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Abstract
The recent commodification of high-quality 3D scanners is leading to the possibility of capturing models of archaeological finds
and automatically recognizing their surface reliefs. We present our advancements in this field using Convolutional Neural Net-
works (CNNs) to segment and classify the region around a vertex in a robust way. The network is trained with high-resolution
views of the 3D models captured at different angles. The views represent both the model with its original textures and a col-
orization of the patches according to the value of the Shape Index (SI) in their vertices. The SI encodes local surface variations
and we exploit the colorization of the model driven by the SI to generate other view and enrich the dataset. Our method has
been validated on a relief recognition benchmark on archaeological fragments proposed within the SHape REtrieval Contest
(SHREC) 2018.

CCS Concepts
• Computer systems organization → Neural networks; • Computing methodologies → Shape analysis;

1. Introduction

Many manufactured objects possess repeating elements [WLKT09]
that significantly affect their type, material, and style. For instance,
the recognition of motifs and decorations on the surface of an ar-
tifact can contribute significantly to the work of the archaeolo-
gist by automatically supporting the classification and annotation
of archaeological fragments [ZPS∗16, DTC∗17], even if scattered
in various collections [MTBS∗18]. Tackling this problem is chal-
lenging because this task demands the analysis of details that are
present only on high-resolution models. Since this kind of mod-
els can become very large, local and very efficient algorithms are
needed to efficiently perform this analysis. In our terminology, we
distinguish the two concepts of retrieval and recognition. Given a
query model and a collection of surfaces, with the term relief re-
trieval we are interested to find the surfaces in the dataset char-
acterized by the same relief of the query, while with the term re-
lief recognition we are interested to identify known reliefs on each
surface and to localize them on the surface. The two concepts are
linked, and relief retrieval can be viewed as a step within a recog-
nition framework. However, while relief retrieval has been object
of interest for a while and counts multiple contributions (for in-
stance [WTBdB15, WBB15, MB18, Gia18]) and there are some re-
cent benchmarks, like [BMTA∗17, MBG∗20] less has been done
for recognition [BMTB∗18].

Indeed, previous works on local similarity analysis [DCV14,
GK15, RBFB13] focus primarily on the concept of self-similarity

rather than pattern recognition or segment the surface by looking
primarily at the structure of the model rather than the reliefs im-
printed on its surface [HSL∗17, WJHM15].

In this paper we are exploring the possibility of segmenting re-
liefs of repeated motifs and decorations on the surface of an ar-
chaeological artefact using supervised learning to obtain the clas-
sification of the individual pixels of images extrapolated from 3D
models. While most of the methods in the literature tend to isolate
a single pattern from the rest of the model and then to recognize it,
our goal is to segment the whole surface at once, thus also tackling
composite patterns, without the need for any prior knowledge of
the artifact. Figure 1 shows examples of fragments whose surface
is covered by a single pattern or a composite one.

Our approach is based on sampling a surface model with a suf-
ficient number of disk-like patches, then convert these patches into
images, use these images to feed a Convolutional Neural Network
(CNN) that robustly segments and classifies these images, and fi-
nally, to bring back on the surface the segmented images (see the
graphical summary in Figure 2). Both image segmentation and clas-
sification are done by training a DeepLabv3+ [CZP∗18] network
with a pre-trained ResNet-152 [HZRS15] as backbone.

To enrich the dataset, in addition to images of the textured ob-
ject, we create synthetic images of the patches. These images are
derived from the so-called Shape Index [Kv92], which locally char-
acterizes the surface variation in each point with a scale-invariant
scalar value that ranges from −1 to 1. It is possible to think of this
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Figure 1: From left to right: two examples of fragments character-
ized by a single pattern and an example of composite relief pattern
(rightmost model).

new set of images as an "offline and geometry-aware data augmen-
tation" of the original images. All these images (those with real
and synthetic textures) make up the overall dataset and are subject
to normal data augmentation during training.

We validate our method on the benchmark of the SHREC’18
contest on surface relief (or pattern) recognition [BMTB∗18]. Ini-
tial results show that approaching the relief recognition problem in
this way is feasible and already generates promising results.

This paper is organized as follows. Section 2 briefly overviews
the works relevant to frame our work in the current state of art. Sec-
tion 3 introduces our method, describing both the image extraction
and the learning setup and training, and the dataset on which our
method is tested. Experimental settings and results are detailed in
Section 4. Finally, the conclusive remarks and future perspectives
are given in Section 5.

