High Performance Graphics (2014)
Jonathan Ragan-Kelley and Ingo Wald (Editors)

Streaming G-Buffer Compression for
Multi-Sample Anti-Aliasing

E. Kerzner' 2T and M. Salvi’}

ISCI Institute ~ 2School of Computing *Intel Corporation

Surfaces
Shaded

123

Figure 1: Our streaming compression algorithm reduces the memory usage and shading costs associated with multi-sample
anti-aliasing (MSAA) coupled to deferred shading. Here, a scene rendered with our algorithm using 8x MSAA (left) reduces
memory usage by 50% and total running time by 30% when compared to an optimized deferred shading implementation. In
most cases we shade once per pixel (right) even when multiple geometric primitives cover it.

Abstract

We present a novel lossy compression algorithm for G-buffers that enables deferred shading applications with high
visibility sampling rates. Our streaming compression method operates in a single geometry rendering pass with
a fixed, but scalable, amount of per pixel memory. We demonstrate reduced memory requirements and improved

performance, with minimal impact on image quality.

1. Introduction

Computing images with high visibility sampling rates is a
long standing problem in real-time rendering due to the
much increased demand for shading, storage, and mem-
ory bandwidth. Shading costs can be lowered with methods
that decouple visibility determination from shading, such as
multi-sample anti-aliasing (MSAA), while color and depth
compression techniques employed by modern graphics hard-
ware can effectively reduce memory bandwidth, but do not

T kerzner@sci.utah.edu
! marco.salvi@intel.com

(© The Eurographics Association 2014.

DOI: 10.2312/hpg.20141088

reduce storage requirements. Moreover, applications that de-
fer shading further increase the amount of memory neces-
sary to store to-be-shaded-attributes (i.e. the G-buffer) and
cannot directly take advantage of hardware support for de-
coupling visibility and shading.

Our lossy streaming compression algorithm reduces the
memory usage and shading costs of MSAA when coupled
to deferred shading, with little impact on image quality. We
exploit hardware support for MSAA to compute each frag-
ment’s coverage mask, but rather than storing shading data
per sample or per fragment we coalesce fragments originat-
ing from the same geometric feature into a single surface
data structure. This process makes it possible to render a
compressed representation of the G-buffer in a single ren-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/hpg.20141088

2 E. Kerzner & M. Salvi / Streaming G-Buffer Compression for Multi-Sample Anti-Aliasing

dering pass. We further increase performance by shading per
surface instead of per sample.

2. Previous Work

Multi-sampling anti-aliasing (MSAA) first introduced the
idea of mapping a single shading sample to all samples cov-
ered by a primitive within a pixel [Ake93]. This technique is
effective at reducing shading computations as long as geo-
metric primitives cover many visibility samples. In the limit
case when each visibility sample is covered by a differ-
ent primitive, performance degrades to super-sample anti-
aliasing (SSAA) where visibility and shading are computed
at the same rate [FGH*85, DWS™*88, Mam89, HA90]. Fa-
tahalian et al. [FBH*10] address this case in a tessellation
based pipeline by merging pixel quads from adjacent prim-
itives in the same patch prior to shading. These techniques,
if implemented in a single rendering pass, store n visibility
and shading samples per pixel, which can significantly im-
pact memory and bandwidth requirements when n is large.

To improve performance modern graphics hardware
stores and transmits color and depth data using proprietary
compression formats. These lossless algorithms lower mem-
ory bandwidth but do not reduce the size of the frame buffer.
Exceptions are coverage sampling anti-aliasing (CSAA) and
enhanced quality anti-aliasing (EQAA), lossy extensions to
MSAA where color data are decoupled from coverage. The
latter is sampled by the rasterizer at higher rate than both
color and visibility [YouO7, AMDI12], which increases im-
age quality on primitive edges without requiring more color
and visibility samples.

