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Abstract

Our work addresses the problem of virtually restoring archaeological artifacts. Virtual restoration is the process of creating
a noise-free model of a degraded object, to visualize its original appearance. Our work focuses on restoring the coloring of
the object. We considered both 2D and 3D objects, including scans of ancient texts and 3D models of decorated pottery. Our
denoising method exploits typical characteristics of archaeological artifacts, such as repetitive decoration motifs and a limited
palette of colors. Our classification method is based on minimization of an energy function, which includes a correspondence
term, to encourage consistent labeling of similar regions. The energy function is minimized using the Graph-Cuts algorithm.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture 1.4.6 [Image Processing and Computer Vision]: Segmentation—Pixel classi-
fication 1.5.3 [Pattern Recognition]: Clustering—Similarity measures

1. Introduction

Historically significant artifacts tend to deteriorate over time. The
objects may break, erode, get stained, and surface colors may fade
or peel off. In our work, we address the problem of virtually restor-
ing models of archaeological artifacts. We aim to restore only the
color component, ignoring possible defects in the object’s shape.
We consider both 2D scans of ancient texts, as well as 3D scans
of decorated pottery. Given a digital version of the object, we wish
to alter its colors to simulate the object’s original appearance. We
restore the original appearance of a scanned object, by assigning
each pixel a label representing its noise-free color.

Archeological artifacts are decorated, in many cases, by repeti-
tive decoration motifs, painted with a small number of colors. Re-
occurring letters in text may be considered a special case of such
repetitions. Our method exploits those two characteristics. We as-
sume that the number of colors is known, and that the degradation
is of a gradual nature, and use Gaussian Mixture Models (GMM) to
estimate the main colors. Repeating patterns are used to deduce the
original appearance on damaged areas, assuming similar regions
have deteriorated differently. We create a denoised version of the
object by color classification; each point is assigned a label (i.e. a
cluster index), representing the noise-free color it most likely orig-
inated from. The optimal labeling is detected by minimization of
an energy function. Energy functions are usually comprised of a
data term and a smoothness term. The data term measures the dis-
agreement between a labeling f and the observed data / , and the
smoothness term imposes spatial smoothness on labels of neigh-
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boring points. We add a correspondence term to the energy func-
tion. The correspondence term acts on pairs of matching points,
and encourages consistent labeling of similar regions. Our label-
ing method thus integrates both local and semantic cues, as well
as a probabilistic prior, to infer the optimal labeling of the data.
The correspondence term can be considered a generalization of the
smoothness term; while the smoothness term imposes similarity on
pixels that are geometrically close, the correspondence term en-
forces similarity on pixels that are semantically close. The energy
function is minimized using Graph-Cuts, and each class is colored
by the average color of all its members. The resulting model is
considered a reconstructed version of the object. The method was
tested on images of ancient texts and 3D models of archaeological
artifacts. We compare the results of our algorithm to labeling ac-
cording to GMM, and to the original Graph-Cuts. In both the 2D
and 3D cases, our method achieved superior results; it managed
to remove large portions of the noise, while keeping the repetitive
pattern intact.

2. Algorithmic Flow
2.1. Method Overview

Our method aims to improve labeling results, by utilizing similari-
ties within the data. We do so by minimizing an energy function
with an additional semantic similarity element. The new energy
term is represented in the graph by correspondence edges. Cor-
respondence edges assemble corresponding vertices into cliques
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in the graph, thus encouraging consistent labeling of matching re-
gions. While the new similarity term enriches the graph with a new
type of edges, it does not affect the minimization procedure. We
thus minimize the extended graph using the same graph-cut algo-
rithm that was defined on graphs with the original structure. For
simplicity, the concept of the algorithm will first be exemplified on
2D images of ancient texts and then extended to 3D objects.

2.2. Modeling Color Distribution

Ancient texts are mostly bi-chromatic. Similarly, archeological ar-
tifacts are decorated with a limited pallet of colors [ALY08]. The
colors of scanned texts and objects, however, often vary from the
original colors. Limiting the number of main colors allows us to
transform the de-noising problem into a clustering task. We model
the color distribution and determine the main colors. We then com-
pute the initial labeling by clustering each point to the most prob-
able main colors. Modeling the colors’ distribution is done using
a Gaussian mixture model (GMM). The number of main colors is
assumed to be known - given by a human observer or automatically
inferred from the data. GMM clustering is done based on color in-
formation solely, ignoring any spatial information. Clustering is
performed on points in a 3 dimensional color space (L*,u*,v*)
(CIELUV).

