*09] to rapidly generate bounding
volume hierarchies (BVH) for triangular meshes.

As an alternative to the z-order curve the related Hilbert
curve can also be used to construct the same quad-tree. How-
ever, Morton codes are faster to compute and conceptually
simpler.

2.2. Construction

A linear quad-tree is constructed by sorting the input coor-
dinates by their respective Morton codes. Let B and F de-
note the binary value and the real value of a floating point
value respectively. Since lexicographical order and numeri-
cal order differ for floating point values, applying the Morton
codes directly to 3 presents a problem. A binary representa-
tion B’ with the following property is required:

.7:l'<]:j<:>8/,‘<B/j

If F is restricted to positive values this requirement is ac-
tually fulfilled. Consequently for negative values the lexi-
cographical order is inverse to the numerical order. Also, be-
cause of the sign bit, negative values are greater than positive
values in lexicographic order.

Hence a suitable representation B’ can be achieved by in-
verting the sign bit, exponent and mantissa for negative F;
and setting the sign bit to *1” for positive F;.

In summary three steps are necessary to construct the linear
floating point quad-tree: First, the coordinate components
are transformed from B to . Second, the Morton codes are
applied. Third, the Morton codes are sorted.

2.3. Geometric structure

We want to explore the geometric structure of the floating
point quad-tree, i.e. at what positions space is subdivided and
at what level a particular subdivision occurs. The level re-
flects the hierarchical order of subdivisions and corresponds
directly to a particular bit position in the Morton Code, e.g.
the root node is at level 64 and its subdivision defined by the
most significant bit (Figure 1a).

For simplicity we first consider a linear quad-tree defined
by integer coordinates. With every level the space is subdi-
vided exactly in half.The direction of subdivision is cyclic
in X and Y (and Z etc. for higher dimensions). The resulting
structure corresponds to a regular grid at every level of the
linear quad-tree.

Floating point coordinates generate a different geometric
structure due to the exponent bits. Their influence is best
understood by studying Figure 1. Figure 1b depicts the hi-
erarchical segmentation along a single axis and Figure 1c
the subdivision of the four quadrant unit squares down to
the least significant exponent level. The bits of the mantissa
however are evenly spaced and form regular grids at every

mantissa level. The base vectors of the regular grids have
magnitudes that depends on the value of the exponent (see
Figure 1c). The whole structure is symmetric with respect to
the coordinate axes because the two most significant quad-
tree levels correspond to the sign bits of the x and y compo-
nents.
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(a) Structure of the 64 bit Morton code.
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(b) Subdivision of the first 4 exponent levels along a single axis.
The hierarchical order of the subdivisions by color is: red — blue
— green — orange.
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(c) Subdivision of the four quadrant unit squares. Areas with differ-
ent colors belong to different exponents. Alternating color shades
within a single exponent area mark the regular grid formed by the
mantissa levels.

Figure 1: Geometric structure of the floating point quad-tree.

2.4. Numeric structure

An interesting property of the floating point quad-tree is its
rigorous numerical structure that sets it apart from other
space partitioning schemes. We consider the coordinates
grouped together in an area at level i. By construction, the
bits from bit i to bit 63 are identical (Figure 1a). This prop-
erty can be leveraged to increase the robustness of floating
point calculations and to tighten error bounds. For example
coordinates that share the same exponent can be subtracted
without round-off error and the result will have a mantissa
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with the 32 — i/2 least significant bits set to zero. The un-
used bits can guarantee a subsequent exact addition or mul-
tiplication.

The construction of a Delaunay triangulation requires two
arithmetic procedures, the In-circle and Orientation tests.
The results of these predicates depend only on the sign of the
calculation, but the sign needs to be exact. If the wrong sign
is produced due to round-off errors, the DT is invalid and
the construction algorithm may fail. Multi-precision float-
ing point arithmetic is a reliable solution but also very slow.
A sensible compromise performs error analysis on the inex-
act result and only employs Multi-precision arithmetic if the
sign is questionable. Error analysis can be static, dynamic or
a combination of both. Static analysis simply compares the
magnitude of the result to a compile-time constant while dy-
namic analysis requires additional computations. Naturally
dynamic analysis provides tighter error bounds whereas the
quality of static analysis greatly depends on good precondi-
tioning.

Preconditioning is the natural application for the numerical
structure of the floating point quad-tree. Considering a ran-
dom distribution of coordinates, minimal error bounds at ev-
ery level (as a function of the exponent) can be computed
at compile-time. Hence static error analysis can be very ef-
ficient especially in the lower levels of the quad-tree where
most predicates are evaluated.