The Z3 algorithm [JC99] samples coverage and visibility
at the same rate but allocates a small and fixed a priori num-
ber of fragments per pixel. If this per-pixel buffer overflows
fragments are merged while trying to minimize image arti-
facts. Lee et al. [LKOO] replace the fixed size buffer of 73
with a dynamically allocated linked list of fragments, simi-
lar to an A-buffer [Car84], and augment fragment data with
object tags to reduce the likelihood of merging fragments
that belong to different objects.

If shading is performed after geometry is rendered the
one-to-many mapping from shading samples to visibility
samples provided by MSAA is lost. Methods that defer
the bulk of their shading computations will therefore inef-
ficiently sample shading and visibility at the same rate, sim-
ilar to SSAA. These applications can still take advantage
of lossless bandwidth compression techniques employed by
GPUs, but memory usage is negatively impacted since de-
ferred shading techniques significantly increase the amount
of data stored for each sample, the so-called G-buffer. These
additional costs cannot be reduced by applying some of
the aforementioned lossy compression methods, since their
merge heuristics use color information, which is not avail-
able prior to shading.

To address these issues numerous image anti-aliasing
post-processing techniques that do not require MSAA have
been proposed [JGY*11]. These were first pioneered by
Reshetov’s work on morphological anti-aliasing [Res09].
Such methods typically provide high performance and easy
integration with rendering engines but cannot address alias-
ing introduced by sub-pixel features, which often generate
temporal artifacts. More advanced post-processing methods
can reduce these artifacts by sampling visibility at higher
rate while still shading only once per pixel [CML11,Res12].

Ragan-Kelley et al. [RKKS*07] propose to preserve the
relation between visibility and shading samples with an indi-
rect frame buffer that explicitly associates each shading sam-
ple to one or more visibility samples, allowing reduced shad-
ing rates similarly to MSAA. To further save memory the in-
direct frame buffer can be replaced by a visibility buffer that
encodes triangle and instance IDs which are later used to re-
trieve and shade geometry associated to the visible samples,
thus eliminating the G-buffer [BH13]. Sort-based deferred
shading augments the visibility buffer by storing shading co-
ordinates. The samples are then sorted on a per-screen-tile
basis to extract a list of to-be-shaded primitives and relative
shading locations [CTM13]. This lowers shading require-
ments as many visibility samples tend to map to the same
shading location.

The method introduced by Lauritzen [Laul0] analyzes the
G-Buffer content prior to shading to discover pixels covered
entirely a single geometric feature and adaptively shades
per pixel or per sample. This can reduce the overall shad-
ing costs but does not change the memory requirements.
Surface based anti-aliasing (SBAA) analyzes the result of
a first simplified MSAA rendering pass to discover which
fragments could be merged and stored in the G-buffer in a
subsequent rendering pass. By allocating a small number of
G-buffer samples per pixel (e.g. 2 or 3) SBAA acts as a com-
pression algorithm, reducing both the size of the G-Buffer
for high MSAA rates and the number of to-be-shaded sam-
ples [SV12].

Similar to SBAA the method presented in this paper an-
alyzes the stream of incoming fragments to generate an on-
the-fly lossily compressed representation of the G-buffer but
unlike SBAA our method acts in a single rendering pass. The
compressed G-buffer requires two or three samples per pixel
and it is particularly advantageous at high visibility sampling
rates (e.g. 8 samples per pixel or more) where it can reduce
memory and shading requirements compared to many de-
ferred shading techniques based on MSAA.

3. Algorithm

As already noted in previous work [Laul0,SML11] it is pos-
sible to exploit groups of primitives forming geometric fea-
tures with little or no curvature (i.e. surfaces) to locally re-
use shaded samples and thus reduce the shading rate. We

(© The Eurographics Association 2014.

