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Abstract

This paper presents DSS (Dynamic Spectral Sparsification), a sampling approach for drawing large and complex dynamic
graphs which can preserve important structural properties of the original graph. Specifically, we present two variants: DSS-
I (Independent) which performs spectral sparsification independently on each dynamic graph time slice; and DSS-U (Union)
which performs spectral sparsification on the union graph of all time slices. Moreover, for evaluation of dynamic graph drawing
using sampling approach, we introduce two new metrics: DSQ (Dynamic Sampling Quality) to measure how faithfully the
samples represent the ground truth change in the dynamic graph, and DSDQ (Dynamic Sampling Drawing Quality) to measure
how faithfully the drawings of the sample represent the ground truth change. Experiments demonstrate that DSS significantly
outperform random sampling on quality metrics and visual comparison. On average, DSS obtains over 80% (resp., 30%) better
DSQ (resp., DSDQ) than random sampling, and visually better preserves the ground truth changes in dynamic graphs.

1. Introduction

Graph sampling is often used to address scalability issues for
analysis and visualization of large graphs [HL13; LF06], however
most previous work focuses on static graphs [HNM*18; HL20;
WCA*17; ZZW*15]. Dynamic graphs, with structural changes
over time, add significant challenges for effective analysis and visu-
alization. Consequently, sampling dynamic graphs adds challenges:
samples should faithfully represent not only the ground truth struc-
ture at each time slice, but also the changes between time slices.

Spectral sparsification computes a subgraph that preserve im-
portant structural properties, e.g. commute distance [ST11]. While
some theoretical results are known for spectral sparsification of dy-
namic graph streams [AGM13; KLM*17], practical implementa-
tions and empirical validations on the effectiveness of spectral spar-
sification for dynamic graphs have not been studied.

Furthermore, quality metrics for graph sampling and their draw-
ings are important for quantitative evaluation, however existing
quality metrics for sampling quality [HL13] and drawing qual-
ity [NHEM17] focus on static graphs. Quality metrics for sampling
and drawing of dynamic graphs need to measure whether samples
and drawings preserve the ground truth changes in dynamic graphs.

We present DSS (Dynamic Spectral Sparsification), new sam-
pling algorithms using spectral sparsification for dynamic graphs,
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with two variants: I (Independent) performs SS (Spectral Sparsifi-
cation) independently on each time slice of a dynamic graph; and
U (Union) performs spectral sparsification on the union graph of
all time slices. We also introduce two quality metrics for sampling
(resp., drawing) dynamic graphs, DSQ (Dynamic Sampling Qual-
ity) and DSDQ (Dynamic Sampling Drawing Quality) to measure
how faithfully the change in samples and the drawings thereof pre-
serve the ground truth changes in the original dynamic graph.

We validate the effectiveness of DSQ and DSDQ using deforma-
tion experiments, showing both metrics can effectively measure the
quality of dynamic graph sampling and drawing. We then evaluate
DSS against random sampling using DSQ, DSDQ and visual com-
parison. Experimental results demonstrate that DSS significantly
outperform random sampling, on both quality metrics and visual
comparison. Furthermore, DSS-U preserves the dynamics of the
original graphs better than DSS-I on real-world dynamic graphs.

2. Related Work

2.1. Dynamic Graph Drawing

The most well-known evaluation criteria for dynamic graph draw-
ing is to preserve the mental map [MELS95]. Similarly, dynamic
stability is defined as the minimization of the geometric distance
between subsequent drawings [TDB88; BBDW17].

To preserve the mental map and maximize the stability, the graph
layout is often computed using a union graph approach, which is
defined as Gu = (Vu,Eu),Vu =

⋃k
i=1 Vi,Eu =

⋃k
i=1 Ei. A layout for

the union graph is computed, and the same vertex position are used
for layouts of each time slice [DGK01; DG02].
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2.2. Static Graph Sampling and Spectral Sparsification

Sampling on static graphs has been extensively studied for efficient
analysis and visualization of big complex graphs [LF06; HL13].
Random sampling methods are fast and easy to implement but
often fail to preserve important structural properties [NHEM17;
ZZW*15; WCA*17]. Graph topology has been used with sampling
to improve the connectivity of the samples [HNM*18; MHH*19].