2. Related work

When dealing with the recognition of relief variations on a sur-
face, a common strategy is to reduce the data dimension by pro-
jecting the 3D data onto a proper plane (thus creating an image)
and apply an image pattern recognition algorithm to the projected
data. For instance, we mention [OVSP13] for tree species classifi-
cation and its adoption to the classification of relief and engraves
of rock artifacts [ZPS∗16] and the classification of archaeological
fragments [DTC∗17]. In [OVSP13] the geometric variations of the
surfaces are represented by a 3D deviation map over a cylinder,
which is flattened on a plane using the Principal Component Analy-
sis (PCA) technique. In [ZPS∗16] a height map directly projects the
relief onto the plane. Then, the resulting images are compared us-
ing the complex wavelet technique on images. Similarly [DTC∗17]
used a depth map of the face on which the motif is engraved to
highlight the local variance of the relief patterns transformed the
variance map into a binary image that is classified using a multi-
class SVM model. The projection on a plane or a cylinder can be
too restrictive if the curvature of the surface underlying the relief
is bumpy and irregularly embedded. To address the characteriza-
tion of relief applied to bumpy surfaces, [Gia18] proposed to re-
parameterize a surface using geodesic disks and then to embed the
disk into an image. Then, the problem is addressed with a statisti-
cal texture classification method, using SIFT descriptors and Fisher
Vectors classifiers.

A common strategy of these approaches is to relate the relief pat-
tern recognition to a texture classification problem: indeed, second
order statistics, filter banks, local binary patterns, pooling of point
descriptors, e.g. SIFT+Fisher Vectors [CMK∗14], etc. are some of
the techniques successfully developed in the pre Deep Learning era
of Computer Vision to tackle this kind of problems. With the advent
of CNNs, the use of data-driven features extractors outperformed
hand-crafted features on classic benchmarks [KSH12, CMKV16].
Also in the context of Cultural Heritage, image-based techniques
have been recently used to automatically classify ceramic potsherds
according suggested matches from a comparative collection with
typical pottery types and characteristics [ADD∗21]. This led us to
consider CNNs, and in this case semantic segmentation architec-
tures such as DeepLabv3+ [CZP∗18], to address this type of prob-
lem in order to overcome the limitation of the existing approaches
of being able to deal only with single patterns.

3. Method and data description

We divide our method into two steps: the creation of a collection of
images (Section 3.1) and a brief description of the architecture we
use (Section 3.2). In the following we detail both these steps and
then, in Section 3.3, we briefly describe the data we used to test our
approach.

3.1. Local feature characterization and extractor

Our strategy for the generation of the surface images is to get a
sufficient and complete set of images of the object surface. For this
task, we consider a surface covering made of NS disks of radius R.
The choice of the radius R determines the size of the lens we use
to analyse the surface. As a general criterion, we choose R large
enough to allow Ns to encapsulate at least a significant portion of
the decoration we are interested in. To keep our pipeline as simple
as possible, we expect the models in the dataset to be all in the same
scale. We show our choice of R for our use-case in Section 3.3.

Then, the number of disks NS is determined as NS = b1.2 A
πR2 e,

where A is the area of the model surface. Note that we admit (possi-
ble) disk overlaps in order to be reasonably sure to cover the whole
surface. Moreover, we use the amplification factor 1.2 in the esti-
mation of NS. Given a model M represented with a triangle mesh
T , the centers of the NS disks are determined using a Poisson-disk
sampling [CCS12] (Figure 3(a)). Given a sample s, the kd-tree al-
gorithm [FBF77] is used to compute the neighbor of s of radius R
(see Figure 3(b)), defined as N(s) = {v ∈ V |d(s,v) ≤ R}, where d
is the Euclidean distance. We then consider the triangles that have
at least one of the vertices in N(s) and we keep only the connected
component of triangles that contain the sample s. We name such a
region of triangles (or rather, such a patch) P . Then, we center P
in the origin of the Cartesian coordinate system and we align it to
the xy-plane. This is done by computing the best fitting plane π for
the points in N(s), computed via Least-Squares w.r.t. the family of
planes in R3. In Figure 3(c) we show a profile with a patch and its
best fitting plane.

