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Abstract
Hyperparameters are among the most crucial factors that affect the performance of machine learning algorithms.
In general, there is no direct method for determining a set of satisfactory parameters, so hyperparameter search
needs to be conducted each time a model is to be trained. In this work, we analyze how similar hyperparameters
perform across various datasets from the sketch recognition domain. Results show that hyperparameter search
space can be reduced to a subspace despite differences in characteristics of datasets.

Categories and Subject Descriptors (according to ACM CCS): I.5.0 [Pattern Recognition]: General—H.5.2 [Infor-
mation Interfaces and Presentation]: User Interfaces—Input devices and strategies

1. Introduction

The selection of proper hyperparameters is one of the most
significant factors that affect the accuracy of machine learn-
ing algorithms. The most widespread method used to de-
termine the best hyperparameters is grid search [Sta03],
[Nar07], [LXKJ13]. To find the optimum hyperparameters,
this method requires an exhaustive search for all combina-
tions of hyperparameters prior to the training phase. This
exhaustive search requires time, machine power and labor
due to its high computational cost. As there is no general set
of hyperparameters that works across different databases and
domains, grid search process is repeated for every individual
study.

In this paper, we propose a confined space of hyperpa-
rameters to be used in the domain of sketch recognition. We
examine five sketch datasets with different characteristics in
our experiments. Considering their effectiveness in sketch
recognition, we apply Support Vector Machines as the ma-
chine learning algorithm in this study [UYA12]. In order to
identify the optimum hyperparameters shared among differ-
ent datasets, we performed grid search with various hyper-
parameters in a wide range. Experimental results show that,
hyperparameter search space can be confined to a specific
region for sketch recognition and lower the computational
cost of training recognizers for new datasets.

† Authors have equally contributed to this work.

2. Related Work

The most popular method in the literature employed for the
hyperparameter search problem involves defining a range for
hyperparameters and performing grid search on this range
[Sta03], [Nar07], [LXKJ13]. In this method, hyperparame-
ters are varied using a predefined step size in a wide range
and accuracies are recorded for each combination of pa-
rameters. Gradient based methods are other popular meth-
ods used for hyperparameter search [CVBM02], [GI05],
[Kee02]. However, gradient based methods come with cer-
tain drawbacks. The most significant disadvantage of these
methods is the necessity of the function being differentiable,
making the method impractical for general usage. Therefore,
we prefer grid search for optimizing hyperparameters.

3. Method

We conduct an experiment to find a common sub-range of
hyperparameters on different datasets that produces opti-
mum results. On these datasets, we apply the grid search
method for determining the free hyperparameters of the Sup-
port Vector Machine (SVM) algorithm and observe a sub-
range that gives the highest accuracies.

3.1. Datasets

For the purpose of finding a common sub-range of hyperpa-
rameters, we conducted experiments on five frequently used
datasets in the sketch recognition domain, namely:
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Table 1: Sample sketches from datasets

1. COAD dataset [Man97], including symbols from military
courses of action diagrams

2. NicIcon database [NWV08], that expresses the context of
an emergency management application

3. Traffic Sign database [Oze13], which consists of traffic
sign boards

4. ShortStraw database [XJ09], that is used in corner finding
algorithms for sketches

5. Eitz database [EHA12], which consists of numerous ob-
jects from the daily life

Table 1 presents the identifying instances from 5 classes
which are selected randomly just for visualization purposes.
We do not have any constraint on the selected instances, so
our argument about the subspace restriction would hold even
if different instances had been chosen.

3.1.1. COAD Dataset

A complete list of objects in this dataset can be found in the
US Army Field Manual 101-5-1 [Man97]. There are hun-
dreds of symbols in this dataset, and we focus on a subset of
20 for practical reasons. Eight different users sketched the
symbols from each of the 20 classes. In total 620 examples
of different symbols were collected and the dataset contains
approximately 27 symbols per class.

