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Abstract

Autoencoders are a powerful yet opaque feature reduction technique, on top of which we propose a novel way for the joint
visual exploration of both latent and real space. By interactively exploiting the mapping between latent and real features, it
is possible to unveil the meaning of latent features while providing deeper insight into the original variables. To achieve this
goal, we exploit and re-adapt existing approaches from eXplainable Artificial Intelligence (XAl) to understand the relationships
between the input and latent features. The uncovered relationships between input features and latent ones allow the user to
understand the data structure concerning external variables such as the predictions of a classification model. We developed an
interactive framework that visually explores the latent space and allows the user to understand the relationships of the input

features with model prediction.
CCS Concepts

e Human-centered computing — User interface design; Visualization techniques;

1. Introduction

Recent years have witnessed the rise of decision support systems
based on the adoption of opaque Artificial Intelligence models that
have ensured high accuracy labeling [Kra91] by exploiting a map-
ping of the input instances into their internal representation, called
latent space. However, the complexity of this mapping hides the
internal decision criteria of the model. With the term black box
we refer to an opaque decision model (e.g., random forest, en-
semble classifiers, neural networks (NN), etc.). The diffusion of
these models has boosted the research on eXplainable Al tech-
niques [GMR*18, BGG*21]. In this paper, we present a classifier-
agnostic approach for explaining the outcome of a black box based
on two steps: 1) an autoencoder is used to map multi-dimensional
input features to a bi-dimensional space; 2) a widely used expla-
nation technique, i.e., SHAP [LL17], is exploited to measure the
relevance of each attribute of the input to the position in the latent
space. The combination of the two techniques enables the effective
visualization and exploration of the contribution of each original
feature to the latent space. Modifications on a single input feature
generate a spatial offset on the latent space visualization, allowing
cognitive friendly navigation of the joint modification of multiple
attributes.

An autoencoder is a NN [TSKO0S5] that mimics a data generator
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for the input data. It is composed of two parts: the encoder, which
transforms an instance of the input space into a point in the latent
space, and the decoder [GBCB16], which takes a point in the latent
space and maps it to the input space. This latent space projection
can be seen as a compression of the input space’s original dimen-
sions, focusing on valuable but unknown relationships among fea-
tures. Nowadays autoencoders are employed in a wide variety of
tasks ranging from recommendation systems [THZ* 18] to image
denoising [BSA20] and data generation [YLK20]. We chose a spe-
cific family of autoencoder architectures, called Conditional Varia-
tional Autoencoder (CVAE), which exploits the outcome of a clas-
sification model to generate a latent space where data are grouped
by the similarity of their attributes and the prediction label assigned
by the black box. We exploit this mapping to encode in the latent
space positions the classification provided by the black box to be
explained.

However, the reasons why an instance is mapped to a specific
position remains unknown since the autoencoder model does not
reveal linear and non-linear relationships with the data properties.
Our contribution focuses on building an explanation for the latent
space mapping. The explanation method is based on the SHAP
(SHapley Additive exPlanations) [LL17] technique, which returns
the contribution of each input feature to the final classification. We
apply the SHAP method to the mapping model, yielding a sum of
linear contribution for both the x and y components. If we consider
a single input feature, its contribution is approximated by SHAP as
a line segment passing through a reference point (corresponding to
the average expected value): increasing or decreasing the input fea-
ture value produces an offset of the mapped point on the opposite
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NB: it is possible to select a new point just by clicking on it in the scatter plot.

Figure 1: Interactive framework for the titanic dataset. We have several sliders of the top ten most informative features on the left, ordered by
relevance. The violet letter e on the bottom of every slider is the expected value for that particular feature. The two columns on the right of the
sliders are in order: the feature’s value and the shap score’s vector representation. On the right, we have a graph of the latent space learned.
The points are labeled red and blue according to the prediction label. The point taken into analysis is selected using a black viewfinder. The
expected position is the origin of the two gray axes, and the black vectors represent the contributions of each feature, the sum of which lead
from the expected value to the actual point. By modifying the Title feature from 1 to 4, we can see how the position of the point is changed
in the latent space following the shap vector. By moving above the expected value of the feature, the effect in the latent space is given by the

shap vector highlighted in pink.

