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Abstract
Finding robust correspondences between images is a crucial step in photogrammetry applications. The traditional approach
to visualize sparse matches between two images is to place them side-by-side and draw link segments connecting pixels with
matching features. In this paper we present new visualization techniques for sparse correspondences between image pairs.
Key ingredients of our techniques include (a) the clustering of consistent matches, (b) the optimization of the image layout
to minimize occlusions due to the super-imposed links, (c) a color mapping to minimize color interference among links (d) a
criterion for giving visibility priority to isolated links, (e) the bending of link segments to put apart nearby links, and (f) the use
of glyphs to facilitate the identification of matching keypoints. We show that our technique substantially reduces the clutter in
the final composite image and thus makes it easier to detect and inspect both inlier and outlier matches. Potential applications
include the validation of image pairs in difficult setups and the visual comparison of feature detection / matching algorithms.

CCS Concepts
• Computing methodologies → Reconstruction; Image segmentation;

1. Introduction

Feature detection and feature matching are essential steps in a num-
ber of Computer Vision applications, including photogrammetry,
structure-from-motion [SF16], multi-view stereo [SZPF16], image-
based localization [LSXK15, NLH∗19], content-based image re-
trieval [ZYT18] and motion field prediction [LYT10].

A number of keypoint detectors and feature descriptors have
been proposed, being SIFT, SURF, ORB and CNN-based descrip-
tors the most popular ones (see [KPS17, ZYT18] for recent re-
views). Although these descriptors have been designed to handle
common image differences, including affine transformations, in-
tensity variations and viewpoint changes, large image differences
often cause wrong matches. Challenging image pairs arise e.g. in
photogrammetry when reconstructing 3D scenes with occluding
objects, moving objects, mirror-reflective surfaces, and self-similar
structures. Other applications requiring the alignment of images
from different 3D scenes are even more challenging, since the two
images to align may contain different object instances, from differ-
ent viewpoints, and at different locations [LYT10].

State-of-the-art photogrammetry pipelines include tools to visu-
alize feature matches. Traditionally, keypoint matches are shown
by placing the two images side-to-side and drawing link segments
connecting pixels with matching features (Figure 1). Unfortunately,
this approach tends to produce cluttered images where individual
matches are hard to identify (Figure 1-left) and potential outliers
are not apparent at all. An alternative option, for small viewpoint
changes, is to draw these segments not between images but within

each image (Figure 1-right). This makes it easy to spot potential
outliers, but since one of the endpoints of each segment is not over
a true keypoint, the image contents around matching keypoints is
not readily available for comparison.

Figure 1: Traditional feature match visualization (VisualSFM), us-
ing a vertical layout. Left: matches are represented as line segments
joining matching keypoints. Right: the segments represent the dis-
placement of the matches, within each individual image.

In this paper we present new techniques for visualizing sparse
correspondences between image pairs. We wish the techniques to
produce images able to facilitate two user tasks. First, users should
be able to identify individual matches, i.e. given an arbitrary key-
point on one image, finding the matching keypoint on the other im-
age. Second, users should be able to see the image contents at each
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keypoint, as well as the surrounding context. For example, users
should be able to check if matches between two building windows
refer to the same window instance (same floor, same column). This
means that visual overlays should be as little invasive as possible.

Instead of showing all matches at once, we use a hierarchical
clustering approach to group consistent matches. At the top level,
only a few aggregated segments are shown. Although this image
already provides a great picture of the matches, we allow the user
to selectively explore matches at finer levels by either clicking at a
segment or at an image region. Segments representing large clusters
(large number of matches) are drawn using thicker lines, and small
clusters with thinner lines. Since isolated matches often correspond
to outliers, we give visibility priority to small clusters.

We also optimize the layout of the two images. Instead of using
plain vertical or horizontal layouts, we automatically compute an
optimal placement for the images by finding the relative 2D trans-
lation that minimizes the impact of overlaid segments.