The patch P is then colorized. We consider two different types
of colorization: one derived from the real texture and obtained from
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Figure 2: Method overview: we extract disk-like patches from the surface model, then we use these images to feed a CNN that robustly
segments and classifies them. Both segmentation and classification are done by training a DeepLabv3+ network. The DeepLabv3+ represen-
tation is taken from [CZP∗18].

the RGB values of the scattered data, the other based on a syn-
thetic colorization of the surface according to a geometric property.
As the surface property, we have selected the Shape Index [Kv92],
which is a single-value local property derived from the surface prin-
cipal curvatures and is strictly related to the perception [TP97] of
scale-independent surface characteristics. The Shape Index was al-
ready used in [MTBS∗18] to locally characterize the surface pat-
terns and in [BMS19] for similarity reasoning based on local sur-
face variation. Principal curvatures are estimated on T via the Mat-
lab Toolbox Graph [Pey] that in [MTB19] was experimentally
shown to be a curvature estimation tool well suited for characteriz-
ing local relief variations. This process consists in taking a picture
of P as follows: we flatten the patch onto the xy-plane and then, we
place the camera point of view along the positive z-axis, pointed
toward the origin of the Cartesian coordinate system. The surface
colourizations with respect to RGB and SI values are shown in Fig-
ure 3(d) and Figure 3(e), respectively. Lighting, in the latter case,
is turned off to avoid noises and/or uncertainty caused by shadows
or highlights, while the values are represented via jet color-map.

3.2. Deep learning environment

To evaluate network performance under different conditions, we
train the same architecture with three different patch radii (R =
1.25,2,3) and with three different data augmentation regimes: 1)
no data augmentation, 2) basic data augmentation, 3) strong data
augmentation. With R = 2, we also train the network with only half
of the dataset (i.e. RGB images only or SI images only) as a fur-
ther ablation study. Except for the "no data augmentation" regime,
all images, both those with "natural" textures and those with Shape
Index textures, are subjected to data augmentation to prevent over-
fitting on an architecture with such a high model capacity. See Sec-
tion 4 for details on the data augmentation setups used.

When performing transfer learning from a pre-trained network,
the training of a segmentation network is usually divided into two
phases, a - frozen = backbone layers are frozen, only the head (i.e.
decoder/upscaling network) is trained and b - unfrozen = all layers

are trained, layer groups are trained with learning rate increasing
with the depth of the network. For each epoch, all the training set
is fed into the network, one batch at a time, with each image in
the batch being altered by a random number of data augmentation
transformations of different intensity or magnitude.

3.3. Dataset description

In our experiments we used models and the ground-truth avail-
able in the benchmark of the SHREC’18 contest on relief recog-
nition [BMTB∗18]. These models were derived from one of the
use cases of the GRAVITATE EU Project [UUTCIC∗] and cor-
respond to objects in attributed to the Neo-Cypriote style, dating
from the second half of the VII century BC to the early VI cen-
tury BC [MTW91, Kar93]. Each model is represented as a triangle
mesh, equipped with colorimetric information on the vertices. The
set of models contains 30 models, characterized by none, one, or
more than one reliefs. The triangle meshes possess a very high pre-
cision over the small details (which is a key factor for the analysis
of the decorative elements) and their number of vertices range from
150K to 6.8M. Figure 4 (top) shows examples of the models. The
models are annotated with labels on the mesh triangles. For each
model, triangles characterized by the same pattern have same la-
bel. Triangles that do not belong to any pattern (like eyes, mouth
or smooth areas) are labeled as no pattern (or NoPatt for short).
This is additional label is mandatory because in our environment
the concept of "unlabeled" is not defined, thus we use one label to
identify everything on the surface but patterns.

Figure 4 (bottom) shows examples of the segmentation and clas-
sification provided by the benchmark. Different colors represent
different patterns.

Given the size of models, the parameter R for our sampling
method was initially set to 2 as a compromise between number
of sampling images and and size of the disk. As a further study,
we also train the network with sampled patches with a radius of
R = 1.25 and R = 3 to observe any performance improvements or
degradation by providing more or less "context" to the network. A
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(a) (b) (c)

(d) (e)

Figure 3: Overview of the image sampling part of the method. (a): a model and its sampling s1, . . . ,sNs done with the Poisson-disk sampling
method; (b): the neighborhood (in red) of a sample si (in green); (c): the best fitting plane to the vertices in the neighborhood which
determines the rotation of the patch; (d): the patch colorized based on the texture of the original object (in the left); (e): the same patch
colorized using the shape index estimated with [Pey].

