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Abstract

Stress and strain tensors, two well-known quantities in mechanical engineering, are linked through a fourth-order stiffness

tensor, which is not considered by many visualizations due to its complexity. Considering an orthotropic material, the tensor

naturally decomposes into nine known material properties. We used fiber surfaces to analyze a data set representing a biological

tissue. A sphere is pushed into the material to confirm the mathematical link as well as the possibility to extract highly deformed

regions even if only the stiffness tensor is available.

CCS Concepts

• Computing methodologies → Simulation evaluation; Scientific visualization;

1. Introduction

Many visualization techniques exist for the stress and strain tensors
from mechanical engineering. These two tensors are linked through
a fourth-order three-dimensional stiffness tensor (see Equation 1),
which has 81 coefficients, where 21 are independent. Despite its
interest to engineers, not many visualizations can show this ten-
sor. If an orthotropic material (a relevant material anisotropy type)
is considered in its natural coordinate system, only nine indepen-
dent coefficients remain. This means that the link between applied
stress and resulting deformation results, very naturally, in a nine-
dimensional coefficient space. Here, we show how these nine coef-
ficients can be calculated and visualized using fiber surfaces. Fur-
thermore, we show how highly deformed regions could be extracted
only by using the stiffness tensor. This is of practical importance if
elastography is used, e.g., as a medical imaging method measuring
the stiffness of soft tissues using magnetic resonance.

2. Related Work

Up to this point, tensor visualization has received some attention.
Especially second-order tensors were frequently considered. Re-
garding tensors in engineering and mechanics, the reader may con-
sult the survey by Kratz et al. [KASH13] and the one by Hergl et al.
[HBK∗21]. Unlike the stress and strain tensor, higher-order tensors
have rarely been visualized (notable exception: the stress gradi-
ent visualization by Zobel et al. [ZSS17]). The visualization of the
fourth-order stiffness tensor is the subject of some works. Neeman
et al. [NBJ∗08] used the Kelvin mapping to generalize the spectral
decomposition and visualized the eigentensor of the stretch part
regarding the largest eigenvalue using a Reynold’s glyph. Kriz et

al. [KYHR05] calculated the plane waves of each tensor and visual-
ized them by a three-dimensional hull. Another glyph was designed
by Hergl et al. [HNKS19], where they used the deviatoric decom-
position to calculate the symmetries of the material. The symmetry
plane normals are the principal component of the designed glyph.
Similar to this work, Zobel et al. [ZSS15] analyzed the link be-
tween two tensors, i.e., the stress and fiber orientation distribution
tensor. They combined insights from both tensors into one glyph.
One of the oldest and most known visualization technique are iso-
surfaces, which are the preimage of a point in a one-dimensional
range. They were extended to higher dimensional ranges by Carr et
al. [CGT∗15] (2D), Raith et al. [RBN∗19] (3D), and by Blecha et
al. [BRP∗20] (nD). Furthermore, Blecha et al. [BRS∗19] showed
that the fiber surfaces by Raith et al. [RBN∗19] are not only a
tensor visualization but rather a multivariate visualization tech-
nique. Multivariate visualization techniques are no new phenom-
ena. For example, Fuchs and Hauser [FH09] wrote a survey in
2009 about multivariate visualization and reviewed which visu-
alization techniques, mainly invented for scalars, vectors, or ten-
sors could be used for multivariate data sets and what their ad-
vantages are. Furthermore, the importance of the development of
multivariate visualization techniques was mentioned by several
works [Car14, CLKH14, OP14]. One common visualization tech-
nique for multivariate data sets are scatterplot matrices [CLNL87],
which were enhanced to continuous scatterplots by Bachthaler and
Weiskopf [BW08]. Unfortunately, multiple marked regions inside
scatterplot matrices have to be combined if more than two quanti-
ties should be constrained. Jankoway et al. [JH18] introduced fea-
ture level-sets as feature surfaces, where iso- and fiber surfaces
form special cases. Compared to the n-dimensional fiber surfaces
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Figure 1: Anisotropy classes of the stiffness tensor.

by Blecha et al. [BRP∗20], Jankoway et al. [JH18] and Raith et
al. [RBN∗19] only extract the surfaces and not the selected regions
of interest.