3. Implementation of the DT

The algorithm can be divided into three phases: Sort, Sub-
division and Merge. Dedicated subsections 3.1, 3.2 and 3.3
describe the three phases in detail. The parallel implementa-
tion is the topic of subsection 3.4.

3.1. Phase 1: Sort

The sorting phase receives a list of input coordinates, trans-
forms the floating point representation according to subsec-
tion 2.2 and encodes the coordinates with the Morton code.
The Morton codes are then sorted with an efficient radix sort
implementation, which is out-of-place, uses a key length of
one byte and utilizes SIMD instructions and NUMA opti-
mization to achieve a high memory bandwidth. After the
sorting process the construction of the floating point quad-
tree is concluded. Note that only the list of sorted Morton
codes is passed on to subsequent phases since the mapping
of Morton codes and coordinates is bijective.

3.2. Phase 2: Subdivision

The task of the subdivision phase is to descend down the
floating point quad-tree hierarchy until an area contains only
one or two coordinates. The triangulation of these quantities
is trivial.

We use the triangular data structure of [She96b]: The convex
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hull of a triangulation is surrounded by dedicated hull trian-
gles to facilitate the merge algorithm.

The result of the subdivision phase is a partition, a data
structure that contains four pointers to the hull triangles at-
tached to the minimum and maximum coordinates in x and y
direction. A single coordinate has no hull triangle and hence
is marked with a special value.

The subdivision phase is detailed in algorithm 1. The first
conditional tests if only one coordinate remains in the input
interval (line 1). The particular formulation of this condi-
tion allows to detect and gracefully handle degenerate input
points (lines 2 — 3). The second conditional checks for two
remaining coordinates (line 4). If the number of coordinates
is more than two (and coordinates are not degenerate), the
input interval needs to be split at the next subdivision of the
floating point quad-tree. The level of the next subdivision is
determined by a binary xor of the first and the last Morton
code in the in input interval and a subsequent BSR instruc-
tion [INT13] (lines 8 — 10). This will yield the position of the
most significant bit that is different, i.e. the level of the next
subdivision. Then the input array is partitioned by finding the
two adjacent Morton codes with a ’0’ and a /1’ respectively
at the subdivision level (lines 12 — 19). Finally recursion is
invoked (lines 20 — 21) and the results are merged (line 22).

Algorithm 1 Subdivision of the floating point quad-tree.
Subdivide(lidx, ridx)
1: if points[/idx] is equal to points[ridx — 1] then
Decode points lidx to ridx — 1
3 return Partition with single point lidx
4: else if ridx — lidx is equal to 2 then
5 Decode points lidx and lidx + 1
6:  return Partition with points /idx and lidx 4+ 1
7
8
9

: else
| < lidx
: r<— ridx—1
10:  level <— BSR( points[/] & points[r] )
11:  mask < Shift left 1 by level
12:  while not (points[/ + 1] & mask) do

13: m+ (I+r)/2

14: if points[m] & mask then
15: r<—m

16: else

17: l<m

18: end if

19:  end while

20:  left < Subdivide(lidx, [+ 1)
21:  right < Subdivide(! + 1, ridx)
22:  return Merge(left, right)

23: end if

3.3. Phase 3: Merge

The merge phase produces a single Delaunay-triangulated
output partition from two input partitions. The basic algo-
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rithm for the merge phase is adapted from [GS85]. Dur-
ing the merge phase Orientation and In-circle predicates are
evaluated repeatedly and the numerical structure of the float-
ing point quad-tree can be leveraged to precompute tight er-
ror bounds. We employ error analysis in three stages. Stage 1
is similar to the *Adaptive A’ computation from [She96a] ex-
cept for the error bounds. Stage 2 utilizes interval arithmetic
to compute a minimal dynamic error bound. If stage 2 can-
not decide the predicate, stage 3 computes the exact result
with the aid of the GNU multi-precision library [GMP14].

3.4. Parallelism

Parallelism is inherent in a divide-and-conquer algorithm
as every subdivision produces two independent partitions.
However the scalability with many threads is often limited.
The reason for this is that only one partition exists in the
beginning and the number of independent partitions only
doubles with every subdivision level. As a result, a maxi-
mum of 2" threads can be active at level n. The same lim-
itation applies to the final merging computations. If a sig-
nificant amount of work must be done in the upper subdi-
vision levels, Amdahl’s Law prevents good scaling behavior
for many threads. Hence the challenge for a scalable divide-
and-conquer algorithm is to defer as much work as possible
to the lower subdivision levels where all threads can partici-
pate.