Figure 4: Top: A sub-sample of the Model Set of the SHREC’18 benchmark on pattern recognition. For an overview of all the models, please
refer to [BMTB∗18]. Bottom: the same sub-sample provided with their ground-truth. Different colors represent different patterns. Yellow is
oblique fringe, red is circlets, magenta is eyebrows, black is long incisions, green is fringe and pink is spirals. Blue is used to cover those
part of the patches that are not patterns (NoPatt, see Section 3.3).

visual representation of a sphere of radius 2 (in red) over a model
is shown in 3(b).

4. Experimental setup and results

We briefly describe our learning setup in Section 4.1. We trained
the same architecture with images obtained with different settings:

three different patch radii: 1.25, 2 and 3 and using only patches
with RGB textures or only colored with the Shape Index. Each of
these architectures was trained in three different data augmentation
regimes as described in Section 4.2.
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4.1. Setup

The training was performed using Python code inside Jupyter Note-
book, leveraging the popular Fast.ai [HG20] deep learning library
built on PyTorch. The hardware used was a GPU node of the high-
performance EOS cluster located within the University of Pavia.
Each of those GPU nodes has a dual Intel Xeon Gold 6130 proces-
sor (16 cores, 32 threads each, for a total of 64 virtual processors
per node) with 128 GB RAM and 2 Nvidia V100 GPUs with 32
GB of video RAM.

From the dataset described in Section 3.3 we extracted 1821 im-
ages with real texture and as many images with the synthetic ones.
The training was performed starting from these 3642 high resolu-
tion RGB+SI images, the latter rendered by our local feature ex-
tractor, at 1585x1585 px. We chose to split the dataset randomly
into training and validation sets using a 70/30 split. We perform the
training using a batch size equal to 8.

Fast.ai convenient APIs allow to download the pre-trained back-
bone and weights from the Torchvision model zoo in a very sim-
ple and automatic way. Fast.ai also automatically modifies the
DeepLabv3+ architecture so that the number of neurons in the out-
put layer of the decoder network corresponds to the number of
classes of the current problem, initializing the new layers with ran-
dom weights.

In order to maximize the level of automation during the training
of the network, a few Fast.ai callbacks were used to perform the
early stopping of the training (with patience = 10, i.e. 10 epochs
without improving the validation loss of the network) and to save
the best model of the training round and then reload it for valida-
tion. Learning rates has been set to slice(1e-04, 1e-03) and slice(1e-
07, 1e-06) for the frozen and unfrozen steps respectively.

4.2. Data Augmentation & Training

Except for the "no data augmentation" regime, the other
two regimes both use this set of data augmentations: Blur,
CLAHE, GridDistortion, OpticalDistortion, RandomRotate90,
ShiftScaleRotate, Transpose. Below is a more detailed description
of the data augmentation setups used:

• No data augmentation - images are left undistorted and are fed
to the network "as-is" (no-data-aug in Table 1).
• Basic data augmentation - in addition to the transformations

listed above, images can also receive the following transfor-
mations: ElasticTransform, HorizontalFlip, HueSaturationValue
(basic-data-aug in Table 1)
• Strong data augmentation - in addition to the transformations

listed above, images can also receive the following transfor-
mations: Emboss, Flip, GaussNoise, MedianBlur, MotionBlur,
PiecewiseAffine, RandomBrightness, RandomContrast, Sharpen
(strong-data-aug in Table 1)

For each of the scenarios (no-data-aug, basic-data-aug, strong-
data-aug), the training was limited to 100+100 (freeze+unfreeze)
epochs, but ended for early stopping after the number of epochs
shown in Table 1.

The number of epochs in which the network learns (i.e. the val-
idation loss steadily decreases) is a further indicator of the quality

of the chosen data augmentation transformations: if the data aug-
mentation is sub-optimal, the network will stop learning before the
same network trained on the same data with the same hyperparam-
eters but in a scenario with a better data augmentation.

Once all the training rounds were completed, the model with the
lower validation loss was reloaded to produce the images in Figure
5.