3. Fundamentals

For the analysis of a tensor field, there are some fundamentals
needed. A general introduction to tensor mathematics is given by
Hergl et al. [HNS20]. This section will introduce the stiffness ten-
sor and gives an overview of the rotation of this tensor in its natu-
ral coordinate system. The moduli of an orthotropic tensor can be
read off the inverse of this rotated tensor. Analyses of biological
materials often use formulations from the family of Ogden models
[Ogd72]. In the sequel, a variant of the Ogden model, implemented
into the open-source finite element software FEBio [EAW12], was
used. Further information about the material model are given in the
supplemental material.

3.1. Stiffness Tensor - Decomposition

The stiffness tensor C is a fourth-order three-dimensional tensor
with the minor symmetries Ci jkl = C jikl = Ci jlk and, assuming hy-
perelasticity, the major symmetry Ci jkl = Ckli j. It describes the re-
lation between the stress tensor σ and the strain tensor ε, or their
increments, through a linear mapping. In linear elastic materials for
small strains, this relation is usually expressed as

σ = C :ε. (1)

For the variety of finite deformation and stress measures, corre-
sponding stiffness tensors can be derived in the appropriate config-
urations.

The stiffness tensor can describe isotropy as well as different
anisotropy types that are shown in Figure 1. The planes in the
sketch describe the symmetry planes of the particular anisotropy
type in a given point. A symmetry plane is given if the material
properties fulfill the symmetry. For this work, just the symmetry

types higher or equal to orthotropy are relevant because in the used
model, the anisotropy is deformation-induced.

The tensor coefficients are highly dependent on the local coordi-
nate system. Even if the coefficients are known, they may require
further manipulation to link them to quantities of a certain physi-
cal meaning. Typically, engineers express the orthotropic stiffness
tensor in its natural coordinate system. In this system, the stiffness
tensor, describing an orthotropic linear elastic material, can be rep-
resented by its inverse using the Kelvin mapping [NGMK16]
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where Ei are Young’s moduli, νi j Poisson’s ratios, and Gi j the shear
moduli. Young’s modulus describes the proportional relation be-
tween the stress and the strain for uniaxial stress states under linear
elastic behavior. Poissons’ ratio describes the expansion (or com-
pression) in the direction perpendicular to the direction of load-
ing. The shear modulus is a mechanical property that defines shear
stress in relation to the shear strain.

As described before, the stiffness tensor is usually not given in
natural coordinates at all positions in the field. To calculate the
moduli from Equation 2, a rotation into this coordinate system is
required at each considered position. For this rotation, we follow
the calculations from Zou et al. [ZTL13]. First, the deviatoric de-
composition of the stiffness tensor is calculated using

C =D+6s(ID
1)+3s(IId

1)+φ(D2)+
1

2
φ(Id

2). (3)

The stiffness tensor can be described by the fourth-order deviator
D, the two second-order deviators D1 and D2, the two zeroth-order
deviators d1 and d2, and the second-order identity tensor I. Each of
the deviators can be described by a set of vectors, called multipoles,
and scalars using the symmetrization operator s(·) by

D= as(n1 ⊗·· ·⊗nq). (4)

Thus, the second step is the identification of the multipoles for
each deviator to identify its anisotropy type. More detailed infor-
mation about the multipole decomposition is given by Hergl et
al. [HNS20]. A second-order deviator is orthotropic if its two multi-
poles do not vanish and are not equal. Following this, the symmetry
plane normals are given by the two intersecting lines of the multi-
poles and the orthogonal one. A fourth-order deviator is orthotropic
if its four multipoles do not vanish and can be mirrored by three or-
thogonal planes. The symmetry plane normals of the original tensor
are given by the intersection of the sets of symmetry plane normals
of the deviators.

