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Abstract

In this paper we present a novel 3D model retrieval approach based on generative modeling techniques. In our
approach generative models are created by domain experts in order to describe 3D model classes. These generative
models span a shape space, of which a number of training samples is taken at random. The samples are used to
train content-based retrieval methods. With a trained classifier, techniques based on semantic enrichment can be
used to index a repository. Furthermore, as our method uses solely generative 3D models in the training phase,
it eliminates the cold start problem. We demonstrate the effectiveness of our method by testing it against the

Princeton shape benchmark.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—
Information Search and Retrieval, 1.2.4 [Computer Graphics]: Knowledge Representation Formalisms and
Methods—Representations (procedural and rule-based), 1.4.8 [Computer Graphics]: Scene Analysis—Object

recognition

1. Motivation

According to the idea of generalized documents, multimedia
data and in particular 3D data sets should be treated just like
ordinary text documents, so that they can be inserted into a
digital library. As a consequence, these media types must be
integrated with the generic services that a library provides,
namely markup, indexing, and retrieval.

With the integration of 3D models into digital cultural her-
itage libraries, new research challenges arise. The context
of cultural heritage distinguishes itself by model complex-
ity, model size, and imperfection to such an extent most ap-
proaches cannot handle [USFO8]. As a consequence, our ap-
proach is to promote generative modeling techniques, which
act as a link between computer science on the one hand and
domain know-how on the other hand [SSUF10].

In this paper we present a novel training approach based
on generative modeling techniques and a new retrieval tech-
nique. In the training phase, the generative models span a
shape space, of which a number of training samples is taken
at random. The big advantage of procedural modeling tech-
niques is the included expert knowledge within an object de-
scription [UF11]; e.g. classification schemes used in archi-
tecture, archaeology, civil engineering, etc. can be mapped to
procedures. For a specific object only its type and its instan-
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tiation parameters have to be identified. This identification
is required by digital library services: markup, indexing, and
retrieval. With generative models in the training phase, no
“real” training data is needed a priori. The generative models
themselves are represented as JavaScript code, which takes
a number of parameters and returns a 3D model.

To illustrate the applicability of our approach two retrieval
methods have been implemented: the established salient lo-
cal visual features method [OOFBO08] and our new algorithm
called histogram of inverted distances.

2. Related Work

Our approach combines techniques of content-based re-
trieval and machine learning with shape description and gen-
erative modeling.

Generative Modeling With increasing complexity the man-
ual creation of 3D models has become unfeasible. As a con-
sequence, generative modeling has been developed in or-
der to generate highly complex objects based on a set of
formal construction rules. An overview on generative mod-
eling techniques can be found in the survey by WATSON
and WONKA [WWO08], int he overview by VANEGAS et
al. [VAW*10] and in the tutorial notes by KRISPEL et
al. [KSU14].
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The first generative modeling approaches have always
been text-based scripts exposing their algorithmic charac-
ter. In combination with annotation techniques developed in
the field of software engineering, a procedural model can be
enriched semantically: a way to describe procedural knowl-
edge and information about an object’s inner structure, sym-
metry, and regularity [SSUF10]. Furthermore, annotations
and human-readable meta data can be propagated easily;
i.e. the human-readable description of an object class can
be transferred to every identified class instance and to every
sufficiently similar model.

Content-Based Retrieval Many content-based retrieval
methods for 3D models have been proposed recently.
TANGELDER et al. [TVO08] and BUSTOS et al. [BKSS07]
have both surveyed literature on content-based retrieval
methods. TANGELDER et al. divide shape matching meth-
ods into three categories: feature-based, graph-based and
geometry-based methods.

For the training phase, the above mentioned methods need
a given sample set. This introduces a cold start problem.
ULLRICH and FELLNER [UF11] circumvent this problem by
fitting generative models to the test data, so only the gener-
ative models must be known in advance. We use this tech-
nique to span a shape space and to take a sample set by
random. This randomized subset is the input of the training
phase which uses histograms.

Shape histograms have also been used by ANKERST
et al. [AKKS99] to classify molecules; however their ap-
proach uses one global histogram per molecule. KRIEGEL
et al. [KBK*03] also split their voxeled models into a reg-
ular grid of cells and calculate features vectors per cell. In
contrast to our approach, they do not use the histogram of
inverted distances.

