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Abstract

Choosing salient time steps from spatio-temporal data is useful for summarizing the sequence and developing visualizations for
animations prior to committing time and resources to their production on an entire time series. Animations can be developed
more quickly with visualization choices that work best for a small set of the important salient timesteps. Here we introduce a
new unsupervised learning method for finding such salient timesteps. The volumetric data is represented by a 4-dimensional
non-negative tensor, X (t,x,y,z).The presence of latent (not directly observable) structure in this tensor allows a unique repre-
sentation and compression of the data. To extract the latent time-features we utilize non-negative Tucker tensor decomposition.
We then map these time-features to their maximal values to identify the salient time steps. We demonstrate that this choice of
time steps allows a good representation of the time series as a whole.

CCS Concepts

e Human-centered computing — Visualization design and evaluation methods;

1. Introduction

Supercomputers get ever larger with equitably larger potential for
data extracts that allow simulation scientists the ability to analyze
and study the evolution of the phenomena they model. Outputs
are frequently high spatial resolution timesteps, sampled regularly
in simulated time or simulation cycles, leaving hundreds or thou-
sands of timesteps on persistent storage representing terabytes to
petabytes of data to read and process for summary results. Depend-
ing on the maturity and novelty of the model, those data may be
repeatedly analyzed for different purposes. We are concerned with
the process of efficiently developing and viewing imagery derived
from full spatial resolution timesteps “dumped” from simulations.

In this work, we are interested in identifying a subset of key
timesteps, i.e. salient timesteps, that efficiently represent an en-
tire time series. This subset can be used both for developing vi-
sualization parameters to process the entire time series, to use as
keyframes to summarize important moments in the simulation, and
to more efficiently communicate to collaborators key timesteps
worth investing further analysis.

We introduce the application of products of unsupervised ma-
chine learning based on non-negative tucker factorization (NNTF).
This novel NNTF process is adapted to produce a set of features
and a set of weights for each of those features. For each feature,
we identify the specific timestep that it is most heavily associated
with, and tag that time step as a keyframe. For comparison, we pro-
pose a set of evaluation criteria to measure the quality of selected
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key timesteps of our experimental method against other traditional
methods.

2. Related work

For workflows, Ma et al. [MLF"12] covers the importance of
streamlining the visualization process through scientific story-
telling, where the selection of important points in a simulation, i.e.
keyframes, can improve the process of production visualization.

A variety of techniques exist for identifying keyframes. Meyers,
et al. [MLF*16] look at salient time step selection for in situ use
cases, they assume they have an incoming stream of time steps and
have to decide whether to keep each time step or not as it is pro-
duced. They produce a linear piecewise model and evaluate each
new timestep against that model until a new timestep falls out of the
precision of that model at which point they store a new timestep and
start a new model. Tong, et al. [TLS12] find the best K time steps
from a time varying dataset with a user specified K. They define a
cost between time steps and using Dynamic Time Warping (DTW)
and then use dynamic programming to find the minimum cost for
a given k timesteps. Frey and Ertl use a flow based distance met-
ric to quantify the distance to neighboring time steps and minimize
the selected time steps difference from the entire time series. Our
work is similar to Porter, et al. [PXv*19] who use an unsupervised
machine learning autoencoder to develop a feature set based on all
time steps, then select keyframes based on those features. We use
a Non-negative Tucker Factorization to identify features and their
weights, then select keyframes based directly on those weights.
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In practice, there has been usage of more traditional methods for
identifying keyframes. In this paper, we make use of such methods
to perform comparative analysis against NNTF.

Wavelets for keyframe selection have traditionally been in used
in selecting important frames from a series of videos [CLN99]. By
using the Haar basis function, a multiscale wavelet decomposition
is performed for every keyframe for all keyframes in a dataset.
More recent improvements to this method have been made by
the introduction of K-means clustering on the wavelet coefficients
[HNMKO04]. By performing K-means on the high-pass, fine coeffi-
cients for a target K frames, a K amount of clusters are computed
that represent keyframe groups. Withing each keyframe group clus-
ter, the keyframe that has the shortest distance to the center cluster
is considered the most important keyframe.

For large data simulations, it is important to estimate important
keyframes or timesteps within a simulation for post-analysis and
in-situ analysis routines. In Meyers et al. a new system of unique-
float binning is used to extract important keyframes as time-steps
in a simulation [MLF*16].

In information theory, it is believed that an entropy-based ap-
proach can provide valuable data points when selecting time steps
from a simulation. When evaluating multiple timesteps, the frames
of which the highest entropy are selected but may have an unfortu-
nate outcome of selecting subsequent frames in a row that relate to
a cluster of keyframes with high activity.

