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Abstract

Archaeological artefacts are often classified in homogeneous groups, with respect to their origin, use, age, etc., in
terms of their physical traits, i.e., colour, material, design pattern, form, shape, size, style, surface texture, tech-
nology, thickness, and weight. In particular, when dealing with archaeological exhibits, a single trait is generally
not enough for the classification of the artefact because most of the objects are affected by degradation or only
partially preserved. In this contribution we propose a shape analysis and comparison pipeline, which combines ge-
ometry and texture to identify classes of homogeneous artefacts. The geometric description is based on a statistical
technique to select properties that are mutually independent; the photometric information is handled according
to a topological perspective, and complemented by the analysis of colour distribution. The outcome is a mixed
description of each 3D artefact, which is used to derive a similarity measure between objects. The potential of our
method is high since we can include any property representable as real- or vector-valued functions. Experimental

results are exhibited to show the efficacy of the method in retrieval and classification tasks.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.6]: Methodology and
Techniques—Information storage and retrieval [H.3.3]: Information search and Retrieval—

1. Introduction

Reconstructing and analysing 3D digital environments has
been a factor of success in many industrial, social, and en-
tertainment contexts. Also in the Cultural Heritage (CH) en-
vironment, it is now becoming a powerful communication
and interaction tool and an effective and efficient means to
learn, access information, organize and structure knowledge.

In the last years, numerous and various initiatives con-
tributed to the development of methods, tools and technolo-
gies for the creation of digital libraries for CH embedding
different media [Arnl4]. Various aspects and technologi-
cal advancements help to make the world’s cultural her-
itage available on line. First of all the increasing perfor-
mance and proliferation of 3D scanning devices and dig-
ital photography has made it possible to acquire at rea-
sonable costs very dense and accurate sampling of both
geometric and visual properties of real objects. A vari-
ety of digital libraries for archaeology have been devel-
oped and supported (see, e.g., http://www.daacs.org/ or
http://sites.matrix.msu.edu/dakar/). In particular, it is worth
to mention EUROPEANA (http://www.europeana.eu/), a
platform for collecting European CH and for enabling
searching and exploring heritage across several European
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cultural institutions. These large efforts focus on the gath-
ering of the information and on providing a wide range of
source materials to as large an audience as possible.

The recent EU report ‘New Renaissance’ [NDL11] rec-
ommends that “cultural institutions should make public do-
main material digitised with public funding as widely avail-
able as possible for access and re-use”. The wider and wider
availability of sampled 3D models is predicted to have the
impact of photography at the end of 19th century.

To realize this vision, we cannot focus only on the im-
provements of the acquisition and visualization processes.
Despite a general agreement on the potential of visualiza-
tion in disseminating knowledge of cultural heritage, the
new challenge lies in developing specific applications to as-
sist users (scientists, scholars, curators, restorers, common
citizens,..) to model, retrieve, compare, analyse, document,
classify, catalogue artwork.

Over the past 5 to 10 years, a number of initiatives and
projects have positively influenced the scientific commu-
nity in order to develop new 3D intelligent content cre-
ation and processing tools. Examples include AIM@SHAPE
[IST08], FOCUS K3D [IST10], 3D-COFORM [IST12], V-
Must [IST15]. Due to these actions, in the creation of cul-
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tural heritage digital content, we are assisting to a continuous
progress in digital acquisition tools [Sin14].

To exploit these new technologies, new software tools are
required (3DCH is more than acquisition and visualization!).
For example one of the most common and critical activities
that CH researchers, anthropologists and museum curators
perform is to carry out comparisons of artefacts within and
across collections and institutions. Comparative analysis is
a core step in the methodology for classifying and curating
artwork, it also enables historians to track changes in tech-
niques, tools or materials that were associated with the pro-
duction, decoration, or use of an artefact. What is crucial is to
provide archaeological researchers mechanisms to compare
objects and fragments, identify patterns and textures, exam-
ine material properties, filter noise and degradation effects
on the remains, take advantage of all data and knowledge
acquired to appropriately cluster similar parts.