E. Kerzner & M. Salvi / Streaming G-Buffer Compression for Multi-Sample Anti-Aliasing 3

struct surface {
uint depth;
half2 depth_dxdy;
uchar coverage;
uchar depthResolvedCoverage;
struct sample
{
uint albedo;
uint normal;

} GBufferData;
} SurfaceData;

tion. Here is an example of computing a surface’s minimum
depth:

float dz_dx = surface.depth_dxdy.x;
float dz_dy = surface.depth_dxdy.y;
float z_min = surface.depth

- abs (dz_dx)

- abs(dz_dy);

Figure 2: Surface data structure. Every pixel in the com-
pressed G-bufffoccler stores a fixed length array of surfaces.

take advantage of this observation by merging to-be-shaded
fragments into surfaces in a streaming fashion. Unlike previ-
ous deferred shading methods we do so in a single rendering
pass (that we call a compression pass) as primitives are ren-
dered into our compressed G-buffer.

Our compressed G-buffer uses a new per-pixel data struc-
ture that encodes a fixed length array of surfaces. Each sur-
face consists of a G-buffer sample and additional informa-
tion used in our compression algorithm, such as depth (com-
puted at the pixel center), depth derivatives (with respect to
screen-space), and two coverage masks (that we discuss in
Section 3.2.1). An example structure is in Figure 2. Although
one pixel may be covered by up to eight sub-pixel samples
we have found that three sub-pixel surfaces provide adequate
image quality.

After our streaming compression pass we output pixel
color from the compressed G-buffer. We achieve this by
averaging the color contribution of each shaded surface
weighted by the number of samples it covers.

3.1. Merge Metrics

During our streaming compression pass we merge fragments
belonging to planar geometric features. We use the follow-
ing merge metric to determine when fragments belong to the
same surface. It consists of three conditions that must be mu-
tually satisfied:

e aligned normals,
e overlapping depth intervals, and
e mutually exclusive coverage masks.

Next, we more clearly define these conditions.

If two surfaces have normals g and ;| then these normals
are aligned only if:

ng -ny > cos(Oe)

We found o = ¥ to provide high quality images while re-
ducing the shading costs by merging surfaces.

We compute surface depth intervals within a pixel us-
ing the depth derivatives with respect to screen space posi-

(© The Eurographics Association 2014.

This estimates minimum depth at one of the pixel’s corners.
We use the same process to compute maximum depth. If
two surfaces have depths 2,0, Zmaxos Zmin, » a0d Zmax, , these
ranges overlap only if:

Zming < Zmax && Zminy < Zmaxg

This technique estimates surface depth range and allows
merges to occur when there is potential for depth range over-
lap. We also require coverage masks to be mutually exclu-
sive. Two surfaces with coverage Cy and C; are mutually
exclusive only if:

CoNC| ==

This is based on our observation that geometric features sel-
dom contain overlapping primitives.

We demonstrate these three conditions through examples
shown in Figure 3. Particularly, we show cases where arti-
facts occur when skipping any one of three conditions.

Figure 3: Skipping any one of our three merge metric con-
ditions causes artifacts due to incorrect merges. Removing
conditions of aligned normals (top), overlapping depth inter-
vals (middle), and mutually exclusive coverage masks (bot-
tom) leads to incorrect merges. Each example shows the ar-
tifact context and its cause (left), a close-up of the artifact
(center), and the correct image using all three conditions
(right).

4 E. Kerzner & M. Salvi / Streaming G-Buffer Compression for Multi-Sample Anti-Aliasing

3.2. Compression
We now detail our G-buffer compression algorithm.

For each frame rendered we store the first fragment cov-
ering a pixel as the first element in the surface array. Specif-
ically, we store its associated G-buffer data, depth, depth
derivatives and coverage mask (Figure 2).

We attempt to merge each subsequent fragment covering
the pixel with all existing surfaces in the pixel surface ar-
ray. If the merge is successful we combine their coverage
masks and average the rest of the G-buffer and surface data.
If the merge fails and the pixel array is not full, we insert a
new surface, keeping the array in front-to-back depth order.
Otherwise, if the surface buffer is full we discard either an
existing surface or the incoming fragment.

