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Abstract
The recent growth of interest in explainable artificial intelligence (XAI) has resulted in a large number of research efforts to
provide accountable and transparent machine learning systems. Although a large volume of research has focused on algo-
rithm transparency, there are other factors that influence the interpretability of a system, such as end-users’ understanding of
individual features and the total number of features. Thus, involving end-users in the feature selection process may be key to
achieving interpretability. In addition, previous work has suggested that to obtain satisfactory interpretability and predictive
performance, the feature selection process should look for a subset of features that are highly correlated with the response
variable yet uncorrelated to each other. Taking this into account, in this paper, we present a work-in-progress design study of a
novel system for correlation visualization, GaCoVi. GaCoVi is designed to put domain experts in the loop of feature selection
for regression models in scenarios where transparency of the machine learning systems is crucial.

CCS Concepts
• Human-centered computing → Visualization systems and tools; • Computing methodologies → Feature selection;

1. Introduction

The extended use of machine learning (ML) on high-stakes deci-
sion making in domains such as healthcare, banking, education and
employment has led to an increasing concern about the account-
ability and transparency of ML systems [ACM17]. This matter has
influenced even legal regulations, such as the introduction of the
European General Data Protection Regulation (GDPR) involving
the right for individuals to obtain “meaningful explanations of the
logic involved” in automated decision-making systems. Besides,
transparency of ML systems is also essential for domain experts to
trust them and, thus, use them confidently in their practices [ZC18].
These needs have resulted in the growth of explainable artificial in-
telligence (XAI), a field that aims at producing more comprehensi-
ble systems while maintaining high predictive performance.

A large volume of XAI research is devoted to automatically gen-
erating (post-hoc) explanations of black-box models whose logic is
not comprehensible for humans [GMR∗18]. However, when deal-
ing with structured datasets with naturally meaningful features,
some researchers advocate for the use of inherently interpretable
models (e.g., linear regression) instead of black-box models, argu-
ing that interpretable models could replace black box models while
achieving equal accuracy [Rud19]. Employing an inherently inter-
pretable model leads undoubtedly to more algorithm transparency,
i.e., a better understanding of the inner working of the system.
However, as pointed out by Lipton [Lip18], when analyzing the
interpretability of an ML system there are at least two other lev-

els of transparency to consider: decomposability, i.e., every part of
the model, such as inputs, parameters, and calculations, admits an
intuitive explanation, and simulatability, i.e., the model is simple
enough for a user to grasp it as a whole at once.

The feature selection (FS) process is critical to attaining both de-
composability and simulatability. On the one hand, including fea-
tures that are anonymous, highly engineered, or unknown by the
user could prevent from achieving decomposability [Lip18]. On the
other hand, to attain simulatability, there should be a cognitively
manageable number of features, where this number would depend
on whether the user can relate the features to pre-existing mental
models or previous knowledge [Rüp06]. Therefore, involving the
final users, i.e., the ones that are going to interpret the ML system,
in the FS process is crucial to improve the interpretability of ML
systems. Nonetheless, to have reliable interpretability and adequate
predictive performance, the FS process should also pursue com-
mon goals. Namely, the subset selection should include features
that are highly correlated with the response variable yet uncorre-
lated to each other [Hal00, PRKV∗17].

In literature, visual analytics systems have been proposed for the
task of FS as a preceding step to prediction (classification or regres-
sion) tasks. Although most of the literature focuses on scenarios
of classification of structured [KPB14] or unstructured [DPL∗19]
datasets, an example of a system designed for regression sce-
narios like the ones we consider in this paper is FeatureEx-
plorer [ZKM∗19]. FeatureExplorer supports domain experts on FS
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Figure 1: (a) The GaCovi visualization for the red wine quality dataset [CCA∗09] and (b) the 95% confidence intervals of the standardized
coefficients of the two multiple linear regression models: without feature selection (blue circles) and with feature selection (orange squares).

in a plant biomass prediction scenario using, among other compo-
nents, a corrgram [Fri02] for correlation visualization. However,
FeatureExplorer’s goals and evaluation are focused on predictive
performance and not on interpretability and, thus, the correlation
visualization design is not optimized, for example, to avoid the se-
lection of features that are highly correlated with each other, which
could affect interpretability. To address this gap and better sup-
port domain experts in an interpretability-aware FS process, we
developed, using Vega [SRHH16], GaCoVi (Gapped Correlation
Visualization). GaCoVi (see Figure 1a) is a novel correlation visu-
alization to include domain experts in the loop of FS for regression
models in scenarios where transparency of the ML systems is cru-
cial. This paper presents the problem-oriented design study carried
out following the nested model for visualization design proposed
by Munzner [Mun09] and shows how GaCoVi can help obtaining
more interpretable models in a wine quality prediction scenario.