Spectral sparsification is a subgraph which preserves the struc-
tural properties of the original graph, such as commute distance.
Every n-vertex graph has a spectral approximation with O(n logn)
edges [ST11]. Spectral sparsification selects edges based on effec-
tive resistance values, defined as the voltage drop across the edge
when modelling a graph as an electrical network and can be com-
puted in near-linear time [SS11].

Spectral sparsification has been applied to graph draw-
ing [ENH17; HHE19], producing good quality sample graph draw-
ings preserving the original graph’s structure. Spectral sparsifica-
tion using graph topology [HCH*21; MHH*19] has been presented
to reduce runtime and improve quality. Fast spectral sparsification
using a multi-level approach has also been presented [ITW*20].
However, most existing spectral sparsification methods focus on
static graphs, and results for dynamic graphs remain purely theo-
retical without practical implementations [AGM13; KLM*17].

Graph sampling methods are evaluated using sampling quality
metrics which compare important statistical properties of the orig-
inal and sample graph, such as degree correlation, closeness cen-
trality, clustering coefficient, and average neighbor degree [HL13;
ZZW*15]. However, these metrics focus on sampling static graphs,
and not directly applicable for sampling dynamic graphs.

2.3. Faithfulness Metrics

While readability metrics evaluate graph drawings based on how
humans understand the drawing, faithfulness metrics measure how
faithfully a drawing displays the ground truth of a graph.

Faithfulness metrics for static graphs are well studied: the shape-
based metrics [EHKN15] measures how faithfully a drawing dis-
plays the ground truth structure of a graph using proximity graphs,
and the proxy faithfulness metrics [NHEM17] measures how faith-
fully the drawing of a sample graph displays the structure of
the original graph. Other examples include the cluster faithful-
ness [MHEK19] and the symmetry faithfulness [MHEK20] metrics.

For dynamic graph drawing, change faithfulness metrics measure
how proportionally geometric change in a dynamic graph drawing
displays the ground truth change in dynamic graphs. Examples in-
clude the cluster change faithfulness and distance change faithful-
ness metrics [MHE20]. However, change faithfulness metrics for
sampling of dynamic graphs have not been presented yet.

3. DSS: Dynamic Spectral Sparsification

We present DSS for sampling dynamic graphs with spectral sparsi-
fication with two variants: (1) DSS-I (Independent), which samples
each time slice independently to be locally faithful to each time
slice; and (2) DSS-U (Union), which computes samples based on
the union graph of all time slices to improve change faithfulness.

3.1. DSS-I (Independent)

For a dynamic graph G with time slices G1, . . . ,Gk, DSS-I indepen-
dently computes spectral sparsification G′

i of size x% of each time
slice Gi: (1) Compute the effective resistance values of edges in
Gi; (2) Compute spectral sparsification G′

i of size x% by selecting
edges in decreasing order of effective resistance values in Gi.

With DSS-I, we expect to obtain samples that are locally faithful
to each time slice. However, they may not be as change faithful, and
local sampling alone may miss edges that are locally less important
but become more important globally throughout other time slices.

3.2. DSS-U (Union)

To improve the issues with DSS-I, we design DSS-U, which com-
putes effective resistance values of edges using the union graphs:
(1) Compute the union graph Gu = (Vu,Eu),Vu =V1∪ . . .∪Vk,Eu =
E1 ∪ . . .∪Ek; (2) Compute effective resistance values of edges in
Gu; (3) For each time slice Gi, compute spectral sparsification G′

i
of size x% by selecting edges in decreasing order of effective resis-
tance values computed on Gu.

We expect DSS-U to select more globally important edges across
all time slices for more change faithful samples of dynamic graphs,
highlighting not only locally important edges at each time slice but
also edges that are globally important throughout more time slices.

4. DSQ and DSDQ: New Quality Metrics for Dynamic Graphs

We present new quality metrics: DSQ (Dynamic Sampling Quality)
and DSDQ (Dynamic Sampling Drawing Quality), to measure the
quality of samples and drawings of samples of dynamic graphs.