What are the challenges that make content-based retrieval
or classification even more complex in the CH field? Ar-
chaeological artefacts are often broken, eroded, worn, or in-
complete, their quantity is extremely vast, distributed and
fragmented, and there is an intrinsic uncertainty of what
data represent and in the variety of possible valid descrip-
tions. The nature of CH data calls for methods dealing with
multi-modal information in combination (e.g., texture and
reflectance), which is necessary to effectively group artefacts
or their parts into meaningful clusters. This is actually in
contrast with the current scenario: most of the state-of-the-
art methodologies for matching or retrieving similar objects
in repositories are based on the analysis of single geometric
properties of the object shape.

In this paper we propose a shape analysis and comparison
pipeline specifically targeted to the similarity assessment of
real-world 3D artefacts. The proposed methodology takes
the above needs into account being able to concurrently eval-
uate heterogeneous properties, such as geometric (eg, curva-
ture, size, roundness or mass distribution) and photometric
aspects (e.g., texture, colour distribution or reflectance). In-
deed, since object variability is high and assets may possibly
be cracked or incomplete, it is important to rely on a large
number of descriptors: this will allow for the construction of
signatures that may take into account properties of interest
for users that are difficult to characterize in a precise man-
ner. Additionally, our method relies on a tuning phase where
the descriptors themselves are selected and used in the final
configuration according to their performance in characteriz-
ing objects according to the user needs. In our framework,
we can include any property, which can be defined by real or
vector-valued functions defined on the assets boundary.

Our approach takes inspiration from that proposed in
[BCGS13], in the sense of combining a description based
on geometric functions with a topological analysis of photo-
metric properties. However, the specificity of the application
domain and the real-world nature of the analyzed models

open new perspectives and call for a reformulation of these
ideas, in order to solve additional problems such as mate-
rial and colour deterioration, illumination changes, etc. In
particular, texture analysis has been refined by introducing
an additional photometric description based on colour his-
tograms, and a different technique for the selection of the
most informative geometric properties has been considered.

The remainder of the paper is organized as follows. In
Section 2, we introduce the related previous work, Section 3
defines our method and describes how to handle geomet-
ric and photometric information. Experimental results are
shown and commented in Section 4 and some conclusive re-
marks are outlined in Section 5.

2. Previous work

While the combination of shape and colour information
is quite popular in image retrieval [GS00] and processing
[KMSO00, LJOS], the attention towards texture properties for
3D shape analysis has considerably grown only in the last
few years, as also demonstrated by the proposal of dedicated
benchmarks to evaluate their retrieval and classification per-
formances [CBA*13,BCA*14].

Among the first attempts to devise 3D descriptors that
combine geometric and photometric information, Suzuki
et al. [Suz01] used colour information represented as the
Phong’s model parameters to complement the retrieval pro-
cess. Colour and 3D shape information are used to build a
concatenated surface descriptor [SHO7] or to combine ge-
ometric similarity based on Shape Distributions [OFCDO02]
with colour similarity computed through the comparison of
colour distribution histograms [RCMHO09]. All these meth-
ods consider colour as a general property and its spatial dis-
tribution over the shape is not considered.

To generalize image-based descriptors, [WCL*08] pro-
posed VIP, a SIFT-based descriptor using 3D oriented
patches, whereas [CO06,PZC13] introduced Textured Spin-
Images, an extension of classical Spin Images to meshes
whose vertices have luminance information. Kanezaki et
al. [KHK10] proposed colour-CHLAC Features computed
on 3D voxel data: each voxel has a 6-dimensional sta-
tus describing both occupation and RGB colour informa-
tion, so that local descriptors can be represented by the co-
occurrence of their shape and texture patterns. Liu et col-
leagues [LZL*12] proposed a sampling method that picks
points in regions of either geometry-high variation or colour-
high variation, and define a signature based on feature vec-
tors computed at these points. Tombari et al. [TSDS11] in-
troduced the CSHOT descriptor, meant to solve the surface
matching problem based on local features, i.e. by point-
to-point correspondences obtained by matching shape- and
colour-based local invariant descriptors of feature points.