2. Domain Problem Characterization

Our target users are domain experts who are comfortable doing data
analysis, but have little to no ML experience. In particular, users
should be familiar with common statistical measures such as Pear-
son’s correlation coefficient (PCC), a measure of the linear associ-
ation between two variables. This description includes, among oth-
ers, scientists and academics from most scientific disciplines. The
target users would typically be working on some numerical predic-
tion problems using a structured dataset with meaningful features
from their domain. We designed our system for datasets where the
number of variables is less than 30, and where the response vari-
able, i.e., the target of the prediction problem, and the features, i.e.,
the explanatory variables, are both numeric.

To support the previously described users to carry out an
interpretability-aware FS, we devised a number of challenges that
should be addressed by the proposed system:

C1. Identification of irrelevant features. Removing features with
little to no predictive power of the response variable is a common
feature selection heuristic. Irrelevant features not only will not im-
prove the predictive performance of the models, but can also de-
teriorate the performance of models sensitive to this superfluous
input, such as support vector machines or neural networks [KJ19].
A typical automatic approach is to discard features that had a cor-
relation strength with the response variable lower than a certain
threshold. In the FS workflow described in [PRKV∗17], this thresh-
old is 0.3, which coincides with Cohen’s correlation medium ef-
fect size [Coh88]. In an interpretability-aware scenario, also anony-
mous features and features that have little to no meaning for the
user should be considered less relevant.

C2. Identification of pairs of highly correlated features and se-
lection of the most relevant feature within them. The interpre-
tation of some inherently interpretable models (e.g., multiple lin-
ear regression) and some popular methods for explaining black-
box models (e.g., permutation feature importance, partial depen-
dence plots, individual conditional expectation plots) become unre-
liable in the presence of highly correlated features [SBK∗08,TL11,
HM19]. Besides, the inclusion of highly correlated features can
also negatively affect the predictive performance of some models,
such as multiple linear regression or Naive Bayes [KJ19, LS94].
Therefore, the user should be able to detect all pairs of highly cor-
related features and only select one of them, the most relevant one.
Note that, in this scenario, the relevance of a feature is determined
by a combination of its correlation with the response variable and
how interpretable it is for the user.

C3. Reduction to a reasonable subset size. Successfully address-
ing the previous challenges (C1 and C2) reduces, in general, the
size of the selected feature subset. However, the number of remain-
ing features may still be not cognitively manageable for the users,
disabling their capacity to grasp the model as a whole. Some inter-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

128



D. Rojo, N. N. Htun & K. Verbert / GaCoVi: a Correlation Visualization to Support Interpretability-Aware Feature Selection

pretability heuristics, such as [WS03], fix the number of features
that are cognitively manageable at 7± 2 based on Miller’s meta-
analysis [Mil56], which states that human beings can only deal
with that amount of information chunks. However, as pointed out
by Rüping [Rüp06], features should not be confused with chunks,
since what counts as a chunk depends on the prior knowledge of
every person. If a group of features is familiar to the user who has
previously grouped and memorized them, they can count as a sin-
gle information chunk. For example, a doctor could group, thanks
to prior knowledge, multiple symptoms into an illness and reason
with the latter. Therefore, the user should be able to identify the
features in the subset after addressing the previous challenges and
continue discarding features, based on their relevance, until the fea-
ture subset becomes cognitively manageable.

3. Data Abstraction and Transformations

There are two different approaches to visualize correlations. A
first approach is visualizing the raw data and counting on the user
to determine the correlation coefficients visually. This is the ap-
proach of scatterplot matrices (SPLOM) [Har75] or parallel coor-
dinates [Ins85]. The main problem of these methods is that they
need ample screen space as soon as the number of observations or
features grows. Friendly [Fri02] suggests SPLOM as a good repre-
sentation for correlation visualization for datasets of up to 10 vari-
ables, which is not enough for the requirements of this scenario, in
which we are focusing on datasets of up to 30 features.

The second approach, the one that leads to our data abstraction,
consists in directly encoding the correlation coefficients. This is
the approach followed by standard correlation matrix based visual-
izations, such as corrgrams [Fri02] or clustered heatmaps [WF09],
that transform this type of raw tabular data into a network data type
(which adjacency matrix is the correlation matrix). Precisely, the
original data gets transformed into a fully connected undirected net-
work in which each node represents a variable, and the weight of
the edge between two nodes corresponds to the correlation coeffi-
cient. In the prediction scenario we are analyzing, this data abstrac-
tion has an issue: it does not consider the special role the response
variable has.