Discarding information potentially introduces visible ar-
tifacts to the image. Although we do not have final color in-
formation at G-buffer compression time, we eventually com-
pute it as an average of surface colors weighted by their cov-
erage. It follows that the surface or fragment with the small-
est coverage is likely to have a small impact on final pixel
color. Thus, we use coverage as a heuristic for discarding
fragments: we discard the surface with the smallest cover-
age. While our coverage heuristic may not minimize overall
error, in general it does not introduce noticeable artifacts into
the final image.

3.2.1. Coverage Determination

In current graphics APIs the coverage mask available as
input to the fragment shader is not affected by the depth
test. Moreover, subsequent fragments can affect the coverage
data previously stored in the surface array and even entirely
occlude surfaces. Therefore, we must account for occlusion
to approximate coverage for all stored surfaces and the in-
coming fragment. We do so by fusing occluders (i.e. per-
pixel surfaces and the incoming fragment) in front-to-back
order; fusing the first occluder with the second, the result-
ing occluder with the third, and so on, updating the depth-
resolved coverage mask for each occluder. Note that the
depth-resolved coverage is stored in the surface data along
with the standard coverage (Figure 2). The former is used to
determine which surfaces must be discarded while the latter
is more accurate when merging fragments.

Since occluders may be inter-penetrating we use depth
derivatives to compute the per-pixel depth intervals of two
neighboring occluders. Our depth-resolved coverage com-
putation depends on whether these depth intervals are dis-
joint. If they are disjoint then the further surface may be par-
tially or entirely occluded and we save this information by
removing occluded samples from its depth-resolved cover-
age mask. Otherwise, if they are overlapping we leave the
depth-resolved coverage unchanged and continue with the
occluder fusion.

Following occluder fusion we have the approximate

Surfaces
Shaded

=
1234

@

Figure 4: Three surfaces adequately represent pixel color.
We implemented our algorithm using four surfaces per pixel
(left); black pixels show where four surfaces contribute to
the final pixel color. Even in these cases our three surface im-
plementation (center) is indistinguishable from a reference
8x MSAA image (right).

depth-resolved coverage of each occluder. We safely discard
occluders that have depth-resolved coverage of zero as they
do not contribute to the final pixel color. If no occluder has
zero coverage we discard the one with the smallest cover-
age. This step may introduce artifacts, especially when the
discarded samples remain uncovered as we treat uncovered
samples as the background color in pass. To avoid this prob-
lem we use a flag to mark pixels that discard occluders with
non-zero coverage. This flag is used at resolve time to ig-
nore uncovered samples and prevent them from aliasing to
the background (see Section 4).

3.3. Resolve

The resolve pass computes final pixel color by accumulating
each surface’s color contribution. For each pixel we compute
the surface weights by counting each surface’s unoccluded
samples. Next, we shade surfaces with non-zero weights. Fi-
nally, we output the weighted average of surface colors.

To determine surface weights we compute the depth at
each sample covered by each surface. We evaluate sample
depth similar to the depth interval estimation described in
Section 3.1, however, instead of computing the depth at pixel
corners we use each sample’s sub-pixel location. We resolve
sample visibility within a pixel using each sample’s esti-
mated depth. We iterate over the surfaces in front-to-back
order while storing the closest depth of each sample and the
surface index covering that sample in two arrays. As we pro-
cess surfaces we update these arrays to maintain depths and
surface indexes closest the viewer. After processing all sur-
faces we compute surface weights by counting their unoc-
cluded samples. This process correctly resolves coverage for
inter-penetrating surfaces.

Finally, we shade surfaces with non-zero weights and
compute a weighted average of their colors. This eliminates
unnecessary per-sample shading computations common to
MSAA G-buffer implementations.

4. Implementation

Our algorithm updates the compressed G-buffer in a stream-
ing fashion via read-modify-write memory operations. We

(© The Eurographics Association 2014.

