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6. Supplemental Material

In the following section, some additional information is provided,

which did not fit into the paper due to the limited space.

6.1. Rotation Matrix

In the end of Subsection 3.1 the well-known rotation matrix R is

used:

R = Rz(α)Ry(β)Rx(γ)

=

(

cos α∗cos β cos α∗sin β∗sin γ−sin α∗cos γ cos α∗sin β∗cos γ+sin α∗sin γ
sin α∗cos β sin α∗sin β∗sin γ+cos α∗cos γ sin α∗sin β cos∗γ−cos α∗sin γ
− sin β cos β∗sin γ cos β∗sin γ

)

.

(6)

6.2. Example

The stiffness tensor

CK =







0.555124 −0.680203 −0.850148 0.355314 0.171874 −0.323865
−0.680203 1.16136 −2.34536 −0.329882 −0.637087 −0.13137
−0.850148 −2.34536 1.21676 0.00356122 0.0164092 1.07961
0.355314 −0.329882 0.00356122 0.803498 0.320542 0.00710463
0.171874 −0.637087 0.0164092 0.320542 1.47928 0.284946
−0.323865 −0.13137 1.07961 0.00710463 0.284946 1.48702







(7)

can be rotated into its natural coordinate system. Therefore, the

multipoles (see Equation 4) and the resulting symmetry plane

normals must be calculated. Following this, the normals for

this tensor are n1 =
(

−0.909653 −0.349183 0.224951
)T

,

n2 =
(

−0.401904 0.603137 −0.688984
)T

, and n3 =
(

0.104905 −0.717145 −0.688984
)T

. The tensor is, according

to these normals, orthotropic and the angles for the rotation can be

calculated by the Euler angles of the rotation of the normal system

onto the coordinate axes. There are multiple possibilities to rotate

the normals onto the coordinate axes. One example is given by the

angles γ = −57.2095, β = 65.4574, and α = −14.6289. Thus, the

rotated tensor is

C
R
K =







−0.484848 −1.09091 −0.606061 0 0 0
−1.09091 −0.454545 −0.363636 0 0 0
−0.606061 −0.363636 0.242424 0 0 0

0 0 0 1.4 0 0
0 0 0 0 2 0
0 0 0 0 0 4






. (8)

Comparing this tensor with the general orthotropic stiffness tensor

C
K
ortho =





















1−ν23ν32
D

E1
ν13ν32+ν12

D
E2

ν12ν23+ν13
D

E3 0 0 0
ν13ν32−ν12

D
E2

1−ν13ν31
D

E2
ν21ν13+ν23

D
E3 0 0 0

ν12ν23+ν13
D

E3
ν21ν13+ν23

D
E3

1−ν12ν21
D

E3 0 0 0

0 0 0 2G23 0 0

0 0 0 0 2G13 0

0 0 0 0 0 2G12





















,

(9)

where

D = 1−ν12ν21 −ν13ν31 −ν23ν32 −2ν12ν23ν31 (10)

the inverse of it, described in Equation 2, can be used to calculate

the moduli.

6.3. Ogden material model

Analyses of biological materials often use formulations from the

family of Ogden models [Ogd72] or other hyperelastic models

given by the strain energy density ψ, i.e., the elastic energy per

unit volume. In the sequel, the following variant of the Ogden

model, implemented into the open-source finite element software

FEBio [EAW12], is used

ψ =
1

2
cp(J −1)2 +

c1

m2
1

(

λm1

1 +λm1

2 +λm1

3 −3−m1 lnJ
)

, (11)

where λi are the principal stretches,

J = detF = λ1λ2λ3, (12)

and c1, cp and m1 are material parameters. F is the deformation

gradient, a second-order two-point tensor. The stiffness tensor in

the reference configuration can be described by the derivation of

the strain energy density with respect to the right-Cauchy-green

tensor C by

C = 4
∂2ψ

∂C2
. (13)

In this work, spatial stiffness tensor data from the current con-

figuration are analyzed without taking into account the finite kine-

matics required to deform the material to its current state. Instead,

the data are simply interpreted in terms of material properties com-

monly used for linear elastic orthotropic materials as small pertur-

bations on an unknown state.