For images captured from similar viewpoints, most link seg-
ments are approximately parallel and thus segments are prone to
large overlaps. This hinders the task of visually tracing segments
from one keypoint to its matching keypoint. We thus propose dif-
ferent techniques to minimize confusion between neighboring seg-
ments, including the use of different colors from a high-contrast
palette, and the bending of the segments through quadratic curves.
We also uniquely identify keypoints using colored glyphs to further
speed up visual tracing and to prevent keypoint mismatch errors.

2. Previous work

We first discuss related work specific to feature matches between
image pairs. As stated above, the most common approach is to
place the images side-by-side and to draw straight-line segments
joining a keypoint on one image with its matching keypoint on the
other image (Figure 1-left). This approach is adopted in state-of-
the-art photogrammetry applications, e.g. COLMAP [SF16]. This
is also the most common approach in feature matching literature,
e.g. [DSRO10, MJZ∗18].

An alternative approach is to draw segments joining matching
keypoint locations within each image [LYT10] instead of between
images (Figure 1-right). This is useful for illustrating e.g. motion
prediction [LYT10], but not for checking for match correctness nor
for finding out an explanation for wrong matches.

Since drawing all matches leads to cluttered images, a few ap-
proaches use multiple colors instead of a single one [KPS17], but
these colors are assigned randomly and thus some neighboring seg-
ments share similar or identical colors [KPS17].

Besides the specific techniques discussed above, the problem
at hand can be seen as a particular instance of graph visualiza-
tion [Gov19]. Graph drawing algorithms attempt to optimize cer-
tain quality measures such as the total length of the edges and
the number of edge crossings [Pur97]. However, most graph lay-
out methods are mostly concerned with the placement of graph
nodes [DLM19]. In our case, node positions correspond to spe-
cific keypoints within each image and therefore are fixed with re-
spect to the images. This reduces layout options to image transfor-
mations (translation, rotation, scaling, shear) affecting each image.

Our technique focuses on translations to define the relative place-
ment of one image with respect to the other.

Another common quality measure for graph layout methods is
the complexity of edge shapes, to make it easier for the eye to
follow them. Such complexity can be measured as the number of
bends (polygonal edges) or the number of control points (spline
curves). Examples of approaches focusing on changing the course
of the edges include [WC07, Hol06, HVW09].

In our setup, a major issue is to minimize the occlusion caused by
overlaid edges on the underlying images. This reduces the range of
options to straight-line edges or low-curvature spline edges. Edge
bundling methods combine geometrically close edges into bundles,
which reduce edge clutter [Hol06, HVW09]. Force-directed meth-
ods work by attaching spring and electrostatic forces to segmenta-
tion points of the edges. Ambiguity in bundles can be avoided if
only edges with either a common origin or a common destination
are bundled. Bundling approaches use edge angles and lengths as
compatibility criteria and thus in our scenario they would require a
specific image layout prior to perform the bundling.

A related problem is the generation of origin-destination flow
maps [YDJ∗18]. These approaches reduce clutter in output maps by
following well-known design principles [JSM∗17, YDJ∗18] such
as curving flows, minimizing overlaps among flows and between
flows and nodes, and avoiding crossings of nearly parallel flows.

We propose a simpler clustering and bending criteria (just adding
one additional control point per edge, and using quadratic Splines)
that benefits from the fact that there exists one separating axis (e.g.
a horizontal line in a vertical image layout) such that it must be
crossed by all edges going from one image to the other.

For further facilitating the task of following edges, the use of
highly-contrasted color palettes has been explored for example in
the context of transport maps. A related problem is finding a num-
ber of distinct colors that can be used to identify the different routes
on a map without risk of confusion [GA10]. We benefit from pro-
posed color palettes [Kel65] by a simple approach for assigning
different color entries to neighboring edges.

3. Our approach

The input of our algorithm is an arbitrary pair of RGB images A,
B along with detected feature matches {(xi,yi) ∈ A}, {(x′i ,y′i) ∈
B}. Our approach is independent of the feature detection algorithm;
for our experiments we used SIFT features. Although the image
pair can be arbitrary, in typical applications the images will refer
to identical or similar scenes, and will be captured from similar
viewpoints. An interactive application shows the two images plus
a collection of segments representing either individual matches or
aggregated matches.