The stiffness tensor in its local coordinate system can be iden-
tified by a rotation of the original tensor. The rotated tensor CR of
the stiffness tensor C is given by

C
R
i jkl = RimR jnRkoRl pCmnop, (5)
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where R is the well-known rotation matrix. Further information, as
well as an example, are provided in the supplemental material.

4. Visual Analysis using nD-Fiber Surfaces

The analysis of multivariate data is still a challenging task. Espe-
cially as the number of considered variables increases because the
technique allows simulating increasingly complex processes and
materials. The analysis of the stiffness tensor for orthotropic mate-
rials (It could also be applied to isotropic, transversal isotropic, and
cubic materials.) naturally leads to a nine-dimensional coefficient
space, which would lead to 45 plots in a scatterplot matrix.

4.1. Algorithm and Data Set

We reduced the needed complexity by using n-dimensional fiber
surfaces [BRP∗20] because they extend a well-known visualization
technique for domain and visualization experts. Regions of inter-
est are selected through the intersection of multiple n-dimensional
half-spaces (in the following called hyper planes), represented by
a n-dimensional normal and a distance to an origin. These two ele-
ments are used to calculate the intersection of each hyper plane with
each tetrahedron of the grid. Thereby, the algorithm triangulates
the intersection areas, which are the fiber surfaces, and splits the
remaining polyhedron, which lies inside the half-space, into tetra-
hedra. We refer to the work by Blecha et al. [BRP∗20] for more
information on the extraction algorithm.

We used a simple data set representing a block of an initially
isotropic material into which a sphere is pushed so that the com-
plexity of the process is not increased or masked by a complex
geometry. Due to symmetries, only a quarter of this block is mod-
eled. The process of indentation is represented by multiple time
steps, starting with the undeformed block. Among other variables,
the simulation calculated the stiffness tensor and the right Cauchy-
Green tensor. Deformation leads to the development of different
principal values of the right Cauchy-Green tensor, which in turn
leads to the emergence of anisotropy in the material due to its
deformation-dependent nonlinearity. For the analysis, the nine co-
efficients of the orthotropic stiffness tensor were calculated at each
grid vertex using the results of Section 3. Additionally, we calcu-
lated the three eigenvalues of the right Cauchy-Green tensor.

4.2. Nine-dimensional Overviews

In the beginning, we created an overview visualization of all nine
coefficients of the orthotropic stiffness tensor. In particular, they
can be categorized into three Young’s moduli, three shear moduli,
and three Poisson ratios. This natural fragmentation into multiple
triplets underlines the applicability of the algorithm by Blecha et
al. [BRP∗20] because they visualize the attribute space as com-
bination of multiple three-dimensional subspaces. It is mentioned
here again that parameters from linear small-deformation settings
are used to make the interpretation of the stiffness tensor entries
more accessible. The first step showed the distribution of each vari-
able in the spatial domain. This means to push one hyper plane
per variable through its range of all occurring values and to extract
the corresponding fiber surfaces. Figure 2 can be split semantically

into four super parts [1_x1, ..., 4_x4]. Each of them shows either
the extracted fiber surfaces of one triplet or the position of the in-
tersecting hyper planes [4_x4]. Each super part is split into four
subparts [y_1, ..., y_4], showing either the extracted fiber surfaces
of one variable of the subspace in the spatial domain (separated by
color and shown with multiple viewing angles) or multiple viewing
angles of the corresponding three-dimensional subspace. This was
done over all time steps and combined into a video showing the ex-
traction of fiber surfaces cutting of regions with increasing values
(see the supplemental material). The overview visualization shows
that higher Young’s moduli are located in the lower right corner of
the physical block, where the sphere is pressed into the material the
farthest. This applies to the shear moduli and the Poisson’s ratios in
a similar way. Our domain expert was also sold on this visualiza-
tion style as he could see and compare multiple distributions at the
same time.