Recently, attention has been paid to invariant shape prop-
erties of deformable or articulated 3D objects. An exam-
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ple is meshHOG, a geometric SIFT-like descriptor for tex-
tured shapes directly defined on the surface [ZBH12]. Such
a method builds upon a scale-space derived from differ-
ent normalized Gaussian derivatives through the Difference-
of-Gaussians (DoG) operator [Low04], and incorporates in
a unique paradigm geometry and photometric information.
The operator is computed on a scalar function defined on
the manifold, which is either the mean curvature, the Gaus-
sian curvature or the photometric appearance of a vertex (the
mean of the RGB channels). A local descriptor, called Mesh-
HOG, is obtained as a two-level histogram of the projections
of the gradient vectors onto the three orthogonal planes as-
sociated with the local coordinate systems of the maxima
and minima of the scale space representation. To have invari-
ance to the mesh sampling, the concatenated histograms are
normalized through the L-norm, that is also used to com-
pare two meshHOGs. Similarly, the Photometric Heat Ker-
nel Signatures (PhotoHKS) [KBBK12, KBB*12, KRB*13]
use the diffusion framework to embed the shape into a high-
dimensional space where the embedding coordinates repre-
sent the photometric information. In practice, the method
fuses geometry and photometry in a local-global descrip-
tion that generalizes Heat Kernels and Shape Distributions
[OFCDO02]. Following the same intuition, in [BCGS13] the
geodesic distance is generalized to a hybrid shape descrip-
tion able to couple geometry and texture.

3. Shape description and comparison combining
geometry and photometry

Our method relies on the paradigm that the shape similar-
ity among objects may be assessed in terms of representa-
tive features, along with their relationships and their invari-
ants. We further assume that such shape properties can be
described by scalar- or vector-valued functions defined on
suitable discrete representations of the objects (e.g., triangle
meshes) [FS98]. Based on this, recent advances in topolog-
ical methods for the analysis of functions [CL13], and the
introduction of learning techniques to group and select func-
tions [BSF13, BB13, BB14] set the theoretical foundations
of our approach. Working this way has a twofold benefit: on
the one hand, the topological description is characterized by
a rigorous notion of stability against function perturbations,
which implies robustness to noise in concrete applications.
On the other hand, learning techniques can be used to select
functions, that is features, that better describe objects in a
given application scenario. The combination of the two pro-
vides a flexible and modular way to incorporate in the same
framework multiple, heterogeneous properties and invariants
and make them fitting the specific domain to be analysed.

More specifically, to automatically identify geometric
properties that are mutually independent, as well as to se-
lect the most salient ones, we cluster a collection of scalar
functions that represent such properties using the approach
defined in [BSF13], see Section 3.1. This allows us to con-
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sider from the very beginning a large number of shape prop-
erties, which is indeed particularly helpful here, since the
variability of information is possibly increased by the fact
that artefacts might be affected by cracks or missing parts.

To study photometric properties of the archaeological
artefacts, we represent colour as real- and vector-valued
functions defined in the CIELab space, and analyse such
functions from a topological perspective using persistence
[CL13]. In this way we get additional, structured infor-
mation that complements the traditional analysis based on
colour histograms. Details on these descriptions are pro-
vided in Sections 3.2.1 and 3.2.2.

The geometric and photometric descriptions associated
with different shapes are then compared through suitable
metrics to derive as many distances; these are further com-
bined into a final score for shape similarity assessment. We
detail this procedure in Section 4.2.

3.1. Geometric description

To represent the geometric properties of shapes, we consid-
ered a set of 70 functions reflecting either intrinsic or ex-
trinsic shape features. Functions encoding the distance from
significant points highlight the distribution of the object with
respect to those points; distances from the main shape axis or
the associated orthogonal planes characterize the invariance
with respect to axis rotations and symmetries; curvature-,
geodesic- and Laplacian-based functions are pose invariant
because they approximate the intrinsic Riemannian metric
of the surface [BBKO06]; a complete list of functions and dis-
cussions on their properties can be found in [BSF13]. These
scalar functions play the role of the vocabulary of invariants
and properties used to code a shape.