3.1.2. NicIcon Dataset

The NicIcon database includes multi-stroke symbols that are
used in the context of an emergency management applica-
tion (e.g., symbols for fire brigade, gas, roadblock, injury).
Dataset includes 23641 symbols from 14 different classes in
total. The symbols consist of an average of 5.2 strokes, and
the average number of strokes for the individual categories
ranges from 3.1 to 7.5. Dataset contains approximately 1860
symbols per class.

3.1.3. TrafficSign Dataset

TrafficSign dataset consists of 10320 symbols from 8 differ-
ent traffic sign classes. Full dataset was constructed by 43
different users, and each user has 30 sketches per class. In

Table 2: Dataset characteristics

order to keep our experiments tractable, we used a smaller
subset of 800 symbols, i.e. 100 randomly selected symbols
for each class. Dataset contains approximately 1290 symbols
per class.

3.1.4. ShortStraw Dataset

ShortStraw Dataset consists of 15 classes which are col-
lected from 15 different users. Each user was asked to draw
each shape four times. 1260 strokes were collected, but
14 were removed because they were very poorly written.
Dataset contains 84 symbols per class.

3.1.5. Eitz Dataset

Eitz dataset consists of 20000 symbols from 250 different
classes which are collected from 1350 unique users. Ama-
zon Mechanical Turk (AMT) is used in order to collect the
sketches [EHA12]. Dataset contains 80 symbols per class
and a total of 351,060 strokes with each sketch containing a
median number of 13 strokes.

3.2. Dataset Characteristics

The five datasets used in our experiments are quite different
from each other. The characteristic features that differentiate
them are number of objects, number of participants, number
of strokes and the density of sketch points. The density of
sketch points is determined by dividing the number of sketch
points by the area of sketch. Related information about the
characteristic features of datasets is shown in Table 2.

3.3. Features

In this study, we used IDM (Image Deformation Model)
features considering the fact that it is one of the most suc-
cessful feature extraction method in sketch recognition do-
main [OD09]. In this method, sketches are converted to low
density feature images by using the directions and end points
of the strokes. The free parameters for the IDM method are
k (kernel size), r (resampling parameter) and σ (smoothing
factor). We set k = 25, r = 50 and σ = 10 in order to get the
highest prediction accuracies [TAS10]. The resulting IDM
features have 720 entries for each sketch.
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3.4. Support Vector Machines

In our experiments, we used C-SVM (a variant of SVM) with
RBF kernel together with free parameters. We perform 5-
fold cross validation to objectively assess the classifiers per-
formance in our analyses. C-SVM with RBF kernel needs
two hyperparameters to be specified. The hyperparameter C,
controls the weight of the free parameters and the other hy-
perparameter γ defines the shape of the RBF kernel. We used
LibSVM library for the implementation of the SVM algo-
rithm [CL11].

3.5. Grid Search

We train a separate model for every combination of SVM
free hyperparameters and record the cross validation accura-
cies. For each dataset we visually demonstrate the cross val-
idation accuracies. Both for the training and test data, we use
the best hyperparameter pairs obtained through grid search.
Training and test accuracies are beyond the scope of this
paper. Our purpose is to define a restricted hyperparameter
range. Hence, we report only the cross validation accuracies.

3.6. Hyperparameter Range

We performed grid search in the range between 2-10 and 220

for the C parameter. Step size is defined as 0.5 in exponen-
tial range of values. For the γ parameter, grid search was
performed in the range between 2-20 and 210 in such a way
that the exponential values increase by 0.5. Thus, we scan
3721 hyperparameter combinations in total, 61 different hy-
perparameters for C and 61 different parameters for gamma
specifically.