4.1. DSQ: Dynamic Sampling Quality Metric

DSQ measures how proportional the combinatorial change in the
samples of a dynamic graph is to the ground truth change in the
original graph. Unlike many existing sampling quality metrics for
static graphs [HL13], it is specifically designed for evaluating sam-
pling dynamic graphs. Namely, given two time slices of a dynamic
graph G1 and G2, DSQ is computed as the following steps:

1. Compute sampled graphs G′
1 and G′

2 of G1 and G2.
2. Compare the similarity between the change in the sampled

graphs ∆(G′
1,G

′
2) to the ground truth change ∆(G1,G2).

Specifically, given two time slices of a dynamic graph G1,G2
and the sampled graphs G′

1,G
′
2, DSQ is defined as follows:

DSQ = 1− |JS(G1,G2)− JS(G′
1,G

′
2)|

max(JS(G1,G2),JS(G′
1,G

′
2))

where JS(G1,G2) is the Mean Jaccard Similarity [Jac12]:

JS(G1,G2) =
1
|V | ∑

v∈V

|N1(v)∩N2(v)|
|N1(v)∪N2(v)|

where N1(v) (resp. N2(v)) is the neighbor set of v in G1 (resp., G2).
DSQ is defined between 0 to 1, where higher value means better.
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Figure 1: Average DSQ and DSDQ score. Clearly, both metrics
decrease along the deformation step, confirming our hypotheses.

4.2. DSDQ: Dynamic Sampling Drawing Quality Metric

DSDQ is a change faithfulness metric, which measures how pro-
portional the geometric change in drawings of sample graphs is
to the ground truth change in a dynamic graph. The change in the
drawing is quantified by the change in the proximity graph of the
drawings, such as GG (Gabriel Graph) [GS69] and RNG (Relative
Neighbourhood Graph) [Tou80]. Specifically, given two time slices
of a dynamic graph G1 and G2, DSDQ is defined as follows:

1. Compute sampled graphs G′
1 and G′

2 of G1 and G2.
2. Compute drawings D′

1 and D′
2 of G′

1 and G′
2 using a layout.

3. Compute the proximity graphs S′1 and S′2 of D′
1 and D′

2.
4. Compare the similarity between the change in the proximity

graphs ∆(S′1,S
′
2) to the change in dynamic graphs ∆(G1,G2).

More specifically, DSDQ is computed as:

DSDQ = 1− |JS(G1,G2)− JS(S′1,S
′
2)|

max(JS(G1,G2),JS(S′1,S
′
2))

where S′1 (resp., S′2) is the proximity graph of of D′
1 (resp., D′

2).
DSDQ ranges between 0 to 1, where higher is better.

5. Validation Experiments: DSQ and DSDQ

To validate the effectiveness of DSQ and DSDQ, we conduct
validation experiments using dynamic graphs based on three
graph types: sparse mesh-type (M) graphs [DH11], black-hole
(BH) graphs with global mesh structures and locally dense
“blobs” [ENH17], and real-world scale-free (SF) graphs with glob-
ally sparse but locally dense clusters [LK14].

5.1. DSQ Validation Experiment

For a dynamic graph with two time slices G1 and G2, we com-
pute samples G′

1 and G′
2 by performing SS on G1 and G2. We se-

lect a sample size of 0.3|E|, as it produces samples that are similar
enough to the original graph. We start G′

2 by selecting edges with
high effective resistance values, and gradually reduce the quality
of the sample by selecting edges with lower effective resistance
values. At step s, we exclude the top s× k edges (0.04|E| < k <
0.06|E|), and choose the next 0.3|E| edges instead, to make the
change in samples less similar to the ground truth change.

Figure 1 shows the DSQ metric along deformation steps, aver-
aged across all data sets. Clearly, DSQ decreases as the samples are

(a) D1 (b) D′
1 (c) D2

(d) D′
2 (step 0) (e) D′

2 (step 5) (f) D′
2 (step 10)

Figure 2: DSDQ deformation experiment: time slices G1, G2 and
drawings D′

1, D′
2 of G′

1, G′
2, with D′

2 gradually deformed.

further deformed. Therefore, deformation experiments show that
DSQ effectively measures the quality of dynamic graph samples.

5.2. DSDQ Validation Experiment

For a dynamic graph with two time slices G1 and G2, we compute
samples G′

1 and G′
2 with sample sizes between 0.3|E| to 0.7|E|,

selected to produce similar drawings to the original graph. We first
compute good drawings D′

1 and D′
2 using the Organic [WEK04] or

Backbone [NLCB13] layout. We then gradually perturb the vertex
positions in D′

2 to make it less change faithful (Fig. 2).