Figure 1 displays some functions we considered in our
setting; namely, the Fiedler vector 1(a), the Gaussian and
the Mean curvature 1(b,c), the distance from the center
of mass 1(d), the average of the geodesic distances 1(e),
two different mixes of Laplacian eigenfunctions 1(f,g), a
Heat kernel function 1(%), the distances along the principal
shape axis 1(i) and the symmetry plane 1(), the orthogonal
distance from the main shape axis 1(k) and the symmetry
plane 1(/). Even in case of “few” functions as in Figure 1, we
notice how their evolution over the shape is sometimes quali-
tatively similar and probably redundant, see for instance Fig-
ures 1(a, j) and 1(d,e,h), or the difference is mainly on the
sign of the function, see Figures 1(a,h) and 1(g,1).

Therefore, we aim at selecting the most significant func-
tions, possibly keeping as much information as possible. The
selection of functions can be easily adapted to the dataset:
depending on the shape variability or the characteristics of
the objects in a repository the choice of the functions might
change even if the same framework is still valid.

In this scenario, we adopt the grouping approach proposed
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Figure 1: A set of the functions considered in our framework. Colours represent the function from low (blue) to high (red)

values.

in [BSF13] to select a subset F’ C F of scalar functions that
qualitatively preserve the descriptive power of the original
set F'. The method groups the functions according to a dis-
tance defined on F' in a completely unsupervised manner and
for each shape class it is possible to identify a (small) num-
ber of functions that are mutually independent.

Given a set F = {f],..., fu} of n functions defined on a
triangle mesh T representing a shape, the distance Z(f;, f;)
for f;, fj € F is defined as:

1 v V'S
area(T) & | < TV A TV 1

I(fi, fj) = >,

with V' f;, V' f; representing the gradient of f; and fj over
the triangle ¢. Intuitively, we are assuming that a relevant dis-
crepancy in the distribution of the gradients of two functions
fi and f; implies that they are significantly different.

A mutual distance matrix MDM with entries MDM;; :=
1 —Z(f;, f;) is used to store the distances between all the
possible couples of functions. Indeed, the ith row (or col-
umn) of the matrix identifies all the distances of f; with re-
spect to f1,..., fn, and (partially) orders the distances be-
tween f; and the others in F. The minima of the ith row cor-
respond to functions that are qualitatively similar to f;, while
maxima highlight functions that significantly differ.

Based on these premises, we aim at grouping the ele-
ments of F' in such a way that the functions within the
same group (cluster) have a high internal homogeneity, while
they are strongly dissimilar from the entities of a different
cluster. According to [PP0O7], we represent a cluster as an
n-dimensional vector x = (x;), whose components are real
numbers expressing the level of participation of functions in
the cluster. A small value for x; means that the correspond-
ing function f; is weakly associated to the cluster, whereas
a high value means that the function is strongly associated
to it. Components corresponding to functions not partici-
pating in the cluster are zero. The cohesiveness of the el-
ements of a cluster is expressed in terms of the quadratic
form Q = x MDM x so that the (pairwise) clustering prob-
lem is reduced to that of finding a vector x maximizing Q.

()

Figure 2: (a) A model from the dataset and (b — d) the cor-
responding MDM signature with 70, 42 and 22 functions.
The distances range from blue (zero) to red (1); large blue
regions indicate functions that are strongly similar.

In practice the clustering problem is solved by the following
quadratic program (see the formal proof in [PP07]):

maximize x' MDM x,xc A, (@€))]

where A" is the standard simplex of R". We locally solved
Eq. (1) via the so-called replicator dynamics technique
[Wei95], which iteratively identifies a cluster by finding a lo-
cal solution of Eq. (1), and removes the corresponding rows
and columns from the matrix MDM. This technique can be
summarized in the following three steps:

1. find a local solution of Eq. (1) selecting the components
of x such that x; > €, here € is a cohesiveness threshold
fixed by the user;

2. remove the functions already clustered by deleting the
corresponding rows and columns in the matrix MDM;

3. reiterate on the remaining functions.

In this way, a smaller number of functions is selected out of
the starting ones, each one being a representative of a cluster.
For each model § in the dataset, these functions have been
used to compute a reduced version of MDM(S). Figure 2
shows an example of the M DM signature of a 3D object with
respect to 70 functions and its reduced version with 42 and
22 functions.