6.4. Videos

We provide three videos showing fiber surfaces and attribute

spaces:

1. nineDimensionalOverview.mp4,

2. twelveDimensionalHighE.mp4,

3. BoundaryConditionsOverview.mp4.

The first time step is excluded in the videos because it shows the

basic state, where the sphere is not pushed into the block. This

means that the whole material of the block behaves in an isotropic

manor and all extracted invariants should be zero. Because of the

vast amount of calculations needed to compute the invariants and

extract the fiber surfaces, fiber surfaces are extracted in the first step

due to rounding errors.

The first video shows the distribution of the nine-dimensional

attribute space built of the Young’s moduli Ei [1_x1], the shear

moduli Gi j [2_x2], and the Poisson ratios νi j [4_x4]. The overview

is split into four super parts (separated through the black lines

[1_x1, 2_x2, 4_x4]), showing fiber surfaces in the physical domain

(a Euclidean space, where the considered block exists), except the

lower left part [3_x3], which shows the used hyper planes to extract

the fiber surfaces. Each super part can be split into four subparts

[y_1, ..., y_4], where the lower-left subpart [y_3] shows the con-

sidered three-dimensional subspace of the nine-dimensional coef-

ficient space and the distribution of the values defined on the grid

of the block inside this space using multiple views. The other sub-

parts show fiber surfaces from different viewing angles [y_1, y_2,

y_4], constructed using one hyper plane each and restricting only

one dimension. The fiber surfaces are color-coded to identify which

hyper plane (shown in the lower-left super part [3_x3]) corresponds

to which fiber surface. As example, the red fiber surface in the up-

per left subpart of the upper left super part [1_1] corresponds to the

red hyper plane in the upper left subpart of the lower-left super part
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Figure 4: Example for the relation of the fiber surfaces and their hyper planes used to construct them.

[3_1] (see Figure 4). Each analyzed time step consists of ten slices,

where each of the nine hyper planes is moved into another place

for each slice. In general, they are moved from the minimal value

of their corresponding dimension to its maximum, excluding both

ends.

The second video is also split into five super parts [1_x1, ...,

5_x5], where each super part shows the distribution of the remain-

ing values inside each subspace. As described in Subsection 4.3,

the considered domain and attribute space is filtered due to high

Young’s moduli [3_x3, 4_x4]. This is visualized in the lower-left

super parts [3_x3, 4_x4], which show the subspace of Young’s mod-

uli and a blue hyper plane sliding along the diagonal from the min-

imum to the maximum of the bounding box of all values [3_x3]. In

the meantime, when this hyper plane moves to the maximum, the

corresponding fiber surfaces are shown rigth next to them [4_x4].

Furthermore, the hyper plane increasingly restricts the region of

interest resulting in smaller extracted regions the closer the hyper

plane gets to the maximum. The extracted region is then visual-

ized inside three of the remaining subspaces: shear moduli (top

left super part [1_x1]), Poisson ratios (top right super part [2_x2]),

and right Cauchy-Green tensor eigenvalues (bottom right super part

[5_x5]). To compare the distribution of the values of the extracted

region to the values of the whole block, the values of the restricted

region are shown in dark colors and the ones of the whole block in

lighter colors.

The third video is split into four super parts [1_x1, ..., 4_x4] and

four subparts [y_1, ..., y_4], each in the same way as the first video,

with the only difference, that the lower-left super part [3_x3] now

also shows a three-dimensional subspace. Also, the ordering of the

subspaces changed a little bit as a 12-dimensional space is used

as the base, which was constructed by adding the eigenvalues of

the right Cauchy-Green tensor GEVi to the nine-dimensional coef-

ficient space [4_x4]. Additionally, not the whole domain is used. It

is reduced in the first step, where the lower part of the block is ex-

tracted using the fiber surface extraction algorithm because it was

fixed at the bottom in the simulation. Each of the 12 dimensions in

this extracted region was sliced in the same way as in the first video

using one hyper plane per dimension.
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