
EUROVIS 2020/ C. Garth, A. Kerren, and G. E. Marai Short Paper

Fast Design Space Rendering of Scatterplots

Simo Santala1 and Antti Oulasvirta1 and Tino Weinkauf2

1 Department of Communications and Networking, Aalto University, Helsinki, Finland
2 Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract
The design space of scatterplots consists of a number of parameters such as marker size and shape, image width and aspect
ratio, and opacity. Different parameters yield different visual impressions of the scatterplot. Perceptual optimization of scat-
terplots means finding the best design parameters to support a given visualization task. This requires rendering thousands of
design variations. We describe an image-based method for rendering scatterplots, which is tailored to this scenario: it enables
quick updates of the design by re-using previously calculated intermediate results, and is independent of the data set size. Our
approach outperforms the classic method of rendering scatterplots, i.e., drawing each marker individually onto an image, and
can therefore dramatically speed up the perceptual optimization of scatterplots. We provide an open-source implementation and
an online service for our method.

CCS Concepts
• Computing methodologies → Rendering; •Human-centered computing → Visualization design and evaluation methods;
Graph drawings; Visualization toolkits;

1. Introduction

Scatterplots are a ubiquitous visualization technique. Used by vi-
sualization experts and novices alike, they can be found not only in
academic papers and analysis tools, but also in mass and social me-
dia, and other communications to the general public. While design-
ing them seems relatively straightforward, it still requires choosing
a number of design parameters such as marker type and size, opac-
ity, color, image width and aspect ratio. They all influence the final
visual impression quite strongly [CDM82,STMT12,SMT13]. With
the wrong set of parameters, insights into the data can be obscured.
Choosing the “right” set of parameters is not trivial for novices and
even visualization experts may find this difficult or at least cumber-
some.

Scatterplots support different visualization tasks such as estimat-
ing the correlation between two variables, detecting outliers, iden-
tifying clusters, and much more [Mun14]. Each task requires a dif-
ferent design of the scatterplot: a different choice of its parameters
to support that particular task best. For example, outliers are easier
to detect when large and opaque markers are used.

Perceptual optimization of scatterplots aims at automating the
choice of design parameters [MPOW17]. Given a visualization task
and a data set, the system renders the data with varying parameters
thousands of times and scores each rendered image based on dif-
ferent perceptual aspects. The set of parameters with the best score
is suggested to the user for analyzing the data further. The set of all
parameter combinations is called the design space.

We continue the work of Luana Micallef et al. [MPOW17],
where the optimization of scatterplots is based on perceptual met-
rics of the visual attributes of the rendered image, including con-
trast, amounts of overplotting, and others. A difficulty with the ap-
proach is that rendering every possible design individually is com-

putationally expensive and slows down with increasing data set
size. For example, Micallef et al. [MPOW17] report a runtime of
22 minutes to optimize a scatterplot with 10000 points.

This paper proposes a different approach to rendering scatter-
plots which dramatically decreases the rendering times and makes
perceptual optimization of scatterplots possible in under a minute.
Our method is image-based and therefore independent of the data
set size. We map all data points into a high-definition point density
matrix, which serves as a precursor to the final image. This is sim-
ilar to previous approaches using high-definition textures to render
parallel coordinate plots [JLJC05] and a multi-resolution hierarchy
to render 3D particles [FSW09]. Three operations are sequentially
performed on this matrix to obtain a final rendering result: (i) scal-
ing to the desired resolution and aspect ratio, (ii) imprinting the
desired marker shape and size, and (iii) computing the final opac-
ity for each pixel. Optimization methods require rendering similar
designs, e.g., only the marker opacity changes, but all other param-
eters are the same. Our approach supports this by caching interme-
diate results of the algorithmic sequence. It is tailored for rendering
entire design spaces.