3.2. Photometric description

Photometric properties can be represented in different colour
spaces, such as the RGB and HSV spaces. We opt here for
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the CIELab one [Fai05]. Defining measures in the CIELab
colour space is justified by physiological studies, showing
that it well represents how the human eye perceives colours.
Moreover, in the CIELab space tones and colours are held
separately: the L channel is used to specify the luminosity
or the black and white tones, whereas the a channel speci-
fies the colour as either a green or a magenta hue and the b
channel specifies the colour as either a blue or a yellow hue.

We consider two ways to deal with the photometric in-
formation: the persistence framework (Section 3.2.1) and
colour histograms (Section 3.2.2).

3.2.1. Persistence diagrams and spaces

To include the CIELab coordinates in the persistence frame-
work we follow the approach adopted in [BCGS13]. We con-
sider the a, b channels as jointly defining a bivariate function
over a given shape, whereas L is used separately as a scalar
function. In this way, colour and intensity are treated sepa-
rately. More precisely, for a shape S we consider two func-
tions fy : S — Rand f,; : S — RR?, the former taking each
point p € S to the L-channel value at p, the latter to the pair
given by the a- and the b-channel values at p, respectively.
The values of f7 and f,, are normalized to range in [0,1].
Similarly to [BCGS13], we consider the Ot/ persistence dia-
gram of f;, and the Oth persistence space of f, .

Roughly speaking, the Ot/ persistence diagram of f as-
sociated with S encodes the topological evolution of S by
counting the number of connected components which re-
main disconnected passing from a lower level set S, of S to
another lower level set S, with u < v, where a lower level set
is defined as Sy, = {p € S: f(P) < u}, for u € R. As shown
by Figure 3, a persistence diagram can be seen as a collec-
tion of points lying in the half-plane {(u,v) € R? : u < v},
(red dots in Figure 3(c,d)). Each point (u,v) in the dia-
gram describes the lifespan of a connected component: the
u-coordinate denotes the value of f; at which a new com-
ponent appears in the associated lower level set Sy; simi-
larly, the v-coordinate denotes the value of f; at which that
component merges with an existing one. The distance from
the diagonal u = v represents the component lifespan, which
in turn mirrors the importance of the feature that compo-
nent represents: points far from the diagonal describe im-
portant, long-lived features, whereas points close to the di-
agonal describe local information such as smaller details and
noise. The red vertical line in Fig 3(a), as well as the one
in Fig 3(b), can be seen as a point at infinity, represent-
ing a connected component that will never die, i.e. its u-
component corresponds to the smallest value for f; on S,
and its v-component is equal to +oo. Persistence diagrams
are stable shape descriptors: small changes in the function f7
induces only small changes in the corresponding diagrams
[CSEHO7]. An intuition of this is given by Figure 3(c,d):
the two models have similar luminosity, resulting in simi-
lar configurations for the points far from the diagonal in the
associated persistence diagrams og f7..
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In the context of persistence, the use of vector-valued
functions leads to a generalization of the notion of persis-
tence diagram to that of persistence space [CL13]. For each
shape S, we consider here the Ot/ persistence space associ-
ated with the bivariate function f, ; defined on S. Unfortu-
nately, the persistence spaces of a bivariate function are sets
of continuous structures living in R*. Being continuous, this
implies that concretely we can only get approximations of a
Oth persistence space of f, ;. Following [BCGS13], this can
be done by considering a collection of suitable Ot/ persis-
tence diagrams computed as follows:

1. let P be the set points in the triangle mesh represent-
ing a shape S, and let M be the greatest value between
max,cpa(p) and max,epb(p):

2. being k the cardinality of P, fix logk equally distributed
real values i in the interval (0,1), and as many equally
distributed real values j in the interval [—M,M];

3. forevery i and j, compute the Ot/ persistence diagram for
the function F;; : P — R taking each p € P to

Fip) = max { 421, PP,

i To1—i

4. for every point (u,v) in the Otk persistence diagram of
F;j, project it back to a point (u1,uz,v1,v2) € R* through
the equations

(u17u2) = (17 - l)u+ (]7 7])’

(V17V2) = (17 I- l)V+ (]7 7.])
The set of all points in R* obtained according to the above
procedure gives us an approximation for the Oth persis-
tence space of f, ;: its stability as a shape descriptor fol-
lows directly from that of the Ot/ persistence diagrams for
F;j [CL13]. For the practical computation of persistence di-
agrams (which is directly connected with the approximated
computation of persistence spaces) we refer to [EH10].