Finally, the most trivial method of selecting time steps from a
simulation is to pick every nth cycle from the simulation. This
method is most commonly used in AMR codes or Lagrangian codes
where the cell sizes can change from timestep to timestep.

3. Non-negative Tucker Tensor Decomposition for Salient
Timestep Selection
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Figure 1: The weights for each feature plotted over timestep. A ren-
dering of the feature that lines up with each time step is numbered.
Vertical lines on the plot show the keyframe (time index) that will
be chosen based on that feature.

3.1. Non-negative Tucker Factorization

In big-data analysis, it is often difficult to link directly the data
to the parameters of the generating processes, since the datasets
are formed exclusively by directly observable quantities, while the
underlying processes/features remain unobserved, hidden, or latent
[Evel3]. Extracting these latent (not directly observable) features
not only reveals valuable information about hidden causality and
mechanisms, but it also reduces the dimensionality by revealing the
low-dimensional latent structure that represents the whole dataset.

3.2. Matrix Factorization

One of the most powerful tools for extracting latent features is
factor analysis. In two dimensions factor analysis can be per-
formed by various versions of Principle Component Analysis
(PCA) [Jol86], Independent Component Analysis (ICA) [ACY96],
or Non-negative Matrix Factorization (NMF) [PT94]. The presence
of the non-negativity constraint in NMF makes the extracted latent
features physically interpretable, since they are parts of the data
[LS99]. Importantly, many variables, e.g., pixels, density, counts,
etc., are naturally non-negative and the extracted features will not
have physical meaning if the non-negativity is not at place.

3.3. Tensor Factorization

Most datasets are high-dimensional and are represented by tensors,
or multidimensional arrays. Such tensors typically describe mul-
tiple concurrent latent processes imprinting their signatures in the
observable state variables in different dimensions.
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Figure 2: [llustration of nTD-1 for a 3-dimensional tensor. A) Un-
folding of the tensor X(t,x,y). B) Decomposition of the unfolding,
A(l)(ux*y), via NMF. C) Reshaping the columns of the matrix H
to obtain the space-factors.

Tensor factorization, which is the higher-dimensional analog of
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matrix factorization, is an unsupervised learning method that rep-
resents a cutting-edge approach for factor analysis. Its main objec-
tive is to decompose a high-dimensional tensor into factor matrices
and a core-tensor, where the factor matrices carry the latent fea-
tures in each tensor dimension [KB09]. Tucker decomposition is a
classical tensor factorization [Tuc66]. Tucker decomposition is not
unique but by Tucker decomposition one can extract the minimal
subspaces [FH12], which represent the latent features in the cor-
responding dimensions [ASVR19]. If the data is non-negative, we
perform non-negative Tucker decomposition and the minimal sub-
spaces become cones [ADMS19].

3.4. Non-negative Tucker-1 decomposition

In this paper we utilize non-negative Tucker-1 decomposition
(nTD-1) [CZPA09Y], illustrated on Figure (2). nTD-1 unfolds/flat-
tens the original volumetric data-tensor, X(¢,x,y,z), along its
time dimension. Thus, nTD-1 converts the 4-dimensional tensor,
X (t,x,y,2), to a 2d representation, A (t,x*xy*z), see Figure (2),
panel A. Further, n'TD-1 uses NMF to extract the latent structure of
AW (1, xxy+z). Specifically, NMF approximates, A(!) € R/)*2,
with a product of two non-negative factor matrices, W € R"*X and
Hc fox*y ** (Figure (2), panel B), such that the difference,

K
0:HA(I)(t,x*y*z)—ZWs(t)Hs(x*y*z)HdiS, a
s=1

Ws(1) 2 0; Hg(xxy*z) > 0.

is minimal under some distance, ||...||4is; and for a given small la-
tent dimension K. Here, for ||...||4isy We use Kullback—Leibler di-
vergence: Dk (X||[Y) =¥, ; Xi ; log(%) —X;;+7Y; ;. We utilize
the distributed NMF algorithm presente"d in [BCS*20a] to perform
the matrix factorization of the large-scale datasets for the keyframe
selection.