Figure 1 shows the DSDQ metric per deformation step, averaged
over all data sets. Clearly, DSDQ decreases along the deformations
steps. Therefore, deformation experiments show that DSDQ effec-
tively measures the quality of drawings of dynamic graphs samples.

6. DSS Experiments

6.1. Experiment Design

We compare DSS-I and DSS-U to RE (Random Edge), using qual-
ity metrics (DSQ and DSDQ) and visual comparison. We first
use graphs with simulated dynamics (i.e., add or delete vertices
or edges) with real-world benchmark scale-free graphs [LK14]
(drawn with the Backbone layout) and black-hole graphs [ENH17;
HHE19] (drawn with the Organic layout). We also use real-world
dynamic graphs [LK14; FB14] (drawn with the Backbone layout).
We compute samples of size 0.3|E| with DSS-I, DSS-U, and RE.

Note that for DSS-U, the union graph is used for sampling only
while the layout of each sample is computed independently. This is
done to not overly constrain the drawings, and we expect that the
increased faithfulness in the change of the samples would also lead
to higher change faithfulness of the drawings.

We expect DSS-I and DSS-U to outperform RE on both the qual-
ity metrics and visual comparison. Furthermore, we expect DSS-U
to perform better than DSS-I, due to the union graph approach.
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f acebook 896_sparseblob mooc_actions
G1 G2 G1 G2 G1 G2

Original
G’1 G’2 G’1 G’2 G’1 G’2

DSS-I

DSS-U

RE

Table 1: facebook (scale-free graph), 896_sparseblob (black-hole graph), and mooc_actions (real-world dynamic graph) samples. DSS
preserves structural changes better than RE; DSS-U preserves dense areas & change in density better than DSS-I.

(a) Scale-free (b) Black-hole (c) Real-world

Figure 3: Average DSQ and DSDQ of DSS-I, DSS-U, and RE. DSS
vastly outperforms RE, with DSS-U performing better than DSS-I.

6.2. Quality Metrics Comparison

Figure 3 shows the DSQ and DSDQ metrics, averaged for all data
sets. Clearly, DSS vastly outperforms RE: for black-hole (resp.,
scale-free) data sets, DSS obtains over 47% (resp., 50% ) higher
DSDQ and 7 (resp., 3) times higher DSQ than RE; for real-world
dynamic graphs, DSS perform over 1.5 times better than RE on
both metrics. Moreover, DSS-U performs significantly better than
DSS-I: for scale-free (resp., black-hole) data sets, 20% (resp., 6%)
higher DSDQ and around 3% (resp., 13%) higher DSQ than DSS-I;
for real-world dynamic graphs, DSS-U obtains 15% higher DSQ
and 10% higher DSDQ than DSS-I.

6.3. Visual comparison

Table 1 shows visual comparisons of sample graphs, computed by
DSS-I, DSS-U, and RE, for dynamic graphs. Clearly, DSS preserves

the structure of the original dynamic graphs significantly better than
RE, which fails to preserve the global structure in most time slices.
Moreover, DSS-U better preserves the locally dense clusters than
DSS-I as seen for 896_sparseblob where DSS-U preserves all five
blobs in both time slices while one blob is disconnected in the first
time slice for DSS-I. DSS-U also preserves the change in density
better than DSS-I: for mooc_actions , DSS-U preserves the change
in density in the largest connected component the best.

7. Conclusion

We present spectral sparsification approach for dynamic graphs,
DSS, with two variants I and U . We also present two new faithful-
ness metrics for dynamic graph sampling: DSQ for the quality of
samples, and DSDQ for the quality of drawings of samples. Exten-
sive experiments demonstrate that DSS greatly outperforms random
edge sampling RE on quality metrics and visual comparison: DSS
obtains on average 30% higher DSDQ and over 80% higher DSQ
than RE. Furthermore, DSS-U perform better than DSS-I, at on av-
erage 13% higher DSDQ and 8% higher DSQ than DSS-I, as well
as preserving locally dense areas and changes in density better.

Future work includes incorporating topological decomposition
to further improve the quality of the sampling. Other dynamic sam-
pling quality metrics can also be defined which incorporates statis-
tical properties used for static sampling quality metrics.
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