3. Shape Description

In our approach each 3D model class is defined by one gen-
erative 3D model. A generative 3D model M is an algorithm
that takes an argument vector x and produces 3D geometry
M (x). Each generative 3D model is used to generate training
samples for the class it represents. Without loss of generality,
the parameter domain D(M) has a multidimensional, rect-
angular structure; i.e. the Cartesian product of closed inter-
vals. If the generative shape is well-designed, a representa-
tive subset of the shape space is generated by randomly sam-
pling a number of argument vectors x; from D(M). These
random models M(x;) are used in the training phase.

To illustrate our approach we use a generative model
called “sedan car”. The car model takes six parameters and
generates 3D model with a fixed topology and varying ge-
ometry.

4. Histogram of Inverted Distances

After the generation of the training models, all models are
scaled to a common size, aligned using Principal Component
Analysis (PCA), voxelized into a grid of R X R X R elements.

The center of gravity of all models is (R/27R/27R/2). If nis

the number of training models, the family of aligned train-
ing models is noted (7}) ;c1,... »} - After alignment, the value
v(T;,x,y,z) of a given element in the voxel grid is either 1, if
the voxel contains a part of the surface of the model or zero,
otherwise. Based on the aligned training models the inverse
distance models are computed. The volume of the distance
transformed training samples is defined by

Cul_d(Tivxvy7Z) 0} (1)

v(7;,x,y,z) = max
R

where d(7T;,x,y,z) denotes the Euclidean distance of point
(x,y,2) to the model’s surface. The value cut adjusts the
rate of diffusion of the inverse distance transformation. For
the calculation of the inverted distance neither manifoldness
nor watertightness is necessary. In fact, the inverse distance
transformation could also be calculated for point sets. After
the calculation of the inverse distance model, the model is
split into a regular grid of cubic cells (which are larger and
comprehend several grid elements). Let p denote the number
of cells along one axis (p < R), then the total number of cells
is p3. Each cell has a side length s with s = R and the family
of the cells for model i is denoted C;. For each cell C; the nor-
malized histogram of inverse distances with & bins is calcu-
lated. This feature vector of cell C; is denoted as h; € [0, l]k .
Based on the feature vectors /; we estimate a non-parametric
density function for each cell position (a,b,¢) using Gaus-
sian kernel density estimation [BisO7]. The density function
for a cell at position (a,b,c) is

/ 1 ¢ 1 I p.e — hiapell®

Plhgpe) = ;i; o -exp <—262) ;

(@3]
where /' is the feature vector of a test model. G represents
the standard deviation of the Gaussian kernel, which acts as a
smoothing factor. Usually the standard deviation can be esti-
mated easily using appropriate estimation methods [JMS96].
However, in this case, at some positions all the features are
exactly the same. This situation often occurs at border cells,
where the inverse distance to the surface is zero everywhere.
To solve this problem, the standard deviation ¢ has been set
to an empirically determined value.

Matching a given test model is equivalent to approximat-
ing the probability of the test model belonging to a learned
class. In analogy to the generative models during the learn-
ing phase, the test model needs to be voxelized and aligned
using PCA. Based on the aligned test model X, the inverse
distance transformation can be calculated. Like in the train-
ing phase, the inverse distance transformed model is parti-
tioned into cells and the corresponding histograms are cal-
culated. Using the density functions for each cell, the proba-
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bility of a sample object belonging to a learned class can be
approximated:

Let X be a test model and /| abc) denote the feature vec-
tors of the test model, then the joint probability of model X
belonging to the learned class is

P(h{yp)»a:b,c). 3)
(ab,c)e(l...p)? -

We call this algorithm the histogram of inverted distances
(HID) algorithm.

5. Salient Local Visual Features Method

To demonstrate that the generative training approach can
be combined with different retrieval techniques, we im-
plemented the salient local visual features method. It is a
feature-based retrieval method, which operates on range im-
ages of a 3D model and has been introduced by OHBUCHI
et al. [OOFBO0S]:

After the generation of the training models, the models
are normalized. This is done by scaling them uniformly to a
common size and centering them at the origin. For each nor-
malized training model, range images are rendered from 42
viewpoints around the 3D model. The viewpoints are defined
by the vertices of the polyhedron, generated by subdividing
an icosahedron.

After the range images are rendered for a normal-
ized training model, the Scale Invariant Feature Transform
(SIFT) algorithm [Low04] is applied to the range images.
The SIFT algorithm extracts salient visual features, which
are invariant to position, scale and orientation. Each visual
feature is described by a 128-dimensional feature vector. In
our case 35 visual features were extracted per range image
on average; consequently, the average number of visual fea-
tures per 3D model was approximately 1500.

