
EUROVIS 2020/ C. Garth, A. Kerren, and G. E. Marai Short Paper

Progressive Rendering of Transparent Integral Surfaces
Additional Material

Xingze Tian and Tobias Günther

Department of Computer Science, ETH Zürich, Switzerland

Figure 1: To estimate the normal, we seed a ghost particle on the
seed curve. If the ghost moves too far away from our particle, it is
reset (orange point). The normal is computed as the cross product
between flow tangent vi and the direction to the ghost particle di.

1. Implementation Details

Normal Estimation. To shade the surfaces, we estimate normals
similar to Machado et al. [MSE14], i.e., we approximate the normal
of each vertex by advecting a ghost particle, which is reseeded, as
illustrated in Fig. 1. For each point x on the seeding curve, we select
its neighbour x’ by stepping along the seeding curve in direction d,
i.e. x′ = x+∆d. The normal n is then computed as the cross product
of d and the flow direction v. We trace both the sampled particle
and its neighbour, and check if their distance to each other remains
smaller than ∆. If not, we move the neighbour closer to the particle.
The reseeding threshold ∆ should be small enough to ensure an
adequate normal estimation. We empirically chose ∆ = 10−5.

Per-Pixel Tree Construction. The unsorted fragment-linked lists
of the geometry are then passed to the second step to construct a
tree per pixel that maintains the surface layers visible in the pixel.
In this step, a full-screen quad is rendered such that each pixel is
managed by only one thread. Similar to the fragments, tree nodes
also store data (color, depth, uv coordinates and normal). Instead of
having one pointer to the next fragment, a tree node has two point-
ers to its left and right children. The construction algorithm is listed
in Alg. 1 and is illustrated in Fig. 2. First, we check if a tree node
has been allocated. If not, we use the CreateNode function to

Algorithm 1 Algorithm for per-pixel tree construction.
function BUILDTREE (fragmentsBuffer, treesBuffer, pixelId)

[f]← fragmentsBuffer[pixelId]
[root]← treesBuffer[pixelId]
while f.next 6= null do

if root = null then
root← CreateNode(f) . initialize new node

end if
Traverse(f ,root)
f ← f.next

end while
end function

function TRAVERSE (frag, node)
if node = null then

node← CreateNode(frag) . initialize new node
return

end if
if Diff(frag.Data.depth, node.Data.depth)< ε then

node.Data← Average(node.Data, frag.Data)
return

end if
if frag.Data.depth < node.Data.depth then

Traverse(frag, node.left)
else

Traverse(frag, node.right)
end if

end function

allocate memory and initialize the tree node with the first fragment
in the linked list and set its children to NULL. We iterate all frag-
ments in the fragment linked list, and Traverse the tree to find
their closest nodes. Distance is thereby expressed by the function
Diff, which measures the view space squared depth difference
between the fragment to insert and the respective tree node. If we
have found a tree node that is close enough to the fragment, i.e., the
fragment belongs to a surface layer that has already been rasterized
into the pixel, we merge the fragment into the node by averaging its
data (color, depth, uv coordinates and normal) and update the node
with the average. The running average is calculated by the function
Average. If the tree node is not a match, we check if the fragment

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

https://orcid.org/0000-0001-7866-7946
https://orcid.org/0000-0002-3020-0930

Xingze Tian & Tobias Günther / Progressive Rendering of Transparent Integral Surfaces

Figure 2: Tree construction example for four fragments being in-
serted into the same pixel. The first fragment (light red) allocates
the first node. The second fragment (red) is closer to the camera
and is therefore inserted as left child. The third fragment (yellow)
belongs to the surface layer of the previous red fragment and is
therefore averaged to orange. The fourth fragment (blue) is behind
the first fragment and therefore allocates a node on the right.

is in front of the tree node, i.e., the depth of the fragment is smaller
than the depth of the tree node. If yes, we traverse the node’s left
child, otherwise we go right. If the tree node does not have a left or
right child, we create a new child node.