Fortunately, due to the linear floating point quad-tree, sub-
division of the upper levels is very fast with our algorithm.
No data movement is required and the complexity of a sub-
division is only O(logn) where n is the number of points in
the current partition. Hence our implementation uses a sin-
gle thread to quickly partition the floating point quad-tree
into independent sub-trees (bins) with an appropriate num-
ber of coordinates. The subdivisions (or splits) are recorded
in a split-list for the parallel merge phase (Figure 2). Ev-
ery quad-tree level has a dedicated split-list and an atomic
counter. Every split entry in a split-list has storage for the
two input partitions of its subdivision and a pointer to where
the merge result must be stored.

As soon as the master thread has finished the partitioning
of the bins the algorithm proceeds as described in Figure 2.
Note that no global synchronization is required during the
entire triangulation procedure.

4. Experimental Results

In order to benchmark our implementation (fqDel) we
compare it to the two popular DT implementations Triangle
and CGAL (version 4.2). Triangle is a Dwyer-style divide-
and-conquer algorithm and thus quite similar to our own DT
algorithm with the distinct difference of the linear floating
point quad-tree (LFQT), and multi-threading support. Hence
we can directly demonstrate the impact of our contributions.
CGAL uses incremental point insertion with presorting the
input coordinates along the Hilbert curve for speed. It is the
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Figure 2: Data structure for the parallel merge phase. First
the bins (sub-trees) are processed in parallel and the results
are propagated to the corresponding splits as indicated by
the black lines. Afterwards the split-list is traversed from
the lowest to the highest level. The num field indicates the
total number of splits at a particular level and count is an
atomic counter used by the threads to acquire the next avail-
able split. The left and right fields of the split are tested and
each thread will spin-wait in case the dependent results have
not completed. Once a thread receives a count value larger
than num it proceeds to the next split-list level. This proce-
dure is repeated until the final partition has been finished on
the highest level and the DT is complete.

fastest publicly available DT implementation known to the
authors. The experimental setup consists of a dual-processor
Intel Xeon E5-2670 system with 64 GB DDR3 Ram. The
timings we report are derived by counting CPU cycles and
normalizing the result to a frequency of 3 GHZ (the highest
turbo boost frequency of the E5-2670 at full load). This
ensures that the true scaling behavior of our algorithm is
not masked by turbo states. Furthermore we repeat every
measurement multiple times and report the minimum time
in order to minimize OS interference. We also compare our
work to GPU-DT [QCT12] and gDel2D [CNGT14], recent
publications on GPU accelerated computation of the DT.
We have chosen five different point distributions generated
randomly with a fixed seed for every measurement. The
Uniform and Grid distributions approximate common
real-world data, the Cluster is a common feature within
real-world data, the Circle a common benchmark and the
Spiral distribution has been chosen for its interesting geom-
etry. Circle and Spiral are centered at the origin, whereas all
other distributions are located in the first quadrant. The Grid
is square and consists of integer coordinates only.

4.1. Single-threaded comparison

Figure 3 depicts the run-times of fqDel, CGAL and Triangle
for multiple point distributions with input sizes of 100k,
1M, 10M and 100M points. fqDel is able to complete the
DT much faster than either CGAL or Triangle, irrespective
of point distribution and input size. Focusing on the 100k
diagram, fqDel outperforms CGAL and Triangle by a factor
of 2.5x (Uniform) to 3x (Spiral). The discrepancy for the
Grid distribution is even higher. Neighboring grid points
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are cocircular so that CGAL and Triangle have to resort to
exact arithmetic while fqDel can decide the cocircular cases
of integer grid coordinates by interval arithmetic. For larger
input sizes the run-time ratio of CGAL and fqDel changes
only slightly in favor of fqDel and the overall scaling
appears linear. Triangle clearly does not scale linearly
with increasing input size and as a consequence runs much
slower than either fqDel or CGAL. Triangle failed to
compute the DT for 100M input points. The asymptotic
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Figure 3: Single-threaded run-times of fqDel, CGAL and
Triangle for multiple distributions with 100k, 1M, 10M and
100M points.
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Figure 4: Asymptotic behavior of fqDel over a range from 1k
to 500M points for multiple distributions. MP/s is the rate
at which input points are processed (for a single thread). A
constant rate corresponds to linear scaling.