3.1. Edge clustering

Our edge clustering approach has the same goal as edge bundling
techniques, i.e. reduce clutter. A major difference though is that
our edge compatibility criterion does not depend on the relative
placement of the two images and thus can be performed once before
the layout optimization step.
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A match is represented by its endpoints (xi,yi)∈ A and (x′i ,y
′
i)∈ B.

For measuring the distance between matches, we just compute the
Euclidean distance between the points in 4D space {(xi,yi,x′i ,y

′
i)}.

We thus favor the clustering of edges with both endpoints at nearby
locations. Notice that using e.g. edge lengths and edge orientations
would require deciding an image layout for A and B beforehand,
which we try to avoid.

For clustering the edges, we use a hierarchical clustering ap-
proach. The obvious benefit is that it allows for trivially going from
an overall map depicting major matches, to finer matches within a
cluster (or a region of interest) through an interactive application.

The clustering algorithm proceeds bottom-up: each match starts
in its own cluster, and clusters are successively merged together
until a desired number of clusters is achieved. We explored three
metrics for measuring the compatibility of two clusters C1,C2, us-
ing resp. the min, avg or max distance between a match in C1 and a
match in C2. Figure 2 shows the output for these strategies. The best
metric to use depends on to which extent we wish potential outliers
to be easily recognized by retaining their own cluster. Assuming A
and B have similar viewpoints, potential outliers are likely to cor-
respond to 4D points with no nearby matches.

Since inliers matches tend to form large dense regions in 4D
space, the min metric (also known as single linkage) tends to gen-
erate large clusters representing inlier matches, and keeps isolated
matches (potential outliers) in their own clusters. This metric is
suitable when the major task is the inspection of potential outliers.

In contrast, the max metric (complete linkage) keeps clusters
from growing too much in extent. For a fixed number of clusters,
this means that outlier matches are likely to be merged into other
clusters and thus fade out in the final map. This metric is mostly
suitable when we wish to neglect outliers. The avg metric provides
a trade-off between inlier vs outlier attention and thus this is our
default option.

In all cases, clusters are represented by segments. Each segment
endpoint is computed as the centroid of the keypoints represented
by the cluster. The endpoints themselves are represented as circles.
The thickness of the segments and the radius of the circles represent
the number of matches within the cluster.

Figure 2: Clustering to N=12, 25 and 50 clusters (top, middle,
bottom), with min, avg, and max metrics (left, middle, right). Com-
pare to Figure 1-left.

3.2. Image layout optimization

Our problem lies in-between graph layout methods (where nodes
are free to move) and origin-destination flow maps (where nodes

are fixed). A match with endpoints (xi,yi) ∈ A and (x′i ,y
′
i) ∈ B is

fixed only after the layout of the two images has been fixed. This
means that we can optimize the relative position of the images. Ro-
tations, scales and shears might hide the true transform relationship
between the images and thus are not explored.

Given that we will only allow for translations, we may con-
sider that image A is fixed and image B is translated by a vector
t = (tx, ty). We use as optimization criterion the sum of squared
distances between matches,

E(t) = ∑
i
‖ai−bi− t‖2

We find the vector t that minimizes E(t), subject to the constraint
that the translated image B does not overlap A. See supplemental
material for full details. Figure 3 shows the optimal layout for dif-
ferent image pairs.

Figure 3: Optimal layout found for three different image pairs.

3.3. Color coding

Using different colors for neighboring matches facilitates the visual
following of segments at crossings and roughly parallel sections. In
the context of image feature matching, we are only aware of trivial
approaches assigning random colors to edges [KPS17]. Instead, we
use a highly-contrast palette and attempt to assign different entries
to neighboring segments. In our experiments we used (a subset of)
Kelly’s 22 colors of maximum contrast [Kel65].

The assignment of color entries to segments should minimize
the probability of neighboring segments to share the same entry.
We use a simple algorithm that exploits the fact that all segments
must go from one image to the other, and thus must cross either a
horizontal axis (vertical layout of A and B) or a vertical axis (hor-
izontal layout). We chose the axis corresponding to the border of
A shared with B. We then compute the intersection of all segments
with the axis, and sort them according to their intersection point
along the axis. Let ri the rank order of the i-th segment. The color
index ci for such a segment is computed simply as ci = ri mod Nc,
where Nc is the number of palette colors to be used.