Algorithm 2 Algorithm for fragment composition
visited[]← f alse . initialize all nodes as unvisited
function BLENDTREE (treesBuffer, pixelId,Cbg)

[root]← treesBuffer [pixelId]
Csrc = DFS(root, 0) . initialize final color as 0
return BLEND(Csrc,Cbg)

end function

function DFS (node,C)
if (!visited [node]) then

if (node.left 6= NULL and !visited [node.left]) then
return DFS(node.left,C) . go left if possible

else
C← Blend(C, node) . add color
visited[node]← true . mark as read
return DFS(node.right,C) . go right

end if
end if

end function

Compositing of Transparent Tree Nodes. The per-pixel tree
nodes store the average properties of the fragments that have been
merged into surface layers. To compose the final transparent image,
we apply the front-to-back blending equation [HLSR09], which re-
quires a sorted traversal of the layers. Since our binary trees are
constructed based on the view space depth, a traversal from the left
most tree node in the depth-first order obtains a sorted list of lay-
ers. The traversal algorithm is listed in Alg. 2 and is illustrated by

Figure 3: Illustration of the blending traversal for a tree with three
nodes. To avoid recursion, we implemented the traversal iteratively
with a stack data structure. Starting from the root node T1, the left
child is traversed. Since the left child T2 has no further children,
it is blended in with front-to-back blending. Backtracking leads to
the first node T1, which then blends its color into the pixel, before
ascending to its right node T3, which blends its color last.

an example in Fig. 3. Starting from the root node, we continuously
check its left child. If a tree node has no unvisited left child, we
blend it into the final result C and mark the node as visited. After
blending the tree node itself, we go right and blend its right child.

2. Further Evaluation

2.1. Comparison with Surface Integrators

Unlike traditional surface integration methods, our image-based
renderer does not require frontline refinement or a refinement of
the full surface. In Fig. 4, we compare our approach with three
existing integrators in the ABC flow. First, we test a frontline in-
tegrator that does not apply refinement, which will suffer quickly
from degeneration of triangles. To obtain a meaningful surface, we
needed about 5000 particles on the frontline in order to represent
the stretching surface adequately. Still, there are noticeable artifacts
in the zoomed in area. Second, we apply a frontline integrator that
adaptively inserts or removes particles from the frontline. While
this approach maintains a uniform distribution of particles on the
frontline, the synchronous advancement of the particle front can
lead to needle triangles in shear flows. Here, we initially seeded 500
particles on the front line. Third, we apply the Hultquist [Hul92]
algorithm, which advances frontline segments recursively such that
the frontline does not suffer from shearing effects. Still, care must
to be taken when selecting the refinement criterion and thresholds.
Here, we seeded 2 particles initially with a refinement threshold
of 0.05 to obtain a ground truth quality surface that can serve as
benchmark for us. Finally, the result of our method is shown, which
matches the baseline methods with large numbers of particles.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

Xingze Tian & Tobias Günther / Progressive Rendering of Transparent Integral Surfaces

samples = 50000 samples = 500, t = 0.5 samples = 2, t = 0.05 Our method

Figure 4: Comparison with established path surface integrators. Left: advancing front line with fixed topology, middle (left): advancing
frontline with adaptive refinement, middle (right): Hultquist [Hul92] algorithm, right: our image-based method.

(a) Meshkin [Mes07] (b) Bavoil et al. [BM08] (c) McGuire [MB13] (d) Binning [BCL∗07] (e) Our method (f) Ground truth

Figure 5: Comparison with existing OIT methods. For all the line-based methods we rendered 15000 lines. Approximative techniques (a), (b)
and (c) map the fragment count to transparency, which saturates in a progressive renderer to an opaque surface. The binning in (d) shows
discontinuities at bin boundaries, whereas our method (e) resembles the ground truth (f) closely.

2.2. Comparison with Existing OIT Algorithms

A correct depiction of transport surfaces requires a blending of
fragments in the correct order. Simple order-independent trans-
parency (OIT) approximations are very fast alternatives in conven-
tional non-progressive rendering, compared to accurate solutions
such as fragment linked lists [YHGT10] or depth peeling [Eve01].
However, when rendering the scene progressively by inserting
more and more geometry that samples the surfaces, they give
visibly wrong results. Fig. 5 presents a comparison between our
method and a number of OIT algorithms. Weighted sum [Mes07],
weighted average [BM08], and its extension for a correct back-
ground blending [MB13] all saturate to fully opaque surfaces, since
they relate the transparency to the fragment count, which is contin-
uously growing. Further, we compare our method with a binning
approach [BCL∗07] that discretizes the depth range into a fixed
number of bins in which the fragments are averaged. The arbi-
trary classification into bins introduces noticeable discontinuities.
Here, we used 200 bins. Increasing the number of bins further re-
duces the problem, but comes at a very high memory consumption.
Our method, on the other hand, matches the ground truth solution

well, which was computed by tracing the surface geometry with the
Hultquist algorithm and by rendering with fragment linked lists.