4.3. Metrics

To evaluate the network performance, we use two metrics: the first
is the so-called F1-Score (or DiceMulti metric), an extension of the
concept of Søresen-Dice coefficient [Sør48] from the simple bi-
nary classification to the multiclass problem, see [OB19] for more
details. Such a metric is already available in popular deep learn-
ing libraries, such as Fast.ai [HG20] and scikit-learn. The second
measure is called Surface Pattern Metric (or SurfPatt metric for
short) and it is inspired by [BFC08, BSFC08]. In short, it checks
how many pixels of a predicted segmentation class are correctly la-
beled with respect to the ground-truth, without considering the pix-
els marked as background. In our problem, we consider as back-
ground pixels both the white pixels that does not belong to the
patch (the actual background) and the areas of the models without
any meaningful pattern (class label: NoPatt). Thanks to this met-
ric, since the background pixels are dominant in this dataset, we
can evaluate the actual improvement of the training in segmenting
only the pixels belonging to the "real" classes of the problem, ig-
noring the performance in segmenting the background and no pat-
tern classes. We also consider the standard Precision and Recall
scores used for CNN classification. Briefly, the Precision score is
the number of true positive (pixels) over the number of positive. It
evaluates the performance based on how many false positives are
produced. The Recall score is the number of true positives over
the number of true positives plus the number of false negatives.
It evaluates the performances based on how much of the total el-
ements are correctly classified. To calculate F1-Score, Precision
and Recall as efficiently as possible, we modified the correspond-
ing scikit-learn [PVG∗11] function to make it possible to calculate
the Multiclass Confusion Matrix (MCM) one batch at a time, with-
out having to pass the entire y_pred and y_true vectors. This would
have been extremely inefficient since, in the case of semantic seg-
mentation, the size of these two vectors is equal to the double of the
entire dataset in terms of number of pixels and therefore of bytes
allocated in RAM (hundreds of gigabytes).

4.4. Results

Table 1 shows the results of the training sessions with the network
fed with R = 2 patches in the three different data augmentation
regimes. In this setup, the best training epoch occurred using only
images generated with the Shape Index colorization and achieved
0.9108 of F1-Score and 0.9354 of Precision in the basic-data-aug
data augmentation regime. The best score of SurfPatt metric, on the
other hand, was 0.7634 and was obtained by training the network
only with RGB images in the strong-data-aug data augmentation
regime.

As easily predictable, training without data augmentation almost
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RGB+SI R = 1.25 Tr. Loss Val. Loss SurfPatt m. F1-Score Precision Recall Epochs
no-data-aug 0.0594 0.1317 0.5992 0.8002 0.8098 0.7934 50+28

basic-data-aug 0.1325 0.1300 0.5930 0.7896 0.8319 0.7696 66+21
strong-data-aug 0.1547 0.1203 0.5930 0.7798 0.8643 0.7494 48+37
RGB+SI R = 2 Tr. Loss Val. Loss SurfPatt m. F1-Score Precision Recall Epochs

no-data-aug 0.0348 0.0853 0.6390 0.8569 0.8685 0.8473 50+26
basic-data-aug 0.0652 0.0586 0.6610 0.8997 0.9147 0.8861 100+12
strong-data-aug 0.0653 0.0739 0.6173 0.8667 0.8784 0.8603 65+21
RGB+SI R = 3 Tr. Loss Val. Loss SurfPatt m. F1-Score Precision Recall Epochs

no-data-aug 0.0789 0.0824 0.7224 0.8742 0.8917 0.8611 98+16
basic-data-aug 0.0448 0.0439 0.7909 0.9388 0.9481 0.9308 100+15
strong-data-aug 0.1986 0.0458 0.7938 0.9358 0.9430 0.9299 65+23

RGB R = 2 Tr. Loss Val. Loss SurfPatt m. F1-Score Precision Recall Epochs
no-data-aug 0.0252 0.0787 0.7388 0.8926 0.8985 0.8882 65+24

basic-data-aug 0.0695 0.0578 0.7497 0.9012 0.8975 0.9071 81+13
strong-data-aug 0.0598 0.0592 0.7634 0.9010 0.8965 0.9060 80+16

SI R = 2 Tr. Loss Val. Loss SurfPatt m. F1-Score Precision Recall Epochs
no-data-aug 0.0169 0.0808 0.7486 0.8767 0.8924 0.8639 55+39

basic-data-aug 0.0581 0.0514 0.7508 0.9108 0.9354 0.8893 100+14
strong-data-aug 0.0605 0.0579 0.7330 0.8966 0.9284 0.8732 58+25

Table 1: The metrics of the DeepLabv3+ networks trained with different parameters and setups.

always has lower performance than training with data augmenta-
tion. When the training is performed in the basic-data-aug regime,
on the contrary, it often reaches a higher F1-Score than that ob-
tained in the strong-data-aug regime, a sign that the extra transfor-
mations of the latter are not advantageous for training with this type
of data.