E. Kerzner & M. Salvi / Streaming G-Buffer Compression for Multi-Sample Anti-Aliasing 5

note that simply using atomic operations cannot avoid data
races caused by concurrently shaded fragments accessing the
same pixel data. A per-pixel critical section could eliminate
data races, but it would still cause temporal artifacts due to
our lossy compression scheme not operating with determin-
istic ordering. To guarantee data race free updates in primi-
tive submission order we use Intel’s PixelSync extension for
DirectX 11 applications [Sall3].

Our implementation resembles a standard G-buffer, but
we replace G-buffer construction with our streaming com-
pression and we substitute per-sample (or per-pixel) G-
buffer shading with per-surface shading. Next, we discuss
four main points of our implementation.

We leverage a multi-sampled depth buffer for early-z re-
jection during our compression pass. Early-z testing avoids
unnecessary shader executions. This significantly benefits
performance as we describe in Figure 5.

In our surface buffer we store a small fixed number of sur-
face structures per pixel. We organize this buffer such that
shaders for each pixel access only their list of surfaces. We
found storing surfaces in a tiled fashion achieves the best
performance by exploiting spatial and temporal locality of
pixel shader memory access. We demonstrate that three sur-
faces per pixel reduces shading costs and memory usage
with minimal impact on image quality. In Figure 4, we show
that even in places where four surfaces would contribute
to pixel color, our three surface implementation is indistin-
guishable from standard 8x MSAA.

To reduce the amount of data transferred by memory op-
erations we keep information about each pixel’s surfaces in
a 2D texture with 4 bytes available to each pixel. In this so-
called count texture we maintain per pixel surface data: sur-
face count (2 bits), depth-ordered list of surface indexes (6
bits), and the discarded sample flag (1 bit). (Although each
pixel uses only 9 bits of the 4 byte count texture, DirectX
requires that shaders write to textures with an element size
of at least 4 bytes.) By using a depth-ordered list of indexes,
we minimize global memory operations and avoid dynamic
array access which may not be supported by hardware.

We also use the count texture to reduce the cost of clear-
ing memory between frames. Although we always have to
clear the depth buffer between frames, we avoid clearing the
surface buffer by setting each pixel’s surface count to zero.
In the following frame all data in the surface buffer is over-
written.

5. Results

Our technique offers a 50% reduction of memory usage for
deferred shading applications coupled to high visibility sam-
pling rates. We also offer increased performance when com-
pared to other MSAA G-Buffer techniques, such as Lau-
ritzen’s [Laul0] algorithm that adaptively shades at pixel or

(© The Eurographics Association 2014.

Sponza Frame Time (32 lights)

26 —
eee LAURITZEN ; bt
5%

24
22
20
18 g
16
14
12
10

Average Frame Time (ms)

0 200 400 600 800 1000
Frame Number

Compression
Executions. 2 A ¥ L)

2468

Figure 5: The performance of Our algorithm compared to
Lauritzen while rendering the Sponza with 32 lights. Our
performance is directly related to the number of fragments
processed during G-buffer construction. When relatively few
fragments are processed the compression costs about 4.0ms
of the 11.3ms total frame (Frame No. 151, bottom left). In
contrast, as depth complexity increases, the cost of compres-
sion balloons to 20.7ms of the 26ms total frame time (Frame
No. 1142, bottom right).

sample resolution. We measured performance of Our and
Lauritzen’s algorithms using DirectX 11 implementations.
All of our metrics were gathered on an Intel Iris Pro (Core
i7 @ 2.0 Ghz) with 8Gb RAM running Windows 7.

Table 1 contains detailed memory usage and shading costs
of our algorithm compared to Lauritzen. When running with
eight visibility samples per pixel, compared to Lauritzen we
use 50% less memory. We note that the memory usage of
Lauritzen’s implementation includes eight 20 byte G-buffer
samples and an 8x multi-sampled frame buffer for perform-
ing intermediate lighting computations. Our algorithm also

PowerPlant Frame Time (32 lights)

26
LAURITZEN
24 eee oURs

Average Frame Time (ms)

0 200 400 600 800 1000
Frame Number

Figure 6: The performance of Our algorithm compared to
Lauritzen while rendering the PowerPlant with 32 lights.