directions of the segment. Since we are considering multiple input
attributes, the single contributions can be considered as a concate-
nation of offsets w.r.t. the previous features: the SHAP segment of
feature i is translated to have the expected point aligned with the
actual projected position of the contribution of feature i — 1. The
order of the features is a result of the SHAP method, going from the
most relevant to the less relevant (more details in Section 4). These
contributions are represented as vector arrows that sum to identify
a point in the latent space. We leverage interactivity [SRFB*20]
to let the user vary the values of the input space (i.e., the original
attributes of the instance) to explore the resulting mapping in the
latent space display. In this way, she can explore how variation in
the input may influence the mapping of the autoencoder and, hence,
the relevance of features. The variation of a feature f influences the
final mapping of the point, since it modifies the magnitude of the
vector corresponding to f.

The rest of the paper is organized as follows: Section 2 discusses
related works. Section 3 recalls the notions needed to understand
the proposed methodology which is illustrated in Section 4. Sec-
tion 5 presents the interactive framework. Finally, Section 6 con-
cludes the paper by discussing known limitations and proposing
future research directions.

2. Related Work

In recent years several types of autoencoders models have been de-
veloped [N*11,KW13,SLY15,ZSE17] with different types of loss
functions, integrating the use of labels or not. However, all these
variations have not solved the interpretability of the latent space. A

common technique to analyze the latent space is to do clustering on
it and analyze the cluster properties [CHWH20,MALK19,XGF16].
Interpolation is another technique used to explore the latent space.
It can be used to traverse between two known positions in latent
space [RMCI15, Whil6, CXTJ19]. However, the interpretation of
the latent features is still not clear. Various approaches [XPYS18,
SKGD18] adopted trial and error processes to find possible inter-
pretations or a classifier to return the relevance of the latent space
features. Several works have developed interactive frameworks to
analyze the cluster formed in the latent space of dimensionality re-
duction methods [FKM19,CMK?20,MJE21]. In addition to that, our
proposal can unveil the importance of the input features in the latent
space with a relevance score without any external help.

3. Background

Our contribution leverages the widely used XAI method named
SHAP (SHapley Additive exPlanations) [LL17]. SHAP is a game-
theoretic approach, based on Shapley values, to explain the output
of any machine learning model. The explanation is provided as a
sum of relevance from the input feature values. Each value is con-
sidered as a contribution to a cooperative game whose payout is
the final prediction. Accordingly to the input instance, Shapley val-
ues estimate the payout among the input features. The computa-
tion of the Shapley values is exponential with the number of fea-
tures. Kernel SHAP implements an approximated estimation of the
Shapley values by using a weighted linear regression [LL17]. The
other challenge to compute Shapley values is the correct estimation
of suppressing one of the features. Since many machine learning
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models are based on fixed-length input, suppressing a single fea-
ture is impossible. To overcome this problem, Kernel SHAP sub-
stitutes the value of a feature with the mean value observed over the
whole dataset. If all the features are replaced with their correspond-
ing means, it is possible to identify a mean input instance with the
corresponding mean prediction value. This value is also called the
expected value.

4. Connecting Data and Latent space

The scores returned by SHAP give us the ability to understand
which real features have influenced the most the position in the
latent space. Therefore, we can use these scores to explain the role
played by the real features w.r.t the machine learning model. We
organize this section in three parts: the first focuses on describing
the latent space structure, the second focuses on how the explana-
tion is created, and the third describes how to utilize the interactive
framework to conduct this kind of analysis.