As can be seen in Figure 5, the network classifies the type of
pattern very well, almost always attributing the right color to the
corresponding area. However, the segmentation is not pixel perfect,
sometimes the network does not perfectly follow the contours of the
most complex patterns. This highlight that the network needs fur-
ther training (therefore with more images, a greater data augmenta-
tion or both). However, the results are very promising, suggesting
that this approach is on the right path and the task is manageable.

In Figure 5 it is also possible to see an interesting detail that
showcases "qualitatively" the idea of the network’s ability to gener-
alize on new data. No dataset has a pixel-perfect ground-truth and
not even ours can escape this "law": in the fourth GT/Prediction
pair of images of the first column, it can be seen how the ground-
truth does not give the correct label to one of the circlets in the
lower part of the image. Nevertheless, the network predicts suffi-
ciently well which class that pattern belongs to, an evidence that
the network is capable of generalizing to previously unseen data. It
is also possible to observe how the network performance increases
by providing more context with patches whose radius is greater
(R = 3) and decreases by reducing the context (R = 1.25). In par-
ticular, with patch radius R = 3 and the basic-data-aug regime, the
network reaches an F-Score of 0.9388 and a Precision of 0.9481,
while the network trained with a patch radius of R = 1.25 has the
worst performance of all training runs, including networks trained
without data augmentation. This is not surprising as smaller patches

lead to smaller images, with less data from which the net can learn
from.

All the code and data used to run these experiments (except
for the code of the reverse mesh labeling tool, still under devel-
opment) is available in the following GitHub repository: https:
//github.com/surface-pattern-recognition/
surface-pattern-recognition

Below, we briefly discuss how to bring image segments back
onto a fragment surface. First, for each sampled disk, we consider
the mask derived from the segmentation of the RGB image and we
use its colors to classify the vertices of the patch. More precisely,
we first project all the vertices of a patch on the xy−plane (let us
call them v′i). Note that the disk was already previously aligned
with respect to the same plane. Then we convert the image into a
set of 2D points by creating a square grid of 2D points based on the
image size (let us call them p′j), so that the pixel labeling induces a
labeling onto the point p′j. Both point sets are then aligned so that
the bounding boxes of points p′j coincides with the bounding boxes
of the points v′i . Finally, each v′i takes the label of the closest p′j .
Figure 6 shows an overview of this process.

A sample of the results we obtain on some of the models (at
least one for each relief class) are shown in Figure 7. Compared
to the previous color scheme, we add cyan to represent the areas
of each model that are not covered (i.e. have not been sampled) by
any patch. Note that most of both the ground-truth and predictions
share the same set of labels, thus indicating good accuracy in se-
mantic segmentation. Even labels with a very limited number of
samples, such as the eyebrow (pink), are segmented well in the lat-
est model of Figure 7. We can also see that some reliefs are better
predicted than others. For example, the long incisions (black) line
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GT Prediction GT Prediction

Figure 5: Semantic segmentation of the ground-truth (first and
third columns, labeled with GT) and our predictions (second and
fourth columns, respectively). Different colors are used to label
different patterns (or lack of). Again, yellow is oblique fringe, red
is circlets, magenta is eyebrows, black is long incisions, green is
fringe and pink is spirals. Blue is used to cover those part of the
patches that are not patterns (NoPatt, see Section 3.3).

(a)

(b)

(c)

Figure 6: Overview of how is it possible to derive a segmentation
from the classified and segmented images. (a): one of the patches
extracted from a model (sx) and its conversion in a 2D set of points
(dx) (v′i in the text), simplified for clarity. (b): the predicted mask
obtained from that patch (sx) and its conversion in a 2D grid of
points the same size as that of the picture (dx). (c): the final result
on the model (sx) and the overlap of the v′i points on the grid op
points p′j .

up perfectly with the expected boundaries. The image segmenta-
tion back projection algorithm is still under development and needs
some improvements such as better managing the regions where the
disks overlap and how to treat areas of the model not covered by
any patch. In fact, there are areas without labels that show that a
few more samples would have been useful to completely cover the
surface.