Using the visual word codebook (described below), each
visual feature of a training model can be quantized into a vi-
sual word. This is done by assigning each feature to its clos-
est cluster centroid. By accumulating the visual words into
a histogram and normalizing the histogram, a feature vector
for the 3D model is calculated. The size of the feature vector
is equal to the number of visual words in the visual code-
book. 3D Models can be compared by calculating the Man-
hattan distance between two feature vectors. Let w be the
number of words in the visual dictionary, then /(; € [0,1]"
denotes the visual word histogram of the ith training sample.

Like in the histogram of inverted distances algorithm, the
visual word histogram is learned using kernel density esti-
mation. However, in this case Manhattan distance L, is used
as the kernel function. The similarity S for the 3D model
described by the visual word histogram !’ is given by:

, _1 n l/—l(i)
S =L bk (G : @)
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where n denotes the number of training samples and ¢ rep-
resents the smoothing factor.

The visual codebook quantizes visual features into visual
words. The visual codebook is learned unsupervised in a pre-
processing step using k-means++ clustering [AV07]. The set
of visual features that have to be clustered is selected ran-
domly from all views of the 3D models.

6. Results

We evaluated both retrieval methods with the Princeton
shape benchmark [SMKFO04] using the class “sedan car”.
The complete benchmark consists of 907 test samples in-
cluding 10 sedan cars.

Evaluation of the Histogram of Inverted Distances
Method The values for the retrieval parameters were eval-
vated empirically. The histogram of inverted distances
method is able to find similar objects to the given generative
models. The retrieval results for the class “sedan car” are al-
most perfect. Figure 1 shows the top 16 retrieval results for
both retrieval methods.

Figure 1: The top 16 retrieval results for the class “sedan
car” using the histogram of inverted distances method (left)
are almost perfect. The ten car models of the benchmark are
listed within the best 16 matches. The top 16 retrieval results
for the classes “sedan car” (right) have been generated us-
ing the salient local visual features method.

Evaluation of the Salient Local Visual Features Method

Each each sample of the benchmark the range images
have been rendered, visual features have been extracted and
the visual word histogram has been calculated. The visual
codebook consists of the extraction of 30000 visual features
from a random subset of the benchmark and the clustering
of the features into 1024 clusters.

The results in Figure 1 show that the salient local visual
features method is able to find similar objects to the given
generative models.

7. Conclusion

We presented two new approaches to perform content-based
retrieval of 3D shapes: generative training and the his-
tograms of inverted distances.
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Generative training uses procedural models to describe
3D model classes, respectively, 3D shape spaces. In the
training phase, the shape spaces are sampled randomly. In
this way, no “real” training data is needed a priori. This tech-
nique can be combined with various retrieval algorithms.
The big advantage of procedural modeling techniques is
the included expert knowledge within an object descrip-
tion [UF11]; e.g. the knowledge of an expert about the in-
ner structure and the semantics of an object class can be
mapped to procedures [USSF13]. Within the Cultural Her-
itage (CH) project “‘ProFitS” we incorporate this technique
to index a CH repository semantically using expert knowl-
edge. The approach of a generative training set, which does
not need any “real” data can be combined with various re-
trieval algorithms. We have presented two retrieval methods
to illustrate this approach.

The first method is called the histogram of inverted dis-
tances method. Using a voxel representation, PCA align-
ment and inverse distance transformations on a grid, each
grid cell’s histogram is the basis to learn a non-parametric
density function. In the recognition phase, the test object is
processed the same way, so that for each of its cells the sim-
ilarity of a learned object class is estimated using the cor-
responding learned density function. The similarity of the
whole model is given by the product of all cell similarities.

The second method is called the salient local visual fea-
tures method. Salient local visual features are extracted from
range images of a 3D model by the SIFT algorithm. Us-
ing a precomputed visual codebook, the visual features are
quantized into a histogram of visual words, which acts as
a feature vector. Using the feature vectors a non-parametric
density function is learned for each 3D model class. In the
recognition phase, the feature vector is calculated for the test
object and the similarity is estimated using the learned non-
parametric density function.