When correlation visualization is used in similar prediction sce-
narios, this data abstraction sometimes gets modified by adding
an extra attribute to the nodes that indicate which is the response
variable. However, using this data abstraction, we have only found
slightly different visualizations encodings. In particular, in Fea-
tureExplorer [ZKM∗19] the authors highlight the name on the re-
sponse variable in the correlation matrix visualization, and Kozak
et al. [KWTH12] suggest giving the first position to the response
variable on a correlation table.

As an alternative, we propose to encode the original data into
a different multivariate network (MVN) data abstraction in which
the response variable is not a node of the network. Instead, its cor-
relation coefficient with each of the features becomes an attribute
of each of the features’ node. Besides, since we are mostly inter-
ested in the strength, i.e., absolute value, of the correlations and not
their direction, we decide that the data abstraction has two differ-
ent edge attributes: the correlation strength that has the role of edge

weight, and the correlation direction (positive or negative). The use
of this data abstraction is one of the fundamental design decisions
of this study as it leads to a different design space on the visual
encodings level, the MVN design space. In addition, this encoding
makes straight forward the incorporation of other metrics than can
aid in the FS process to the data abstraction, such as variance infla-
tion factor (see section 6) or feature importance scores, such as the
one used in FeatureExplorer [ZKM∗19].

4. Task Abstraction

In this section, we present the domain-independent tasks that the vi-
sualization should support. These tasks have been derived from the
domain challenges described in section 2 using the data abstraction
proposed in section 3. Tasks T1 and T2 are defined in the analysis
of tasks for MVN carried out by Pretorius et al. [PPS14].

T1. Find the nodes with specific attribute values. This task is
referred to as ‘nodes (properties)’ in [PPS14]. In this scenario, it
corresponds with finding the features that are irrelevant based on
their attributes, particularly their name and correlation with the
response variable.

T2. Given a node, find the nodes connected by edges with spe-
cific attribute values. This task is referred to as ‘links (con-
nected nodes)’ in [PPS14]. In our scenario, it corresponds with
finding, for each node, all connected nodes whose edge weight
attribute, i.e., correlation strength, is high.

5. Visual Encodings and Algorithms

Adding the correlation with the response variable as an attribute
necessarily implies the search of different approaches that support
its encoding. The MVN design space is thoroughly characterized in
the recent survey carried out by Nobre et al. [NMSL19]. In this sur-
vey, the authors propose the juxtaposition of node attributes visual-
izations with the rows or columns of an adjacency matrix as a tech-
nique very well suited for dense and even fully connected MVNs
where tasks involve analyzing neighborhoods or clusters. This ap-
proach is followed in the design of systems such as TaMax [SL19].
The use of adjacency matrices with juxtaposed node attribute seems
like a good fit for this scenario since it is similar to common cor-
relation visualizations such as clustered histograms and corrgrams,
which makes the visualization more familiar for our users.

In the next subsections, we justify the matrix reordering algo-
rithm and an iconic feature that shapes the name of GaCoVi: the
gaps between rows and columns. We then describe the different vi-
sual encodings for both nodes and edges.

5.1. Seriation Algorithm and Gaps

Seriation and matrix reordering methods are one of the key fac-
tors influencing the efficacy of high-level network tasks such as
identifying clusters or highly-connected nodes in adjacency matrix
visualizations [NMSL19, BBHR∗16]. The adjacency matrix of our
problem is C = [ci, j] , where ci, j = c j,i is the correlation strength,
i.e., the absolute value of the correlation, between the features cor-
responding to nodes i and j. In this scenario, we are looking for a
seriation algorithm that permutes the order of the rows and columns
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of the adjacency matrix in a way that improves the efficacy in the
performance of task T2, i.e., finding all nodes that are highly corre-
lated with a given node. If we were able to reorder the rows (resp.
columns) of C so that the correlation strength values monotonically
decreases when moving away from the diagonal (see Equation 1),
then the closer two rows (resp. columns) are, the higher their cor-
relation strength would be.{

cx,a ≤ cx,b for a < b < x
cx,a ≥ cx,b for x < a < b

(1)

A symmetric matrix C that verifies Equation 1 is called a Robin-
son similarity matrix and a matrix that can be reordered in
a way that verifies Equation 1 is called pre-robinsonian ma-
trix [BBHR∗16]. Unfortunately, not all correlation strength matri-
ces are pre-robinsonian, so in general, we are not able to reorder
the matrix so that all the inequalities of Equation 1 are verified.
However, multiple seriation methods approximate the ordering by
optimizing different criteria. For task T2, features with similar cor-
relation strength values to a given node should both have the same
fate, i.e., either both or none should be selected, so small differ-
ences in the inequalities of Equation 1 have less impact on perfor-
mance. Thus, the selected criterion is the weighted gradient mea-
sure, i.e., the difference between agreements and disagreements of
the inequalities of Equation 1 weighted by their magnitude. For a
small number of variables, it is feasible to use seriation by branch-
and-bound to find the order that minimizes the weighted gradient
measure [BS05]. Otherwise, heuristics methods such as spectral
and quadratic assignment problem (QAP) based seriations are sug-
gested, since they perform well on gradient-based criteria [Hah17].