We remark that, while analysing the purely photometric
information related to the distribution of Lab colour chan-
nels, the topological approach also takes into account the
connectivity of the underlying model, as persistent diagrams
and spaces are computed by sweeping the sub-level sets in-
duced on the shape model by the considered functions.

3.2.2. Colour histograms

The stability properties of persistence diagrams and spaces
imply resistance to noise when it comes in the form of small
perturbations in the L, a, b values. In particular, the topolog-
ical approach ensure robustness even when the small chang-
ing in the CIELab colour coordinates are widely spread over
the shape model. In practical situations, this may happen
when material degradation results in large spots affecting the
surface artefact, see e.g. Figure 5(1).

However, the proposed approach is not optimal when pho-
tometric noise is given by large variations in the L, a, b val-
ues, even when such variations are confined in small por-
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Figure 3: A model in the dataset (a), the corresponding L channel ((b), colour coded from blue for low values to red for hight
values) and the Oth persistence diagram of fi (c). Analogously in (f), (e) and (d), respectively, for a different model.

tions of a surface model. For example, this could be the case
of cracks occurring on the surface artefact, possibly result-
ing in threadlike structures characterized by a sudden colour
variation, see e.g. Figure 5(m).

For this reason, we complement the persistence-based de-
scription with a purely photometric contribution based on
colour histograms. Indeed, these colourimetric descriptors
behave well against localized noise, since it does not alter
colour distribution too much. Each considered shape is then
associated with a colour histogram given by the concatena-
tion of the three colour channels (Lab).

4. Experimental results

The proposed shape descriptions have been adopted on a col-
lection of artefacts represented as textured triangle meshes,
an tested in a retrieval and classification scenario with
promising results. The combination of geometric and pho-
tometric properties allows us to have good performances in
detecting artefacts sharing visually similar texture, even if
models are either affected by noise, such as colour and pat-
tern degradation, or characterized by missing parts.

4.1. The Dataset

Experiments are carried on the collection of textured 3D tri-
angle meshes provided by the Virtual Hampson Museum
(VHM, http://hampson.cast.uark.edu), see Figure 4. The
dataset comprises 442 models, 395 of them available for
download, representing as many American Indian artefacts
largely produced from 350 to 600 years ago. Most of mod-
els are grouped into three geometric classes, namely bot-
tles (189 elements), bowls (112 elements), and jars (73 el-
ements). However smaller ones have also been detected by
VHM experts, for a total amount of 12 geometric classes.

No texture classification of the dataset is provided and
some models do not have any texture. However, several ob-
jects represented in the dataset are made up of the same
material, such as ceramic or stone, or are characterized by
similar decorations, namely paintings or relief ornaments.
All these properties can be expressed in terms of photomet-
ric information, which is in turn handled as Lab information
equipping the purely geometric 3D models. Figure 5 shows

some examples of the models; we highlight that some ob-
jects share both geometry and texture (e.g. models 5(a,b)
and 5(/,m)) while in some cases the geometric similarity is
only partial (e.g. models 5(g, /) and 5(I,n)).

4.2. The final signature and similarity assessment

For each triangle mesh we consider the geometric and the
photometric descriptions detailed in Section 3. In particu-
lar, the geometric distance dg(S1,S2) between two shapes
S1 and S; is computed as the Manahattan distance [DD09]
between the associated matrices MDM (S1) and MDM(S,);
the photometric distance based on persistence dp(Sy,S) is
the normalized sum of the Hausdorff distance between the
Oth persistence diagrams of f7, and that between the Ot/ per-
sistence spaces of f; j,, respectively; the purely photometric
distance dp (S1,S>) is the L;-norm between the concatenated
colour histograms. Then, the combined distance D(S},S>)
between S and S, is defined as:

D(S1,82) = Mdg(S1,S2) +Aadp(S1,S2) +A3dp (S1,52),

where 0 < A, A2, A3 < 1, A; + A2+ A3 = 1 and dg(S1,52),
dp(S1,S2),du(S1,S,) are beforehand normalized to range in
the interval [0,1].