[ Sort Subdivision [l Merge Il Top Subdivision Il Top Merge

1 Thread
32 Threads

T T T T T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 5: Timing break-down for the different phases of
fqDel, for single-threaded and multi-threaded execution. The
timings for Subdivide and Merge are reported separately for
the lower and the upper (Top) part of the LFQT.

behavior of fqDel is detailed in Figure 4. The unit on the
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y-axis is the rate at which input points are processed, i.e.
a rate independent of the input size is expected for linear
scaling. We first concentrate on the Uniform curve which is
mostly parallel to the x-axis with two significant exceptions.
There is a first decline of the rate between 10° and 10*
and a second around 10°. These effects can be attributed to
the influence of the L1/L.2 and L3 caches respectively. If
the largest part of the data set fits into one of the caches,
memory access latency is significantly improved and hence
the rate is higher. Disregarding the influence of the caches
the rate is constant over a range of more than 6 orders of
magnitude thus demonstrating an algorithmic complexity of
O(N). The same applies to the Cluster and Grid distribution
albeit with a constant offset compared to the Uniform rate.
The slight increase of the cluster rate towards huge input
sizes is an artifact of a high number of degenerate points
that are efficiently filtered out during triangulation (Section
3.2). The different rates for Uniform, Grid and Cluster are
easily explained: A DT of a subset of the input points often
contains many triangles that are not part of the DT of the
complete set and hence must be deleted or restructured
during the Merge phase (Section 3.3). The construction of
invalid triangles is highly sensitive to the merge order of
the subsets which, in our case, is dictated by the geometric
structure of the LFQT. Hence the linear floating point
quad-tree appears to be better suited for non-uniform point
distributions such as the Cluster, Circle and Spiral, the latter
two approaching the Uniform case for large input sizes.
Even though the Grid is uniform, due to its regular structure
triangles of a subset are also very likely triangles of the final
DT. Thus the Grid has the highest rate of all the distributions.

Figure 5 shows the total run-time of fgDel broken
down into the different phases in terms of percentages. The
Subdivide and Merge phases are further separated into the
time spent inside the lower part of the LFQT (bins) and
the upper part of the LFQT (initial subdivision and parallel
merge phase). For single-threaded execution the time spent
in the upper part is almost non-existent as the number of
bins is coupled to the number of threads, whereas in the
case of 32 threads the upper part accounts for about 10%
of the total run-time and more threads will further increase
the ratio. The initial subdivision in our implementation is
always single-threaded, although for higher thread counts
a parallel implementation will likely be worth the effort.
While the lower part of the LFQT consists of completely
independent tasks, the upper part must produce a single
result and hence cannot scale linearly with thread count,
ultimately limiting scalability of the complete algorithm.

Table 1 provides counts to asses the influence of the
LFQT’s arithmetic structure on error analysis. Consider-
ing that the total number of Orientation and In-circle tests
ranges from 40M to 80M for 10M input points, the semi-
static error analysis proves to be highly efficient for both
fqDel and Triangle. The exception is Grid with many co-



102 V. Fuetterling & C. Lojewski & F.-J. Pfreundt / High-Performance Delaunay Triangulation

Uniform | Cluster | Circle | Spiral Grid
Triangle
Orientation 15 33453 10 353 700614
In-circle 134 113023 292 5878 11520820
fqDel - const
Orientation 10 31100 8 417 0
In-circle 121 103814 316 10685 | 9991921
fqDel - level
Orientation 5 13 6 79 0
In-circle 64 15144 252 10224 | 9991921

Table 1: Total number of predicates that are within error
bounds for Triangle and fqDel at 10M points. The fqDel er-
ror bounds labeled const are identical with those of Triangle,
the fqDel error bounds labeled level are level-dependent.

circular cases. Comparing the level-dependent error bounds
with the Triangle bounds, undecided predicates can be re-
duced significantly in relative terms for most distributions.
In absolute terms however it is clear that run-times are only
marginally affected, e.g. in case of the Cluster the overall
speedup is about 0.5%.

4.2. Multi-threaded performance

The scaling of fqDel with core count is depicted in Figure
6, with and without Hyperthreading enabled. 16 cores are
able to compute the DT 13 — 14 as fast as a single thread.
Enabling Hyperthreading increases the factor by about 30%
regardless of core count. A 16¢/32¢ configuration results in
a factor of close to 17x for the Uniform, Circle and Spi-
ral distributions. For the Cluster and Grid distributions more
work is deferred to higher subdivision levels which affects
scalability slightly.
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©
L

# of cores

Figure 6: Scaling of fqDel with core count, illustrated for
multiple distributions. Hyperthreading is enabled for the
translucent part and disabled for the opaque part of the bars.