4.3. 12-dimensional Filters

Furthermore, our expert mentioned his interest in a comparison of
regions with high stiffness measures with the eigenvalues of the
right Cauchy-Green tensor inside these areas because this would
enable the possibility to extract highly deformed regions if elas-
tography is used to measure elastic properties of the material. The
first step was to add the three eigenvalues of this tensor to the co-
efficient space, which lead to a 12-dimensional space. Following
this, one hyper plane was defined to extract regions with higher
Young’s moduli (represented by a blue plane in the lower left part
[3_x3] of Figure 3). In the three other super parts of Figure 3, we
visualized the distribution of the shear moduli [1_x1], the Poisson’s
ratios [2_x2], and the eigenvalues of the right Cauchy-Green tensor
(GEVi) [5_x5] inside the extracted region with high Young’s mod-
uli. The coefficient subspaces show the distribution of values of the
filtered space in dark and of the not filtered space in light colors.
This step could not be done with the three-dimensional fiber sur-
faces by Raith et al. [RBN∗19] because they could not filter the data
and show the remaining part inside the other dimensions. Consider-
ing regions with increasing Young’s moduli, our domain expert as-
certained that these regions coincide with higher values in all other
subspaces, especially with the eigenvalues of the right Cauchy-
Green tensor. This means that highly deformed regions can not
only be extracted by looking directly at a given deformation quan-
tity but also by looking at regions characterized by high stiffness
values. The domain expert mentioned that this is a consequence of
the mathematical link described by the used Ogden material model
and that highly deformed regions could also be identified if only
the stiffness tensor and not a deformation quantity is accessible.

4.4. Spatial Filters

During the analysis of the 12-dimensional space, we investigated
some irregularities inside the different subspaces. Considering the
video in the supplemental material, a fold-down lug could be iden-
tified in the middle of the subspaces of the Poisson ratios and the
eigenvalues of the right Cauchy-Green tensor. At first, a new com-
bination of hyper planes was used to separate this lug from the re-
maining values, which lead to a corresponding fiber surface in the
lower part of the spatial domain. Our domain expert mentioned that
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Figure 2: Overview visualization showing fiber surfaces extracted from the subspace of Young’s moduli [1_x1], shear moduli [2_x2], Poisson

ratios [4_x4], and the corresponding hyper planes used for the fiber surface extraction for each variable in the lower left part [3_x3].

Figure 3: Overview visualization showing the distribution of variables inside regions with high Young’s moduli [3_x3]. The dark colors show

the variable distributions of the filtered regions compared to the distribution of the variables of the whole data set in light colors inside the

subspaces of shear moduli [1_x1], Poisson ratios [2_x2], and the eigenvalues of the right Cauchy-Green tensor [5_x5]. The used hyper plane

for the filtering inside the subspace of the Young’s modulus [3_x3] and the corresponding fiber surface inside the spatial domain [4_x4] are

shown in the lower-left corner.

this could be due to boundary conditions because in the simulation,
the block was fixed on the bottom. In a second step, we used a
hyper plane in the spatial domain to extract this lower area and to
analyze the distribution of the variables in this region. This proved
the hypothesis that the lug exists due to the imposed boundary con-
ditions.

5. Conclusion and Future Work

We used the fiber surface algorithm by Blecha et al. [BRP∗20] and
applied it on a 9- and a 12-dimensional coefficient space represent-
ing the coefficients of the stiffness tensor and the right Cauchy-
Green tensor of an orthotropic material. We showed that the algo-
rithm could be used to create overview visualizations to analyze

the distribution of multiple variables in the same way as scatter
plot matrices, by a simultaneous reduction of the used plots. Addi-
tionally, the algorithm can be used to filter and refine the used data
set in the first step and analyze the distributions of the remaining
variables afterward. This was used to illustrate the link between the
stiffness and the right Cauchy-Green tensor, enabling the possibil-
ity to extract regions with high deformations even if no deformation
quantity but a stiffness tensor were given. The filtering could also
be used to investigate the effect of boundary conditions.

Future work could, for example, be the development of visual-
ization techniques for the attribute space plots because they suffer
very much from self-overlapping.
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