3.5. The Salient Time Step Selection

NMF is underpinned by a statistical generative model of superim-
posed components that can be treated as latent variables of Gaus-
sian, Poisson, or other mixed model [FC09]. In our case, the K-
columns, Ws(r) of W, represent the latent time-features, while the
K-columns, Hs(x Yy *z) of the transposed matrix H, are the corre-
sponding space-factors. After the extraction of the factor-matrices,
W (¢,K) and H(K,xxy*z), we reshape the matrix H(K,x*yxz)
to construct the 3-dimensional tensors, Hs(x,y,z). Each H(x,y,z)
corresponds to a 3-dimensional space-feature, and we have,

K
X(1,x,3,2) = Y Ws(0)Hs(x,3,2) + E(8,%,,2), )
s=1

Figure (2), panel C. In (Eq. 2) £ is the tensor error of minimization.

We leverage this observation, (Eq. 2), to select the timesteps
that are most strongly associated with each space-feature. This is
done simply by finding the index of the largest value in each of
the K columns of W. This mapping provides us with K easy inter-
pretable features, Hs(x,y,z), each associated with a specific "influ-
ential” time point, the set of which we call the optimal latent salient
timesteps. The code for this method is available [BCS*20b].
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4. Results
4.1. Evaluation Criteria

To evaluate the selection of K number of keyframes, we use the
comparative analysis framework named Foresight [GBP*20]. To
evaluate the quality of selected K keyframes, we perform a full tem-
poral dataset reconstruction using only those K keyframes. To re-
construct time-steps in between the selected keyframes, we perform
a linear interpolation to the nearest frame. For this initial study,
we’ve selected K=19 because it gives us reasonable results for all
of the methods tested in this paper, and provides fair results for
traditional methods such as regular and random sampling.

To evaluate the quality of a fully reconstructed temporal dataset
from a number of keyframes, we use traditional statistical and im-
age quality algorithm metrics: Total absolute error (TAE), mean-
square error (MSE), Peak signal-to-noise ratio (PSNR) [HZ10],
signal-to-noise ratio (SNR), the structural similarity index measure
(SSIM) [ZBSS04], the multi-scale structural similarity index mea-
sure (MS-SSIM) [WSBO03], and a Universal-image Quality Index
(UQI) [ZB02]. The quality of reconstructed datasets are evaluated
by the minimization of TAE and MSE, while maximizing SNR,
PSNR, SSIM, MS-SSIM, and UQI metrics.

There are key differences between statistical metrics and image
quality algorithm metrics. Traditional statistical methods, i.e. TAE,
MSE, SNR, and PSNR, aim in measuring differences between the
data points (cells) of the original and approximated datasets. In con-
trast, image quality metrics, i.e. SSIM, MS-SSIM, and UQ]I, do the
opposite and quantify similarities between data points. Unlike the
former, image quality metrics are standardized, i.e. values between
0 to 1, making it easier to evaluate and understand regardless of
dataset type. These differences make image quality metrics more
suitable for targeting visualization-oriented applications.

4.2. Deep-water impact dataset

Figure 3: Volume renderings of six Deep Water Impact time steps
chosen by our method.

The Deep Water Impact Ensemble dataset [PG17], is a set of
simulations created to study the propensity of asteroids impact-
ing deep ocean water to create tsunamis. Simulated by xRage
[GWC™08], a parallel multi-physics Eulerian hydrodynamics code
developed at the Los Alamos National Laboratory, the dataset is
produced using an Adaptive Mesh Refinement (AMR) technique
that allows higher and lower resolution areas of the simulation grid
for computation. We use the yB31 ensemble member- a 250 me-
ter diameter asteroid entering the atmosphere at 45 degrees, and
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Method | TAE | PSNR | SNR | MSE* | SSIM | MS-SSIM | UQI Method | TAE* | PSNR | SNR | MSE | SSIM | MS-SSIM | UQI
Regular 4,598 [ 48.084 [ 39.742 | 0.015 [ 0.9291 [ 0.9294 [ 0.7099 Regular 318.5 [ 29.09 | 35.08 | 735.8 [ 0.8991 [ 0.9029 [ 0.9001
Random 9,926 | 45.093 [ 36.718 | 0.097 | 09321 | 09330 | 0.6953 Random 529.1 | 27.84 | 32.33 | 1358 | 0.8957 | 0.9011 | 0.8972
Entropy 44,011 | 31.936 | 23.594 | 0.719 | 09249 | 09293 | 0.3789 Entropy 1730.0 | 19.60 | 24.56 | 8783 | 0.8921 | 0.8966 | 0.8948

Wavelets(M1) | 25,374 | 35.894 | 27.552 | 0.340 | 0.9266 0.9293 0.5071
Wavelets(M2) 6,090 | 46.231 | 37.888 | 0.023 | 0.9289 0.9293 0.7202
Unique Floats | 11,584 | 42.345 | 34.003 | 0.339 | 0.9281 0.9293 0.6471
NNTF 8,112 | 45202 | 36.760 | 0.064 | 0.9398 0.9405 0.7142

Table 1: Results for the key-frame selection methods on the Deep-
water impact dataset. MSE* is x1073. Wavelets M1 is coefficient
thresholding, while Wavelets M2 is K-Means clustering.

air bursting at Skm above the sea. xRage used ParaView Cata-
lyst [ABG™15] to produce the visualization dumps. Our study uses
a resampling of the AMR data to a regular grid of 460x280x240
and has 269 time-steps.