For most of the experiments proposed here, we opted for
a balanced combination of geometric and photometric infor-
mation, i.e. A; = Ay = A3. Indeed, the contribution of dg is
purely geometric, dp is purely photometric and dp is photo-
metric as well, yet taking into account the connectivity of the
underlying model. Note however, that any other weighted
combination for the three contributions could be used, thus
adapting the machinery to specific comparison, retrieval or
classification tasks, see discussions in Section 4.3.

4.3. Examples

Figures 6, 7, 8, 9 show some retrieval results. In all figures,
each row corresponds to a retrieval example. In the exam-
ples, models are ordered from left to right; the first column
is the query model, it is always the first retrieved item and
hence it is never repeated; shaded images represents correct
retrievals according to the geometric dataset classification.

Figure 6 provides four examples of how the balanced
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Figure 4: The Virtual Hampson Museum dataset.

combination of geometric and photometric information
works in our settings, when looking for objects in the dataset
that are similar to a hoe (first row), a bowl (second and third
row) and a jar (last row). On the one hand, our method seems
to be able to detect similar geometric shapes even in the pres-
ence of small holes (second and fourth row) or missing parts
(third row) in the query model. On the other hand, the re-
trieved items exhibit similar photometric properties, even in
case of noise and degradation effects.

(@ (b @ @ (o ()

()

Figure 5: Samples from the dataset: models (a — f) (resp.
(g —1i) and (I — n)) belong to the same geometric class, also
showing similar textures.
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Figure 6: Retrieval examples: searching for models similar
to a hoe (first row), a bowl (second,third row), and a jar
(fourth row).

Figure 7 highlights the ability of the proposed method in
dealing with texture information. The first row shows the
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potential of our technique in detecting similar patterns and
colour distributions; the second and third examples highlight
that it is also possible to cluster models made up of the same
material. It is worth mentioning that our method works fine
in the presence of noise, when it comes in the form of ei-
ther pattern degradation (first row, fifth column) or changing
in the lighting conditions (first row, second column; second
row, third and fifth column). Also, our approach appears to
be insensitive to photometric perturbations due to either ma-
terial deterioration (second row, second and fourth column)
or the presence of colour spots (second row, third column;
last row, last column), or even caused by cracks on the sur-
face model (second row, first and fourth column; last row,
first and second column).

&880
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Figure 7: Retrieving objects with similar decorative pat-
tern/colour distribution (first row), or made up with the same
material (resulting in similar textures, last two rows).
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Tuning weights. In general, the retrieval and classification
effectiveness largely depends on the data and the query sub-
mitted. For example, trying to properly classify a fragment
of an artefact, we would probably take into large account
information about material and decorative patterns. On the
contrary, geometric properties of the fragment might not be
extremely relevant, since probably they do not reveal useful
insight about the geometric aspect of the original artefact.
Motivated by these remarks, we may consider also different
choices of A,A,A3. In concrete applications, the weights
A; can be determined either statistically a priori, or dynami-
cally refined according to the data. Figure 8 shows an exam-
ple about augmenting A; by a factor 2.5 (second row) with
respect to the balanced combination given by A; = A, = A3
(first row). As can be seen, tuning the combination of geo-
metric and photometric contributions according to different
weights can greatly improve the geometric retrieval perfor-
mance.

Quite conversely, in the example in Figure 9, A; has been
reduced by a factor 4 (second row). As shown in the pic-
tures, as soon as the photometric properties are taken in
larger account, reddish objects appear earlier in the retrieval
list. At the same time, the geometric retrieval performance
decreases, indeed a reddish bottle is now in the top five re-
trieved items.

La(1°A & X
T O mULT

Figure 8: By emphasizing the contribution of the geometric
description (second row), we get better geometric retrieval
performances.