2.3. Energy Function

We search for the optimal labeling of the data by minimizing an
energy function. Our energy function contains a data term and a
smoothness term. But, in order to encourage consistent labeling of
matching regions, we add an additional term, which we consider a
correspondence term. The new term defines a cost for disconnect-
ing corresponding points, i.e., assigning different labels to match-
ing vertices. Adding the correspondence term to the energy equa-
tion yields:

E(f) = Eqata (f)+Esm00th (f)+Ecorr(f), (D

where the data term E,;,,, represents the initial probability that a
vertex has originated from each of the main colors. Ey,, is based
on the prior probabilities computed by the GMM. The smooth-
ness term Eg,,,0, 18 based on the Potts model as an interaction
penalty. The correspondence term Ec,r imposes smoothness on
labels of corresponding points. i.e. it encourages similar labeling
of corresponding regions. Both the smoothness term and the cor-
respondence term impose similarity between pixels. But while the
smoothness term imposes similarity on pixels that are geometri-
cally close, the correspondence term enforce similarity on pixels
that are semantically close. The minimal cut of the graph is de-
tected using the standard graph-cuts algorithm [BVZO01].

2.4. Similarity search

We consider two pixels p and ¢ to be semantically close if their
local neighborhoods Np, N; are similar. We detect matching re-
gions by correlating local neighborhood (patches) with the full im-
age (in the 2D case). Query patches are taken from all over the
image, as overlapping tiles, with a vertical and horizontal shift of
half window-size between one another. Since letters in texts tend

Figure 1: Matching patches on image (top), C-link edges connect
corresponding vertices (bottom)

to have similar sizes and alignment, we did not use neither scal-
ing nor rotation in the 2D case. We compute the normalized cross-
correlation between each query patch and the full image, and apply
non-maximal suppression [Kov00] to detect local maxima in the
correlation map. Patches centered at correlation peaks are consid-
ered matching regions to the query patch.

2.5. Correspondence Term Weights

C-links (marked orange in Fig. 1), connect pairs of corresponding
pixels, and thus define a semantic neighborhood system. We con-
sider points with similar neighborhoods as matching points. The
cost of a C-link corresponds to a penalty for discontinuity in label-
ing of corresponding pixels. Cutting a C-link represents the assign-
ment of different labels to matching points.

In the 2D case, each query patch Ny is correlated with the full
image. After detecting its matching regions N{, i = [1,..,m], the
patches are aligned, and each pixel ¢ in the query patch N is con-
nected to its corresponding pixels p; € Nl-q . In the graph, vertex vy is
connected by C-links to its corresponding vertices v; (see Fig. 1).
We assume that corresponding pixels behave similarly to adjacent
pixels.

3. 3D Adjustments

We extended the method for 3D objects, decorated by repetitive
patterns. We wish to alter the appearance of the color data solely.
Implementing the method on 3D objects required several adjust-
ments. The major issues to consider were:

1. 3D object scans are not sampled on a regular grid

2. Color correlation between non-planar patches is not well de-
fined

3. Object decorations may include similar regions in different ori-
entations, as opposed to letters in texts, which are usually well
aligned.

The initial stage - modeling the color distribution and initial label-

ing was done as before, see Section (2.2), based on vertices’ colors.
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3.1. Query Patches and Search Region

To reduce the complexity of the problem, we project the patches on
the 2D tangent plane. To avoid major distortions in the projected
image, we limit the size of the patches to an area with relatively
small curvature. Similarly, the size of the search region is limited
due to the object’s geometry. While in the 2D case the whole ob-
ject was included in the search region, here it may contain just a
section of it. In the 2D case, query patches were taken sequentially,
from the entire image. In the 3D case, however, we chose to mark
the query patches manually, at points of interest. This reduces the
complexity of the computation, by omitting the matching stage of
unique or irrelevant patches. Figure 5 displays all query patches
(marked in red. Marks appear partial when occluded by the object).
The search region in this case is centered at the blue mark, and in-
cludes the entire facade. The user defines a radius for each patch,
and all points within a geodesic distance smaller than that radius
are considered part of the patch. Choosing query patches of dif-
ferent sizes enables the preservation of both fine details and more
general structures.

3.2. Patch Projection and Rotation

Color correlation is not well defined between non-planar surfaces.
To overcome this issue, we project both the search region and the
query patches onto a plane tangent to the surface at the center of
each patch. After projecting the vertices onto the tangent plane, we
resample it to form an image with a regular square grid. We would
like to allow detection of similar regions with different orientations.
We thus project each query patch in multiple directions, with d6 =
5°, for 8 € [0,360°). Projecting in multiple directions also allows
patches with self-symmetries to contribute multiple instances.

3.3. Matching and Alignment

After rotating the patches, projecting and resampling, we can now
search for matching regions using 2D correlation, as explained in
Section (2.4). We compute the correlation between the search re-
gion and all rotated versions of the query patches, and transform
the pixels of maximal correlation into vertices in the mesh. Each
query patch is now related to a list of maximum correlating ver-
tices. We define a patch around each correlation peak, and align
them with the non-rotated query patch.

3.4. 3D Neighboring

3D meshes are not regularly sampled, and require a more fuzzy def-
inition of neighborhood. Practically, we detect the K-nearest neigh-
bors of each vertex by efficiently searching a KD-tree [FBF77]. We
add a distance component to the weight functions, to compensate
for the variability in neighbor distances.