To increase the efficacy of checking whether two consecutive
rows are highly correlated (a necessary step to perform task T2),
we introduce a gap between each pair of rows (resp. column). This
approach was inspired by gapmaps, i.e., clustered heatmaps with
gaps between rows or columns that are not tightly clustered, which
have shown promising results in clustering tasks applied to non-
symmetrical matrices [EWJP17]. In our case, the gap size is in-
versely proportional to the correlation strength between the fea-
tures represented by those rows (resp. columns), taking values from
zero to the height (or width) of a cell (see Figure 1a). For mapping
the correlation values into the gap, we have opt-in for a decreas-
ing logistic function centered at 0.5, i.e, f (c) = S/(1+ eα (c−0.5)),
where S is the height (or width) of a cell, c is the correlation strength
between the corresponding features and α is the steepness of the
curve. Although further evaluation is needed, we decided to use
a logistic instead of a linear mapping to make it easier to quickly
distinguish very weak or very strong correlations. In particular, we
select the logistic function f (c) with α = 14.72 so that the gaps as-
sociated with correlations lower than 0.3 are bigger than 95% of a
cell size, and the gaps associated with correlations higher than 0.7
are smaller than 5% of a cell size.

5.2. Edge and Node Attributes Encoding

Our multivariate network has two edge attributes, Pearson’s cor-
relation coefficient (PCC) direction (positive or negative) and
its strength (numerical attribute). We encode the PCC strength
into the color luminance of the adjacency matrix cells, using the

Vega [SRHH16] sequential ‘Greys’ color scheme (see Figure 1a).
Other alternatives are encoding it into the size of glyphs such as
circles or bars [Fri02], but this can obscure the matrix grid struc-
ture [ABHR∗13] and, in our case, also affect the gap perception.
Since it is not essential for any of the tasks, the PCC direction is
only shown on demand, when hovering over a cell, by coloring the
borders of the adjacency matrix cell in either red (when negative)
or blue (when positive). The nodes’ attributes are encoded in a tab-
ular layout, enabling the comparisons between nodes on the same
scale. The PCC strength with the response variable is encoded as
the length of a bar, which color (red or blue) also encodes the PCC
direction. A bar mark is also used in Figure 1a for the variance in-
flation factor (VIF), a measure of the amount of multicollinearity
in a set of multivariate regression features.

6. Use Cases: Wine Quality Prediction

In this section, we show anecdotal evidence of how GaCoVi can
lead to more interpretable results. The dataset used is a red wine
quality dataset devised by Cortez et al. [CCA∗09], which is avail-
able at UCI ML repository [DG17]. The 11 input features can be
seen in Figure 1, and the response variable is a quality measure
scored from 0 to 10. The dataset contains 1599 instances of red
wine. Since all features are naturally meaningful, we suppose the
user has a similar knowledge of all of them.

Using GaCoVi (see Figure 1a), the user starts by discarding the
features that seem not relevant based on shallow correlation val-
ues with the response variable. In this case, a user would probably
discard free sulfur dioxide, residual sugar, and pH. Note that after
removing these three values, all VIF values are below 5, so the mul-
ticollinearity issues seem fixed. Next, the user discards fixed acidity
since it is highly correlated with density, but it is less relevant. Fi-
nally, a user would probably discard citric acid since it is not very
relevant and is quite highly correlated with volatile acidity.

To evaluate the feature selection, we trained a multiple linear re-
gression model with all the features (R2 = 0.3606) and with the
selected features (R2 = 0.3516). Although the predictive perfor-
mance of the model with all the features is slightly better, its stan-
dardized coefficients exhibit a higher variance, as can be seen in
Figure 1b, where its 95% confidence intervals (in blue) are wider.
The higher variance of the coefficients makes their interpretation as
the strength of association with the quality of wine less reliable.

7. Conclusions and Future Work

In this paper, we introduce a novel correlation visualization to in-
clude domain experts in the loop of interpretability-aware feature
selection for regression models. Although we have carried out some
validations, such as the justification of the visual encoding or the
proposed algorithms, future work should include downstream val-
idations involving the target users. Besides, we consider working
on exposing uncertainty in the visualization and researching tech-
niques to aid in the use of GaCoVi with high-dimensional data.
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