2.3. Parameter Study

Despite an increasing number of rasterized integral curves, the key
to a limited number of tree nodes is the merging of nearby line
fragments into nodes that represent the surface layers that are pro-
gressively sampled. Whether a fragment is joining a certain tree
node is determined by the view space distance between fragment
and tree node, for which we introduced a threshold ε. In Fig. 6,
we show the compositing results for the construction with vari-
ous thresholds. In practice, we found that any threshold between
1× 10−7 < ε

2 < 1× 10−5 gave generally good results, which we
visualize in Fig. 7 by comparing the depth complexity to the ground
truth. Choosing too large threshold will result in unintended merg-
ing of surface layers and using a value that is too small, will not
merge the fragments into layers, causing an increasing depth com-
plexity and thereby more memory consumption and an incorrect
blending of too many transparent layers.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

Xingze Tian & Tobias Günther / Progressive Rendering of Transparent Integral Surfaces

ε
2 = 1×10−9

ε
2 = 1×10−7

ε
2 = 1×10−5

ε
2 = 1×10−3

ε
2 = 1×10−1 ground truth

Figure 6: When inserting the fragments into the tree, we apply a depth-based heuristic to merge similar fragments into layers. Depending on
the threshold, different numbers of layers are recognized at a pixel, as shown here in blue for varying ε

2.

ε
2 = 1×10−9

ε
2 = 1×10−7

ε
2 = 1×10−5

ε
2 = 1×10−3

ε
2 = 1×10−1 ground truth

Figure 7: During tree construction, the fragments are added to tree nodes that represent surface layers if their distance to the node is below
a user-defined threshold ε. Here, the results are shown for varying thresholds. Although the parameter is scene dependent, in all of our
experiments, any epsilon value that satisfies 1×10−7 < ε

2 < 1×10−5 gave reasonable results.

t = 0.97s, f = 23 t = 5.03s, f = 104 t = 20.05s, f = 353
(a) Rendering 100 lines per frame

t = 0.95s, f = 1 t = 4.85s, f = 3 t = 19.02s, f = 10
(b) Rendering 10000 lines per frame

Figure 8: Intermediate results obtained after a small number of
iterations. The overall surface shape becomes apparent quickly.

Compared to the ground truth methods, the clustering simplifies
the surface representation depending on the threshold ε. This could
potentially lead to small color biases. We consider such small dif-
ferences acceptable, given the benefit that our approach neither re-
quires storage nor refinement or the integral surfaces.

2.4. Progressive Computation

As with any progressive rendering method, intermediate results can
directly serve as preview visualization. Fig. 8 shows our result after
an increasing number of iterations and we report the time it took
to reach this frame. The overall shape of the surface is recogniz-
able after 5.03 seconds when rendering 100 lines per frame, and
can be even lowered to 0.95s if 10000 lines are rendered. On the
other side, increasing the number of lines every iteration would de-
crease the frame rate. Over time, the gaps are closing, resulting in

a smooth and continuous transparent integral surface. Note that the
importance sampling of the seeding curve, in order to sample loca-
tions with larger separation faster, is an orthogonal problem to the
transparent rendering, which we would like to investigate more in
the future. In our experiments, we already obtained pleasing results
with the current sampling strategy. We refer to the video for anima-
tions of the progressive convergence series and user interactions.

References
[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA J. L.,

SILVA C. T.: Multi-fragment effects on the GPU using the k-buffer.
In Proceedings of the 2007 symposium on Interactive 3D graphics and
games (2007), ACM, pp. 97–104. 3

[BM08] BAVOIL L., MYERS K.: Order independent transparency with
dual depth peeling. NVIDIA OpenGL SDK (2008), 1–12. 3

[Eve01] EVERITT C.: Interactive order-independent transparency. White
paper, nVIDIA 2, 6 (2001), 7. 3

[HLSR09] HADWIGER M., LJUNG P., SALAMA C. R., ROPINSKI T.:
Advanced illumination techniques for gpu-based volume raycasting. In
ACM SIGGRAPH 2009 Courses (New York, NY, USA, 2009), SIG-
GRAPH ’09, ACM, pp. 2:1–2:166. 2

[Hul92] HULTQUIST J. P. M.: Constructing stream surfaces in steady 3D
vector fields. In Proceedings Visualization ’92 (Oct 1992), pp. 171–178.
2, 3

[MB13] MCGUIRE M., BAVOIL L.: Weighted blended order-
independent transparency. Journal of Computer Graphics Techniques
(2013). 3

[Mes07] MESHKIN H.: Sort-independent alpha blending. GDC Talk
(2007). 3

[MSE14] MACHADO G. M., SADLO F., ERTL T.: Image-based stream-
surfaces. In 2014 27th SIBGRAPI Conference on Graphics, Patterns and
Images (2014), IEEE, pp. 343–350. 1

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.: Real-
time concurrent linked list construction on the gpu. Computer Graphics
Forum 29, 4 (2010), 1297–1304. 3

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