Triangle and CGAL do not offer multi-threading support.
[BMPS09] has experimented with a multi-threading exten-
sion for CGAL, but the results demonstrated have limited
scalability for the 3D DT, result for the 2D DT have not

been published. Figure 7 compares fqDel to the latest ad-
vancements in GPU accelerated DT instead, namely GPU-
DT [QCT12] and gDel2D [CNGT14] (both implemented
in CUDA). The GPU results have been reconstructed from
the respective publications and might be slightly inaccu-
rate. Both results have been performed in double precision.
According to [CNGT14] the DT on the GPU is memory
bound so the results are still comparable in our opinion (the
memory footprint of the DT should be increased by 15%
at most). As depicted by Figure 7 fqDel is more than 4 x
and 8x faster than GPU-DT and gDel2D respectively on
the NVIDIA Geforce GTX 580. [CNGT14] reports a gen-
eral 30% speedup of the NVIDIA Geforce Titan over the
GTX 580 for the DT in 3D. We have included this result as
a reference in Figure 7, but we have to point out that it was
not actually measured.

Comparing the radix sort speed of CPU and GPU, our imple-
mentation is able to outperform the Thrust-based implemen-
tation provided by the CUDA 6 SDK (running on a NVIDIA
Titan) by a factor of 3.9, requiring only 0.89ms to sort 1M
floating point values.

Even though the comparison of CPU and GPU results are
not straightforward, considering the substantial lead in Fig-
ure 7 it is save to say that fqDel can compute the DT more
efficient than any GPU algorithm published so far. The sepa-
rate bar in Figure 7 illustrates the run-time for 500M uniform
input points which result in 1G Delaunay triangles in just 8s.
This order of magnitude cannot be reached by GPUs due to
memory limitations.

mmmm fgDel
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mmmm gDel2D
s GPU-DT
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Figure 7: CPU vs. GPU. Run-times of fqDel, gGPU2D and
GPU-DT for the uniform distribution with input sizes from
2M to 10M points. 500M points can be accomplished only
by fqDel, GPUs do not offer a sufficient amount of memory.

4.3. Discussion

The experimental results prove that fqDel is a highly com-
petitive DT implementation. Even though Triangle and
fqDel are based on the same Dwyer-style divide-and-
conquer algorithm fqDel is substantially faster even in the
single-threaded case. The speedup must thus be attributed
to the LFQT because otherwise the two implementations
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are quite similar. The most notable improvements are multi-
threading scalability (Figure 6) and asymptotic behavior.
While Triangle has to resort to a O(Nlog N) Quicksort-based
pre-sort procedure, fqDel can employ a fast O(N) radix sort
(Figure 3). Algorithmic complexity aside the floating point
quad-tree offers some unique and interesting features. The
structure of the tree can adapt to any distribution, no mat-
ter how sparse or dense or degenerate, while the uniform
distribution appears to be the performance baseline (Figure
4). The numeric structure can minimize the requirement for
exact arithmetic (Table. 1) and the bijection of input coordi-
nates and Morton codes reduces the memory footprint.

A limitation of the proposed algorithm is that it does not
expose data parallelism that could be mapped efficiently to
the SIMD instructions of modern CPUs. Our implementa-
tion utilizes SIMD instructions only for the Orientation and
In-Circle predicates for a total speed-up of 1% and 10% re-
spectively.

An interesting question is if the LFQT is also compatible
with point insertion algorithms (e.g. CGAL). Point insertion
performance is highly sensitive to the ordering of the input
points and benefits from the better locality preservation of
the Hilbert curve compared to Morton order. As noted in
Section 2.1 the LFQT can also be constructed from Hilbert
order and in this case point insertion could be employed ef-
ficiently to triangulate the bins (Section 3.4) in parallel.

5. Concluding Remarks

In this paper we have introduced a novel data structure,
the linear floating point quad-tree. Based on the LFQT we
have demonstrated a highly efficient Dwyer-style divide-
and-conquer DT implementation in 2D that exhibits excel-
lent multi-threading scalability. To our knowledge the results
are the fastest ever published, competing with established
CPU solutions and CUDA based GPU implementations. In
the future it would be interesting to extend our DT to higher
dimensions and to answer the question if point insertion can
be significantly faster than the divide-and-conquer approach
in the lower levels of the LFQT constructed from Hilbert or-
der. Furthermore we believe that the usefulness of the LFQT
is not limited to the DT and should be considered when de-
signing data structures for other applications.
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