6 E. Kerzner & M. Salvi / Streaming G-Buffer Compression for Multi-Sample Anti-Aliasing

Technique Bytes/Pixel % Lauritzen Mem.
Lauritzen 8x (4x) 192 (96) 100 (100)
Ours 8x (4x) 96 (80) 50.0 (83.3)

Scene Lauritzen (#) Ours (%)
Sponza 8x (4x) 1.23M (1.03M) 77.8 (92.2)
PowerPlant 8x (4x) 1.39M (1.09M) 70.5 (88.7)
Grass 8x (4x) 2.55M (1.49M) 44.9 (72.9)

Table 1: A comparison of Our and Lauritzen with respect to memory usage (left) and shading executions (right). Lauritzen’s
memory usage includes per sample G-buffer data and a multi-sampled intermediate buffer for performing lighting computations.
Our execution count is expressed as a percent of Lauritzen’s execution count.

significantly decreases the number of surfaces (or samples)
that need to be shaded: in some scenes we perform 44.9% of
Lauritzen’s shading computations.

When comparing frame time, we often outperform Lau-
ritzen (see Figures 5, 6). Even in cases where we perform
on par with Lauritzen we reduce memory usage by as much
as 50%. In these cases, the compression pass is the bottle-
neck of our algorithm as shown in Figure 5. In Figure 7
we compare image quality across three methods: Lauritzen,
Our, and a Reference 8x MSAA forward shading implemen-
tation. Both Our and Lauritzen’s algorithm generate images
that are often indistinguishable from the Reference images.

Although we could further reduce memory consumption
and improve performance for our method by storing only
two surfaces per pixel, we found that at least three are re-
quired to obtain acceptable image quality in the vast major-
ity of cases. For instance, corners where three walls connect
always appear aliased when using two surfaces.

5.1. Failure Cases

False positives of our merge metric results in aliasing as
shown in Figure 8. The incorrect merge causes aliasing along
the boundary of light grey and black rectangle as we average
their G-buffer data. This problem can be resolved by tight-
ening the 0 used in our merge metric.

6. Conclusion

We demonstrated a novel streaming compression algorithm
for hardware multi-sampled G-buffers. Our method signif-
icantly reduces memory requirements with minimal impact
on image quality and scales very well as the number of visi-
bility samples increases. The cost of each new visibility sam-
ple is independent from the amount of information stored in
a G-buffer sample, requiring only 36s bit of memory (e.g.
one 32 bit depth sample and two coverage bits). We be-
lieve our method will provide even better results on future
graphics hardware supporting higher MSAA rates (e.g. 16x
or more). Also the memory usage of our technique could
be further reduced by having read/write access to the depth
buffer in the compression pass. In the future we plan to in-
vestigate simpler fragment merging and discarding schemes
to further improve performance.

Ours Ours

—

POWERPLANT (8x MSAA)

Lauritzen Reference
Ours

SPONZA (8x MSAA)

Reference
Ours

GRASS (8x MSAA)

Lauritzen Reference

Figure 7: Comparison of Our algorithm with Lauritzen and
Reference.

(© The Eurographics Association 2014.

E. Kerzner & M. Salvi / Streaming G-Buffer Compression for Multi-Sample Anti-Aliasing 7

Figure 8: Our algorithm may introduce artifacts due to in-
correctly merging surfaces (overview left and zoomed cen-
ter). These artifacts can be resolved by tightening the normal
alignment condition (right).

7. Acknowledgments

We thank Sungkil Lee for the GRASS scene, Nina McCurdy
for her help creating diagrams, and Miriah Meyer for her
encouragement throughout this project. Thanks to Karthik
Vaidyanathan and the rest of Intel’s Advanced Rendering
Technology Team for their contributions and support. We
thank Chuck Lingle, Tom Piazza and David Blythe, also at
Intel, for supporting this research. Ethan Kerzner was sup-
ported in part by an internship and hardware donations from
Intel.