Let D(X,Y) be a dataset where X = {x,...,xn} represents the
features space, while Y = {y,...,yn}, represents the label space.
Let B a black box model trained on D which return the prediction
labels ¥ = {$1,...,¥n}. Without loss in generality and for simpli-
fying the presentation, we may consider a binary classification task
and use the probability returned by the classifier as labels. Given
a record x € X, represented as a vector x; € R”, the correspond-
ing classification of the black box = B(x) and an autoencoder
A, we indicate with the notation z = A(x,y) the encoding of the in-
stance x with A. We adopted a Conditional Variational Autoencoder
(CVAE), i.e., an autoencoder trained on the feature space of X la-
beled with the prediction yielded by the black box. Typically, the
representation of D in the latent space has a clustering-based struc-
ture [CHWH20], i.e., similar points are grouped in close areas in
the latent space. In addition, CVAEs exploit the information given
by ¥ to place instances into the space accordingly with their labels.
Then, with our proposal, we can observe the neighbors in the la-
tent space, identifying common feature characteristics among the
instance in the same group and catch the correlation with the target
variable y. With our framework, it is possible to define and select
different neighborhoods in the latent space and compare the distri-
butions of the real features of the points in the two groups. The fea-
tures with the most different distributions among the two selected
sets are the ones that characterize the belonging to the groups. In
particular, if we select two clusters with points with different labels,
it is possible to identify the discrimination features. For example,
we can select a cluster with many points with target label L and an-
other one with a lot of =L and notice that the points in the L cluster
are characterized by the value of the feature “Male” set to true.

Given an instance x € X and an autoencoder A trained on [x, §],
our goal is to find the explanation e unveiling why x has been en-
coded in the latent representation z = A(x). The proposed explana-
tion is built from the Kernel SHAP method to estimate the Shapley
values of z. We can interpret these values in terms of comparison
with the expected prediction. The expected prediction is the out-
come of the classifier when all the features are assigned their re-
spective mean value. Thus we can project this feature in the latent
space at point Z and use that location as a reference position. Given
the Shapley value of the instance x, we can add the contribution
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of each value starting from the reference position Z. Thus, starting
from the expected prediction Z, we can sum to it the contribution
of every input feature in the dimension k and obtain the position in
the latent space, i.., the latent representation z = 2+ ¥,,, & (xm ).

An explanation for a classified instance is built around exploring
the Shapley values contributions. First, the contributions of each
feature are sorted by order of magnitude. The user can then change
the value of one of the input features to observe how the position of
z in the latent space changes. Those features with higher relevance
will produce a broader impact on the latent space since their cor-
responding magnitude is larger. We leverage an exploration strat-
egy based on a low dimensional latent space to allow an efficient
and comprehensible visualization of the induced space, i.e., two or
three dimensions. When the user explores a new instance, the corre-
sponding latent position is determined, and the vectors representing
the contributions of the feature are computed and mapped on the vi-
sual space as vector arrows (Figure 1). The variation of one of the
attributes affects changing the magnitude of the vector arrows dis-
played on the visualization. We clarify this aspect by highlighting
that, since SHAP values can be approximated with linear regres-
sion, they also have some linear properties concerning the expected
value. For example, consider a feature like age ranging from 0 to
100 with expected value 40, and consider that the value 80 has a
SHAP score of 0.6. If we substitute the value of the feature to 40,
then the SHAP score would be 0 since the contribution of age equal
to the expected value is null. However, if we substitute the value
with 20, the SHAP score will be negative due to the linear propri-
ety. Since the position in the latent space is given by the SHAP
values, we can use them as a guide to increase or decrease feature
values in the real space to move points to different positions in the
latent space. SHAP vector directions are reported on the right of the
sliders in Figure 1 gives the user the ability to see how the change
of an input feature will result in a modification of the position in the
latent space. This allows the user to explore the latent space guided
by the direction of the SHAP scores and analyze the prediction in
different space portions.

5. What-If Analysis - The Interactive Framework

Moving into the latent space guided by SHAP scores can provide
insights to identify homogeneous groups of points, outliers, or close
points with different predictions despite their similar latent char-
acteristics. In particular, this last case can be helpful to identify
misclassifications or malicious use of the black box, for example,
through adversarial instances. Since it is interesting to analyze dif-
ferent latent positions by playing with the input features, we real-
ized an interactive framework, acting as a front-end for our latent
space explanation proposal, that allows the user to analyze the dis-
tribution of latent points and interact with their SHAP values.