Figure 4 compares different color mappings. Our simple strategy
succeeds in assigning different colors to roughly parallel segments,
which are harder to follow (notice that these segments often have
different lengths, and thus confusing them might lead to endpoints
significantly far apart). Segments crossing at larger angles might be
assigned the same color, but these crossings do not pose any visual
challenge because of the low edge complexity of our edges (a single
straight line or a single quadratic Bezier curve, see below).
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Figure 4: Different color mappings: single color, random color,
and our approach with 22 and first 9 Kelly’s colors. These first 9
colors are maximally different for people with defective color vision
as well as for people with normal vision [GA10].

3.4. Segment bending

We let users bend segments to further move nearly-parallel seg-
ments apart. This is convenient when A and B have similar view-
points and many segments are roughly parallel (Figure 5). The
bending replaces straight line segments by a quadratic Bezier
curve, by adding a single control point. The control point is ini-
tially located at the axis-segment intersection. We use the (median-
centered) rank order to move the control points towards the image
borders, so that the higher the rank, the higher the deviation and
thus the bending of the segment. This behavior is similar to that
of repulsion-force approaches, which would bend nearly-parallel
edges towards the sides of the map.

Figure 5: Segments drawn with increasing bending factors.

3.5. Glyph assignment

The use of colored glyphs for labeling a few matching image fea-
tures is common practice, see e.g. [LYT10]. We also adopt this
technique. Since we usually visualize 25-50 segments, we just
use lowercase and uppercase letters from the English alphabet as
glyphs, which are drawn next to nodes, with the same color as the
segment (Figure 6). Since letters are assigned using the rank order,
neighboring nodes sharing the same letter are highly unlikely.

Figure 6: Final output with N=25, 50 and 100 clusters.

4. Results

We tested our algorithm using Python. Images had 10-25 Mpixels,
and 1K-10K matches. Running times on a commodity PC were al-
ways below one second, including all steps except image I/O. Seg-
ments and glyphs might overlap, so the order in which they are
drawn matters. We sort segments by thickness (cluster size) and
render first (lowest visibility priority) thicker segments, then thin-
ner segments, and finally all glyphs (highest priority). Due to clus-
tering, node-to-node overlaps are not common and thus glyphs are
unlikely to overlap (Figure 6). Figure 7 compares our results with a
baseline [SF16] enhanced to include our layout optimization, with
green (left) or random color (right) lines. In our output images, ag-
gregated segments are easy to follow, outlier matches are apparent,
and the image content is mostly preserved, allowing users to check
matches. The baseline approach hides a large part of the image con-
tent and, although some main directions are apparent, individual
matches can be hardly followed and only a few outlier matches can
be distinguished. Compared to traditional feature matching visual-
ization techniques, our approach greatly reduces image clutter and
makes it easier for the eye to follow the different paths. See addi-
tional material for further results.

Figure 7: Results compared with a baseline approach. Left: wrong
matches ’x’, ’y’ are easy to spot and verify in our output, whereas
in the baseline only ’x’ is easy to follow. Right: our output shows
some outlier matches (e.g. ’P’, ’U’) that cannot be checked in the
baseline images. Random colors facilitate the detection of some
outlier directions, but the image content is too occluded to allow
for any checking.

5. Conclusions and future work

We have presented a visualization technique for depicting matches
between image pairs. We combine hierarchical clustering, layout
optimization, high-contrast color coding, bending and glyphs to
provide images much less cluttered than traditional ones. The use
of hierarchical clustering allows users to choose the appropriate
aggregation level. Potential applications include the validation of
matches for challenging pairs (e.g. self-similar objects, different
views, different scenes) as well as identifying and understanding
outlier matches. Our tool can be used also for a visual comparison
of feature detection / feature matching algorithms. As future work,
we plan to explore transformations beyond translations, consider-
ing image contents to optimize the image layout, and the extension
to interactive 3D/immersive applications.
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