3.5. Data Term and Smoothness Term Weights

The data term for the 3D case is the same as for the 2D case.
Smoothness edges connect vertices to their local neighbors. We
also use the Potts model as an interaction penalty, but add a dis-
tance element to the weight function, to reflect the non-regularity
of the grid.
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3.6. Correspondence Term Weights

C-links connect corresponding vertices. After aligning the corre-
sponding regions with the query patch, we connect each vertex in
the query patch to its K-nearest neighbors (with K=100) from each
corr_patch (j). In the graph, vertex v, is connected by C-links to its
corresponding vertices vp,, with weights similar to the smoothness
edges.

4. Results

This section presents the results of our method, when applied to 2D
images and 3D models of painted object. We compare our method
(GCC) to the initial labeling by maximizing GMM probabilities
and to the original Graph-Cuts (GC) method.

4.1. 2D images

We first tested our method on 2D images of ancient texts. The text
are handwritten, which allows for greater variability even within
different instances of the same letter. We consider the whole image
as the search region. Correspondences are defined between reoccur-
ring letters, so we thus set the size of the query patches (Ng x Np)
according to the size of the letters. Query patches are taken from
all over the image, as overlapping tiles, with a vertical and horizon-
tal shift of half window-size between one another. No attempt was
made to fit the tiles exactly around the letters.
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Figure 2: Left: Papyrus 66, Dated 200 AD. Part from the Bodmer
Papyri collection, Right: GMM labeling

Papyrus 66, displayed in Fig. 2, is a Greek manuscript of the
Gospel of John. The Papyrus is part of the Bodmer Papyri collec-
tion and is dated 200 AD ( [Ala74], [Hun61], [PB56], [MBB62]).
The result of GMM clustering are presented in Fig. 2. Graph Cut
labeling is shown in Fig. 3 (left). The result of our method is pre-
sented in Fig. 3 (right). The following parameters were used: Num-
ber of classes = 2, Ng = 30 pixels, Correlation threshold = 0.6. As
can be seen, the result of our algorithm is much better than the ordi-
nary graph-cuts result. Much of the noise that is present in the GC
result, was successfully removed by the GCC, while the letters in
the text stayed intact.

4.2. 3D objects

The method was tested on 3D models of archaeological artifacts,
scanned in the Computerized Archaeology Laboratory, at the Insti-
tute of Archaeology in the Hebrew University of Jerusalem. Search
region and query patches were manually marked at points of inter-
est on the model. The query patch radius (rp), was set according
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Figure 3: Papyrus 66:binary image. Left: GC labeling, Right: GCC
labeling

to element size, and the size of the search region is determined ac-
cording to the curvature of the surface.

Fig. 4 presents the upper part of a decorated Phoenician
bichrome jug from the Tel Dor excavation, dated to late Iron Age
1 [Gil99]. To avoid large distortions in the projected image we re-
stored only the decorated facade.

P

Figure 4: Phoenician Bi-chromatic jug

In Fig 5(left), the query patches are marked by red circles, and
the center of the search region is marked blue. The entire (cropped)
model is considered as the search region. Fig. 5(right) presents the
results of clustering according to GMM probabilities. The follow-
ing parameters were selected: 6 classes, rg = 10 mm, Correlation
threshold = 0.6. Fig. 6(left) and Fig. 6(right) presents the results of
GC and GCC labeling, respectively. Both GC methods manage to
smooth out much of the noise, but while GC merges the red lines,
GCC separates them.
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Figure 5: Left: Decorated facade. Query patches marked red on
search region (the entire facade). Right: Labeling according to
GMM, colored by average color

5. Conclusions

We have presented a method for virtually restoring the colors of ar-
chaeological artifacts. Our method utilizes repetitive patterns, such

dataTem=20, smoothness
GCeneroy=454954
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Figure 6: Left: GC labeling, colored by average color. Right: GCC
labeling, colored by average color

as decoration motifs and reoccurring letters, to infer the original ap-
pearance of degraded regions. In the restoration process, each point
is assigned a label, representing the color it most likely originated
from. The optimal labeling is detected by minimizing an energy
function using the Graph-Cuts algorithm. Our energy function in-
cludes the standard data and smoothness terms. To encourage con-
sistent labeling of matching regions, we added a third (correspon-
dence) term, to the energy function. The correspondence term acts
upon pairs of matching points, assigning a cost for inconsistent la-
beling of corresponding points. Our method thus incorporates both
local and semantic information, along with a probabilistic prior, to
infer the optimal labeling. We also detailed the adjustments needed
for applying the method to 3D models. The method was tested on
2D images of ancient texts and 3D models of decorated pottery,
yielding better results relative to those of GMM and the original
Graph-Cuts method. The algorithm successfully removed noise,
while preserving and enhancing the repetitive patterns.
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