References

[Ake93] AKELEY K.: RealityEngine Graphics. In Proceedings of
SIGGRAPH 93 (1993), ACM, pp. 109-116. 2

[AMDI12] AMD: EQAA Modes for AMD 6900 Series Graphics
Cards. Tech. rep., AMD, 2012. 2

[BH13] BURNS C. A., HUNT W. A.: The visibility buffer: A
cache-friendly approach to deferred shading. Journal of Com-
puter Graphics Techniques (JCGT) 2, 2 (August 2013), 55-69.
URL: http://jcgt.org/published/0002/02/04/.2

[Car84] CARPENTER L.: The A-buffer, an Antialiased Hidden
Surface Method. In Computer Graphics (Proceedings of SIG-
GRAPH 84) (1984), vol. 18, ACM, pp. 103-108. 2

[CML11] CHAJDAS M. G., MCGUIRE M., LUEBKE D.: Sub-
pixel Reconstruction Antialiasing for Deferred Shading. In Sym-
posium on Interactive 3D Graphics and Games (2011), ACM,
pp. 15-22. 2

[CTM13] CLARBERG P., TOTH R., MUNKBERG J.: A Sort-
Based Deferred Shading Architecture for Decoupled Sampling.
ACM Transactions on Graphics, 32,4 (2013), 141:1-141:10. 2

[DWS*88] DEERING M., WINNER S., SCHEDIWY B., DUFFY
C., HUNT N.: The Triangle Processor and Normal Vector
Shader: A VLSI System for High Performance Graphics. In
Computer Graphics (Proceedings of SIGGRAPH 88) (1988),
vol. 22, ACM, pp. 21-30. 2

[FBH*10] FATAHALIAN K., BOULOS S., HEGARTY J., AKE-
LEY K., MARK W. R., MORETON H., HANRAHAN P.: Re-
ducing Shading on GPUs using Quad-Fragment Merging. ACM
Transactions on Graphics, 29, 4 (2010), 67:1-67:8. 2

[FGH*85] FucHS H., GOLDFEATHER J., HULTQUIST J. P.,
SPACH S., AUSTIN J. D., BROOKS JR. F. P., EYLES J. G.,
POULTON J.: Fast Spheres, Shadows, Textures, Transparen-
cies, and Imgage Enhancements in Pixel-Planes. In Computer
Graphics (Proceedings of SIGGRAPH 85) (1985), vol. 19, ACM,
pp. 111-120. 2

(© The Eurographics Association 2014.

[HA90] HAEBERLI P., AKELEY K.: The Accumulation Buffer:
Hardware Support for High-Quality Rendering. In Computer
Graphics (Proceedings of SIGGRAPH 90) (1990), vol. 24, ACM,
pp- 309-318. 2

[JC99] JouppI N. P., CHANG C.-F.: Z3: An Economical Hard-
ware Technique for High-Quality Antialiasing andTransparency.
In Graphics Hardware (1999), HWWS *99, ACM, pp. 85-93. 2

[JGY*11] JIMENEZ J., GUTIERREZ D., YANG J., RESHETOV
A., DEMOREUILLE P., BERGHOFF T., PERTHUIS C., YU H.,
MCGUIRE M., LOTTES T., MALAN H., PERSSON E., AN-
DREEV D., SOUSA T.: Filtering approaches for real-time anti-
aliasing. In ACM SIGGRAPH Courses (2011). 2

[Laul0] LAURITZEN A.: Deferred rendering for current
and future rendering pipelines. Beyond Programmable
Shading course, SIGGRAPH 2010. http://bpsl0.idav.
ucdavis.edu/, 2010. 2,5