Our contribution to 3D documents is a shape retrieval ap-
proach based on machine learning and generative modeling.
In this way, we provide a classification technique, which
uses generative modeling to encode expert knowledge in a
way suitable for automatic classification and indexing of 3D
repositories. We have shown that it is possible to train a re-
trieval method using generative models only. As a benefit
(not only for users of our method), this technique eliminates
the cold start problem in the training phase. A generative
description implemented in a few lines of code is sufficient
to generate a reasonable training set. Furthermore, we have
shown that the histogram of inverted distances can be used
as a feature vector for spatial data.

Acknowledgements

The authors gratefully acknowledge the generous support of
the European Commission within the DURAARK project
founded by the program “ICT-2011-4.3-Digital Preserva-
tion”.

References

[AKKS99] ANKERST M., KASTENMULLER G., KRIEGEL H.-
P., SEIDL T.: 3D Shape Histograms for Similarity Search
and Classification in Spatial Databases. Advances in Spatial
Databases (Lecture Notes in Computer Science) 1651 (1999),
207-226. 2

[AVO7] ARTHUR D., VASSILVITSKII S.: k-means++: The Ad-
vantages of Careful Seeding. Proceedings of the annual ACM-
SIAM symposium on discrete algorithms 18 (2007), 1027-1035.
3

[BisO7] BiSHOP C. M.: Pattern Recognition and Machine Learn-
ing. Springer, 2007. 2

[BKSS07] Bustos B., KEIM D., SAUPE D., SCHRECK T.:
Content-based 3D Object Retrieval. IEEE Computer Graphics
and Applications 27, 4 (2007), 22-27. 2

[JMS96] JONES M. C., MARRON J. S., SHEATHER S. J.: A Brief
Survey of Bandwidth Selection for Density Estimation. Journal
of the American Statistical Association 91 (1996), 401-407. 2

[KBK*03] KRIEGEL H.-P., BRECHEISEN S., KROGER P., PFEI-
FLE M., SCHUBERT M.: Using sets of feature vectors for simi-
larity search on voxelized CAD objects. Proceedings of the ACM
International Conference on Management of Data (SIGMOD) 29
(2003), 587-598. 2

[KSU14] KRISPEL U., SCHINKO C., ULLRICH T.: The Rules
Behind — Tutorial on Generative Modeling. Proceedings of Sym-
posium on Geometry Processing / Graduate School 12 (2014),
2:1-2:49. 1

[Low04] LOWE D. G.: Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vision
60 (2004), 91-110. 3

[OOFB08] OHBUCHI R., OsADA K., FURUYA T., BANNO T.:
Salient local visual features for shape-based 3D model retrieval.
Proceeding of the IEEE International Conference on Shape Mod-
eling and Applications 8 (2008), 93-102. 1, 3

[SMKF04] SHILANE P., MIN P., KAZHDAN M., FUNKHOUSER
T. A.: The Princeton Shape Benchmark. Shape Modeling Inter-
national 8 (2004), 1-12. 3

[SSUF10] ScHINKO C., STROBL M., ULLRICH T., FELLNER
D. W.: Modeling Procedural Knowledge — a generative modeler
for cultural heritage. Proceedings of EUROMED 2010 - Lecture
Notes on Computer Science 6436 (2010), 153-165. 1, 2

[TVO8] TANGELDER J. W. H., VELTKAMP R. C.: A survey of
content based 3D shape retrieval methods. Multimedia Tools and
Applications 39 (2008), 441-471. 2

[UF11] ULLRICH T., FELLNER D. W.: Generative Object Defini-
tion and Semantic Recognition. Proceedings of the Eurographics
Workshop on 3D Object Retrieval 4 (2011), 1-8. 1,2, 4

[USFO8] ULLRICH T., SETTGAST V., FELLNER D. W.: Seman-
tic Fitting and Reconstruction. Journal on Computing and Cul-
tural Heritage 1,2 (2008), 1201-1220. 1

[USSF13] ULLRICH T., SCHINKO C., SCHIFFER T., FELLNER
D. W.: Procedural Descriptions for Analyzing Digitized Arti-
facts. Applied Geomatics 5, 3 (2013), 185-192. 4

[VAW*10] VANEGAS C. A., ALIAGA D. G., WONKA P,
MULLER P., WADDELL P., WATSON B.: Modelling the Ap-
pearance and Behaviour of Urban Spaces. Computer Graphics
Forum 29 (2010), 25-42. 1

[WWO08] WATSON B., WONKA P.: Procedural Methods for Ur-
ban Modeling. IEEE Computer Graphics and Applications 28, 3
(2008), 16-17. 1

(© The Eurographics Association 2014.