When analyzing the results shown in Table. 1, we found NNTF
to excel in image quality metrics compared to the other methods.
Performing regular sampling, usually the most looked at choice,
presents numerically the best possible case to get an overall view of
a simulation but image metrics say otherwise. When using a more
explorative and direct approach in selecting keyframes, methods
such as wavelets (M2) and NNTF excel in image quality metrics
while introducing a small amount of error, with NNTF coming out
on top. This data comparison signifies that the approximated data
series produced from K=19 keyframes is more visually similar to
the original data series, while at the same time introducing higher
amount of point-wise error. As explained at the start of Section 4,
image quality algorithm metrics focus on capturing visual similar-
ities rather than numerical differences between datasets, therefore
making keyframe selection methods desirable.

4.3. Ocean modeling dataset
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Figure 4: Early time of the ABUMIP data set showing ice thickness
with all floating ice removed.

The ABUMIP Land ice modeling dataset [SPS*20] represents
a simulation from the CMIP6 Ice Sheet Model Intercomparison
Project (ISMIP6) [NPL*16] and was run using the MPAS AL-
bany Land Ice (MALI) simulation code. ABUMIP investigates an
extreme scenario where all ice shelves around Antarctica are re-
moved instantaneously and prevented from reforming over a pe-
riod of 500 years. The ABUMIP experiment is climatologically
unrealistic. However, it provides an estimate for the upper-bound
response of the Antarctic ice sheet to the loss of its ice shelves. For

Wavelets(M1) 578.7 | 23.07 | 29.09 | 1832 | 0.8971 0.9021 0.8989
Wavelets(M2) 220.9 | 29.99 | 34.17 | 517.7 | 0.9012 0.9044 0.9022
Unique Floats | 1068.5 | 20.79 | 25.37 | 3802 | 0.8924 0.8989 0.8947
NNTF 611.3 | 2593 | 30.56 | 1984 | 0.9016 0.9071 0.9035

Table 2: Results for the key-frame selection methods on Antarctic
Ice-sheet ocean dataset. TAE* is (xlO6 ). Wavelets M1 is coefficient
thresholding, while Wavelets M2 is K-Means clustering.

this model, MALI uses a mesh with 2 km resolution in dynamically
important areas near the coast and coarsens to 30 km resolution in
the slow moving ice sheet interior, with a total of 1.8 million grid
cells in the horizontal over 200 time-steps. The mesh uses ten verti-
cal layers preferentially concentrated near the ice sheet base, where
vertical shearing tends to be greatest. The simulation discussed here
was run on about 6000 processors at the National Energy Research
Scientific Computing Center (NERSC).

The results in Table 2, observe similar quality behavior as the As-
teroid Impact dataset. Having processed the selection methods on
the raw floating-point surface data, we found that NNTF produces
the best image-quality metrics compared to the other keyframe se-
lection methods. Specific to this dataset, we found all methods to
generally perform well in image-quality metrics (>0.89) and NNTF
to excel above the rest. This can be attributed to slowly evolv-
ing numerical data in the original dataset, where hardly significant
changes occur compared to the asteroid impact dataset.

5. Conclusions

In this paper, we’ve shown initial results in keyframe selection
methods for explorative visualization. We introduce a set of evalu-
ation criteria that considers statistical and image quality metrics for
keyframe quality evaluation. We present a new method, NNTF, that
produces the best visual quality metric results compared to other
traditional methods in keyframe selection. The analysis also shows
that, although traditional methods may have lower numerical error,
they may not have the best visual quality metrics relevant visual
applications. Overall, by reducing the amount of data needed for
analysis by optimally selecting keyframes of interest, this action
saves scientists time in exploratory analysis and visualization, and
in production workflows.

The results shown in this paper are promising and we intend to
do future work. We would like to perform a more thorough anal-
ysis on the K selection process, and improve the efficiency of this
method to expand it to full 3D simulation datasets and not just sub-
sets. Additionally, we’d like to apply NNTF results to perform data
compression and full time-series simulation reconstruction.
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