[LKOO] LEe J.-A,, KM L.-S.: Single-pass full-
screen hardware accelerated antialiasing. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware (New York, NY, USA,
2000), HWWS °’00, ACM, pp. 67-75. URL: http:
//doi.acm.org/10.1145/346876.348225, doi:
http://doi.acm.org/10.1145/346876.348225.2

[Mam89] MAMMEN A.: Transparency and antialiasing algo-
rithms implemented with the virtual pixel maps technique. IEEE
Comput. Graph. Appl. 9 (1989), 43-55. 2

[Res09] RESHETOV A.: Morphological Antialiasing. In Proceed-
ings of High Performance Graphics 2009 (2009), ACM, pp. 109—
116. 2

[Res12] RESHETOV A.: Reducing aliasing artifacts through re-
sampling. In Proceedings of the Fourth ACM SIGGRAPH /
Eurographics Conference on High-Performance Graphics (Aire-
la-Ville, Switzerland, Switzerland, 2012), EGGH-HPG’12, Eu-
rographics Association, pp. 77-86. URL: http://dx.doi.
org/10.2312/EGGH/HPG12/077-086, doi1:10.2312/
EGGH/HPG12/077-086. 2

[RKKS*07] RAGAN-KELLEY J., KILPATRICK C., SMITH
B. W., EPps D., GREEN P., HERY C., DURAND F.: The Light-
speed Automatic Interactive Lighting Preview System. ACM
Transactions on Graphics, 26, 3 (2007), 25:1-25:11. 2

[Sall3] SALVI M.: Pixel Synchronizaton: Solving Old Graph-
ics Problems with New Data Structures. SIGGRAPH 2013
Advances in Real-Time Rendering in Games course, 2013.
URL: http://advances.realtimerendering.com/
s2013/.5

[SML11] SALVI M., MONTGOMERY J., LEFOHN A.: Adap-
tive transparency. In Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics (New York, NY,
USA, 2011), HPG 11, ACM, pp. 119-126. URL: http://
doi.acm.org/10.1145/2018323.2018342, doi:10.
1145/2018323.2018342.2

[SVI2] SALvi M., VIDIMCE K.: Surface based anti-aliasing.
In Proceedings of the ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA,
2012), I3D 12, ACM, pp. 159-164. URL: http://
doi.acm.org/10.1145/2159616.2159643, doi:10.
1145/2159616.2159643. 2

[YouO7] YOUNG P.: Coverage Sampled Anti-Aliasing.
Tech. rep., NVIDIA Corporation, 2007. URL: http:
//news.developer.nvidia.com/2007/01/
coverage_sampli.html. 2

http://jcgt.org/published/0002/02/04/
http://bps10.idav.ucdavis.edu/
http://bps10.idav.ucdavis.edu/
http://doi.acm.org/10.1145/346876.348225
http://doi.acm.org/10.1145/346876.348225
http://dx.doi.org/http://doi.acm.org/10.1145/346876.348225
http://dx.doi.org/http://doi.acm.org/10.1145/346876.348225
http://dx.doi.org/10.2312/EGGH/HPG12/077-086
http://dx.doi.org/10.2312/EGGH/HPG12/077-086
http://dx.doi.org/10.2312/EGGH/HPG12/077-086
http://dx.doi.org/10.2312/EGGH/HPG12/077-086
http://advances.realtimerendering.com/s2013/
http://advances.realtimerendering.com/s2013/
http://doi.acm.org/10.1145/2018323.2018342
http://doi.acm.org/10.1145/2018323.2018342
http://dx.doi.org/10.1145/2018323.2018342
http://dx.doi.org/10.1145/2018323.2018342
http://doi.acm.org/10.1145/2159616.2159643
http://doi.acm.org/10.1145/2159616.2159643
http://dx.doi.org/10.1145/2159616.2159643
http://dx.doi.org/10.1145/2159616.2159643
http://news.developer.nvidia.com/2007/01/coverage_sampli.html
http://news.developer.nvidia.com/2007/01/coverage_sampli.html
http://news.developer.nvidia.com/2007/01/coverage_sampli.html