The central component of our solutions is the visualization of the
latent space. The two dimensional visualization of the latent space
is built as a scatter plot, where latent instances are represented as
points. The projection of the expected feature is highlighted with
a triangular shape, and it is used as a reference point for position-
ing the other instances. The contribution of SHAP values is visu-
alized as arrows oriented accordingly to the coefficients returned
by the explanation method. The destination location of z is high-
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Figure 2: Here, we have the distribution analysis of the two clusters analyzed in the Titanic dataset. The violet distribution is the distribution
of the points belonging to the cluster highlighted in the right figure, while the dark green is the distribution of the left one. The features are
sorted in descending order from the most separated distributions on the right to the least separated one to the left. The feature “Sex” and
“Title” are the ones that characterize the clusters: all the points in the blue cluster are men with a low title.

lighted with a cross shape. The latent space visualization is linked
with a set of sliders where the user can specify values for each
attribute. Each slider shows relevant information about the SHAP
values for the corresponding feature. In particular, the slider high-
light the minimum and maximum values and the position of the
expected value for that attribute. Thus, the user can move the se-
lection on the left or on the right of the expected value to change
the magnitude of the corresponding vector arrow. We also provide
directional vectors for each feature to help the user to predict the
direction and verse of the translation in the latent space. When the
user changes one of the values on a slider, a new instance is gener-
ated, the black box classifies it, and the SHAP values are computed.
The SHAP values are then visualized on the latent space visualiza-
tion. Since the number of features of the dataset may be large, we
decided to visualize only the sliders of the top 10 most representa-
tive features selected in decreasing order of magnitude (from top to
bottom) of the SHAP scores. The two displays are mutually linked:
when a slider is changed, the latent space visualization is updated;
when a point in the scatter plot is clicked, the corresponding feature
values are loaded in the set of sliders.

The interface is divided into two parts. On the top, the sliders
and the latent space visualization allow the exploration of latent
space by changing the value of the input feature. On the bottom,
the user can select groups of points from two instances of the la-
tent space visualization (Figure 2). The two groups of points are
then analyzed to determine which features distinguish one group
from the other. The differences are visualized as a set of violin
plots, comparing the distribution of observed values in the two
groups. The violin plots are sorted accordingly with features that
maximize the distance of the mean of distributions. We tested our
framework with a public available tabular dataset, i.e.the Titanic
dataset, which contains the data of real Titanic passengers. Each
passenger is labeled as a survivor or not-survivor. Every categor-
ical feature is transformed as a one-hot vector of dimension equal
to the number of possible categorical values. A web application
that implements our framework is accessible at the following link:
https://kdd.isti.cnr.it/LSE/. The source code is also avail-
able on GitHub: the link is available from the web application URL.
The continuous variables are normalized in the range [-1,1]. The

dataset contains 1310 passengers described by attributes such as
age, passenger class, sex, fee, etc. As a classification model, we
trained an xgboost model [CG16]. The latent space created by the
autoencoder is illustrated on the right of Figure 1. Most of the data
labeled as non-survivor are concentrated in the lower right part
of the latent space. The survived people, instead, are more sparse.
Firstly, we selected two clusters in the interface to analyze the dif-
ference in distributions. We selected the one on the right with many
not survived people and the one closer at the top. We can see that
the feature “Title” is the most representative of the two clusters
(Figure 2). In the blue cluster, the people have lower titles than
those in the red. However, the people on the blue cluster are all
men. We conclude that in the dataset, there is a correlation between
“Sex” and “Title”. Male people with a lower title are the ones with
meager survival chances. In Figure 1 we took a point in the blue
cluster on the bottom and tried to modify its most relevant features
to move it to the top cluster. In particular, we can see that the fea-
ture “Title” has contributions in the direction of the cluster and has
a lower value than the expected one. By modifying this feature to
a value greater than the expected value (i.e., on the right of the e
placeholder), we discovered that it is possible to move the point
from the original cluster to the one in the center, which is mainly
labeled as survivor. The more we increase the value, the more the
point will be in the top part of the space. Interestingly the feature
“Sex” has a low SHAP value meaning that our model is only look-
ing at the feature “Title” for distinguishing points.

6. Discussion and Conclusions

This paper proposes an explanation methodology that exploits the
combination of latent spaces learned by an autoencoder with a fea-
ture relevance method, namely SHAP. We have extracted beneficial
information about the data under analysis by designing an interac-
tive exploration of the latent space to evaluate the position of single
instances or groups of points. We are working to introduce visual-
based animation to bind the changes on the sliders with the updates
on the visualization. We plan to organize a user-based survey for
the evaluation of the interface, in particular for solving specific ex-
planation tasks.
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