Limitations In the following, we list the main limitations of our
method.

• Patch sampling: as shown in some examples in Figure 7, the
disk-like sampling strategy is computationally very efficient but
might leave some regions uncovered. To overcome this limita-
tion we plan to use a sampling thickening strategy based on a
uniform geodesic sampling. Moreover, we implicitly assume that
a surface can be projected onto a regression plane without a large
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Figure 7: Top: the ground-truth of a sub-sample of models, showing examples of all the reliefs in the SHREC’18 dataset. Bottom: The
prediction of our method with the model RGB+SI R=2 basic-data-aug. Vertices in cyan represent unlabeled areas. The presence of these
areas are caused to the randomness of the sampling, not a failure of the classification/segmentation process. See Section 4.4 for more details.

distortion: this is generally true in the case of artifacts with artis-
tic reliefs. However, in the case of highly curved surfaces, a pos-
sible solution is to modify the disk-like projection using curved
templates, such as quadric surfaces.
• NN training: the major limitation of the current method concerns

the high resolution of the images used for training the network
(and the consequent choice of the depth of the backbone) re-
quired to achieve these high levels of segmentation accuracy. The
next iteration of the method will involve a multi-radius random
sampling for the patches and this should confer further robust-
ness to the trained models, which can then hopefully be down-
scaled to lower resolution images and thus shallower backbones
which are also faster to train.

5. Concluding remarks

Although the advent of high-resolution 3D scanners have made 3D
models of archaeological finds available at previously unthinkable
resolutions, such models are still a fairly scarce resource. Further-
more, precise ground-truth labeling for semantic segmentation is
still a labor-intensive task that often requires massive interaction
with domain experts and end users [PCDS19, PGDF∗20]. Dealing
with non-trivial datasets like the one shown in this paper, with a rel-
atively small number of 3D models and therefore a limited amount
of resulting images and "total amount of information", makes the
task of semantic segmentation via CNNs, definitely challenging.

In this work, we have proposed a strategy to automatically per-
form a segmentation as compliant as possible with the characteris-
tics and the reliefs on the surface of an archaeological fragment. To
achieve this, we have investigated and experimented how to reduce
the 3D surface pattern recognition problem into an image segmen-
tation problem and for this we have fed a CNN which played the
role of data segmenter and classifier. Going back from the images
to the 3D surface is relatively simple as our images were obtained

by the local projection of the points of a patch onto the regres-
sion plane and we have retained the relative height. Moreover, the
problem of the non-uniqueness of the inverse of the projection is
mitigated by the fact that for each sample we have considered only
the connected component that contains it and therefore, also in the
reverse step, we only consider points adjacent to it.

Overall, we observe that using a CNN-based approach is a chal-
lenging but promising solution for the relief-driven segmentation,
even in the Cultural Heritage domain, where the use of learning-
based methods is often prevented by the low amount of examples
or the uniqueness of the models. Indeed, we have seen that the
use of a set of images per model, even generated with a simple
sampling strategy, is able to convey enough information to feed a
neural network and obtain satisfactory results. Although most of
the time the network correctly identifies the label of the relief pat-
tern, the segmentation boundary is sometimes noisier than that of
the ground-truth. Aggressive data augmentation policies certainly
help postpone network overfit and help it generalize better, but
what can really increase model accuracy is more data and more
diversity in that data. A further possibility to make the most of
this dataset is to feed the network with multiple images by sam-
pling the same models at different scales. In this way, in addition
to enriching the training set, the network would have the oppor-
tunity to see decorations and reliefs at different levels of detail.
On a slightly different path, the recent unsupervised contrastive
learning techniques, which are gaining traction in the literature
[CKNH20, HFW∗20, MM20, CMM∗20], promise to make it pos-
sible to exploit the enormous amount of images of cultural heritage
artifacts already available for free on the internet, thus avoiding the
manual acquisition and labeling of hundreds of 3D models. Part of
our efforts is already spent in this direction: indeed, unsupervised
pre-training and subsequent fine-tuning for semantic segmentation
are a topic that are still very new in the current literature.
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