T YDy .
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Figure 9: By reducing the geometric contribution (second
row), it is possible to increase the photometric retrieval per-
Jformances.

4.4. Retrieval and classification performance

In this section we provide a more general overview on the
retrieval and classification performance exhibited by the pro-
posed method. We remark that this evaluation is only possi-
ble at a geometric level, since the 3D model collection con-
sidered in our experiments is not provided with a ground-
truth based on photometric shape properties.

Figure 10 shows the averaged precision-recall curves
[BYRNO99] computed according to the dataset classification
provided by VHM experts, with respect to different choices
of the cohesiveness threshold € (cf. Section 3.1). Each choice
of € induces a different number of representative functions,
in this example we show the performance when 42, 26, 18
and 12 functions are selected. Additionally, we compare our
geometric descriptions with the well-established one based
on spherical harmonics [KFRO3].

SH
—»—12 funcs
0.8 —»%— 18 funcs
% —»— 26 funcs
7} —»— 42 funcs
o 0.6
|
o
o
0.4 |
0.2
0 0.2 0.4 0.6 0.8 1

RECALL

Figure 10: Precision-recall curves for multiple instances
of the proposed geometric description, in comparison with
spherical harmonics.
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Figure 11: Confusion matrices of the methods. From left to right: the matrices obtained with 42, 26, 18, 12 functions and the

spherical harmonics, respectively.

In a precision-recall plot, the larger the area below the
curve, the better the retrieval performance. Figure 10 high-
lights that the performance of the method is quite stable
and able to recover the geometry of the considered 3D arte-
facts in a way that is comparable to the spherical harmonics
technique and degrades only when 12 functions or less are
considered. Looking at the details of the functions that are
necessary to have a good performance, we notice that per-
formance mainly degrades when the contribution of rigid-
invariant functions (such as mean curvature, distance from
points and symmetry planes) is discarded from the geomet-
ric description. This is not surprising because the dataset is
largely made of models that are well characterized by curva-
tures and spatial distributions.

The classification rate is computed using the nearest-
neighbor classifier over the VHM dataset classification, and
is approximately 91% for the spherical harmonics descriptor
and for each run of our method, except for the description
obtained with 12 functions that degrades to 82%. Finally,
Figure 11 represents the confusion matrices of the different
methods. For visual purposes we have normalized the ma-
trices with respect to the number of elements in each class.
Similarly to the retrieval case, we notice that the classifica-
tion is quite stable and mainly fails when the classification
of an object depends on its functionality rather than its ge-
ometry, see for instance class 12 (classified as shells) that
is never correctly identified and corresponds to models 393
and 394 (second-last and third-last items) in Figure 5.

5. Conclusive remarks

In cultural heritage, 3D shapes act as a fundamental marker
of trends — stylistic, geographic, historic, ethnographic. Un-
derstanding and explaining, among scientists and beyond,
dependencies between these trends, as well as their evolu-
tion over time, therefore requires the introduction of tools
and formalisms fostering rigorous analyses of how shapes
vary across territories and periods. This variability of shapes
can only be portrayed and studied if a classification effort is
carried out in order to read geometric similarities, patterns,
exceptions and semantics.

In this contribution we have shown how geometry and tex-

(© The Eurographics Association 2014.

ture can be jointly combined to fruitfully support compari-
son of archaeological artefacts and assist the expert in the
object classification. Indeed, our framework can be easily
tuned to other datasets: in that case the selection of geomet-
ric functions will reflect the nature of the new collection and
also the contribution of the photometric description might
change to reflect different user’s needs. We also highlight
that the method is not limited to geometric and photometric
information: indeed we can include and combine any prop-
erty representable as real- or vector-valued functions.

As for future investigation, other interesting issues we see
concern the inclusion of the user needs in the acquisition
phase, the personalization of the framework with a user pro-
filing strategy, the contribution to the definition of bench-
marks and ground-truths, the interaction and the validation
of the method with CH experts to identify how to balance the
combination of several descriptors (as well as of several pos-
sible parameterizations) according to the problem at hand,
the inclusion of context information (e.g. the geographic and
historic information) and move towards semantic classifica-
tion.
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