4. Experiment

In the grid search method, we need to retrain the SVM model
for each pair of hyperparameters and make predictions based
on this model. Therefore, it suffers from computational com-
plexity. Computational time is dependent on the number of
free hyperparameters, step size, and dataset size. When us-
ing the grid search method, researchers face the problem of
computational time being intractable. In this study, we par-
allelized grid search in order to make it work on a multi-core
processor with the purpose of decreasing the computational
time. We divided this process into different executable files
such that the accuracies of hyperparameter pairs are calcu-
lated by these files. We split the computations into 961 dif-
ferent executable files and ran our experiments on a high per-
formance cluster with 150 distributed cores.

5. Results

We report the experiment results separately for each dataset
in Figures 1 through 5. As the results for five datasets are
combined, we find a common interval for SVM hyperparam-
eters, inspite of the different characteristics of the datasets.

Figure 1: Cross validation accuracies for the COAD dataset

Figure 2: Cross validation accuracies for the NicIcon
dataset

Figure 3: Cross validation accuracies for the TrafficSign
dataset
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Figure 4: Cross validation accuracies for the ShortStraw
dataset

Figure 5: Cross validation accuracies for the Eitz datases

Figure 6: Cross validation accuracies for the COAD dataset

Figure 7: Intersection of the highest accuracy regions

We acquire highest accuracies when we choose C hyper-
parameter from the interval [2-2,220] and γ hyperparameter
from the interval [2-7.5, 2-3]. We present average accuracies
for all datasets in Figure 6.

Figure 7 shows how we reduce the hyperparameter search
space. For all datasets, the regions where accuracies are
within 95% of the maximum cross validation accuracies are
intersected. Grid search is performed for 3721 hyperparam-
eter pairs and 331 of these pairs have the highest accuracies
in the intersected region. As a result, we reduce the hyper-
parameter search space by 91.1%. Searching only 8.9% of
the overall search space, amount of time required to find the
optimum hyperparameters decreases from tens of hours to
minutes.

To evaluate our restricted hyperparameter selection strat-
egy, we assess the results on an unseen dataset by excluding
one dataset each time in a leave-one-out fashion. From five
datasets, we exclude one dataset and determine the shared
hyperparameter interval by intersecting the high-accuracy
regions of remaining four datasets. In Figures 8 and 9, we
present the mean accuracy and maximum accuracy results
on unseen datasets both for entire hyperparameter space and
subspace. Maximum accuracies are the upper limit that we
can reach and we see that for an unseen dataset maximum
accuracy is acquired when the subspace of hyperparameters
are used. We can also see that, mean accuracies are much
higher in the restricted hyperparameter space than they are
in overall hyperparameter space.

Leave-one-out experiment results show that hyperparam-
eter sets chosen from our restricted interval will include the
parameters giving the highest accuracy for the dataset that
is left out. Hence, using our restricted hyperparameter space
leads higher accuracy on any future dataset.
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Figure 8: Maximum accuracy results on unseen datasets
(shown on the x axis) for the whole hyperparameters and
for the subspace of hyperparameters

Figure 9: Mean accuracy results on unseen datasets (shown
on the x axis) for the whole hyperparameters and for the
subspace of hyperparameters

6. Discussion

Accuracy of machine learning algorithms is directly related
to the selected hyperparameter values. Grid search is among
the most commonly used methods for this purpose. In spite
of being simple and reliable, grid search holds a high compu-
tational complexity that makes the usage of this method trou-
blesome. In this study, we investigated how C-SVM algo-
rithm with RBF kernel performs on different sketch datasets
by scanning a wide range of hyperparameters. Our analysis
shows that there is a common interval that delivers high ac-
curacies for all datasets. According to our observations, hy-
perparameter search for C-SVM algorithm with RBF kernel
is reduced so that C values vary between 2-2 and 220, while
γ values vary between 2-7.5 and 2-3.

Furthermore, we argue that techniques that work well
across a sufficiently large set of sketch symbols should, in-

deed, handle new sketch symbol sets very well. We support
our argument by the leave-one-out dataset study. In con-
clusion, the proposed hyperparameter intervals for cost and
gamma are generalizable for new sketch datasets.
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