We give the following contributions:

• We provide an algorithm to efficiently render a large number of
scatterplot designs for the same data by using an image-based
approach.
• We enable rapid interactive and automated exploration of all

scatterplot design parameters even for very large data sets. In
particular, this paves the way for the perceptual optimization of
scatterplots to become a more practically feasible tool.
• We test our method on several data sets and provide an open

source implementation, which we also run as an online service
to lower the barrier for trying out scatterplot optimization.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/evs.20201058 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/evs.20201058



Simo Santala & Antti Oulasvirta & Tino Weinkauf / Fast Design Space Rendering of Scatterplots

Figure 1: Our algorithm divides rendering a scatterplot design into four steps. The results from each step can be cached for faster redrawing.

2. Fast Design Space Rendering

We consider scatterplot designs in terms of plot dimensions
(hI ,wI), marker size, marker shape, and opacity. These dimensions
form a multi-dimensional design space. Optimizing scatterplots in-
volves finding the optimal design in this design space. This can be
done by either evaluating the entire design space exhaustively, or
by sampling it according to some heuristic. In both cases, several
designs need to be rendered in rapid succession.

To enable fast rendering of scatterplots with the same data but
different designs, we generate a high-resolution density matrix of
the data points (Section 2.1). It allows all further operations to be
independent of the original data set size.

We use three separate methods to efficiently update aspect ra-
tio, marker size, and marker opacity. These methods build on each
other. First, the point density matrix is scaled according to the de-
sired aspect ratio and image resolution (Section 2.2). Second, the
scaled point density matrix is added to itself multiple times at off-
sets defined by the marker size and shape (Section 2.3). Third, the
resulting marker density matrix is converted to an alpha channel
(Section 2.4). For optimal performance when rendering entire de-
sign spaces, the intermediate results from each step can be cached
for faster redrawing of adjacent designs. Our approach enables us
to iterate over a design space much faster than the approach of
Micallef et al. [MPOW17], where each design was rendered from
scratch.

2.1. High-definition Point Density Matrix

The high-definition point density matrix is generated by normaliz-
ing and scaling the data point coordinates to the matrix dimensions
(hHD,wHD), rounding them to integers, and binning each to a cell
with matching coordinates. The final value of each cell in the ma-
trix denotes how many data points land in that cell (Algorithm 1).

2.2. Updating Aspect Ratio and Resolution: Point Density
Scaling

The first step of rendering is downscaling the high-definition point
density matrix to a resolution that fits in the final image (wS,hS),
but is a bit smaller than the final resolution to account for marker
size. We bin each cell in the high-definition matrix to the closest

Algorithm 1 High-definition Point Density Matrix
Input: Data points Y[],X[], matrix dimensions hHD,wHD

1: R[] = round(normalize(Y) · (hHD−1))
2: C[] = round(normalize(X) · (wHD−1))
3: PDHD[[]] = zeros(hHD,wHD)
4: for all r,c ∈ [R,C]> do
5: PDHD[r][c] += 1
6: return PDHD

Output: High-definition Point Density Matrix

relative cell in the downscaled matrix, and sum up the values. This
preserves the total number of points in the density matrix as each
cell in the original matrix is assigned to a single cell in the resulting
matrix (Figure 1, Algorithm 2).

Algorithm 2 Downscale Point Density Matrix
Input: PDHD[[]],hHD,wHD,hS,wS

1: PDS[[]] = zeros(hS,wS)
2: for all rS ∈ [0,hS) do
3: rHD0 = round(rS

hHD
hS
)

4: rHD1 = round((rS +1) hHD
hS
)

5: for all cS ∈ [0,wS) do
6: cHD0 = round(cS

wHD
wS

)
7: cHD1 = round((cS +1)wHD

wS
)

8: for all rHD ∈ [rHD0,rHD1) do
9: for all cHD ∈ [cHD0,cHD1) do

10: PDS[rS][cS] += PDHD[rHD][cHD]
11: return PDS
Output: Downscaled Point Density Matrix

2.3. Updating Marker: Painting with the Density Matrix

So far, each data point is represented by a single pixel in the down-
scaled point density matrix. We will now expand each pixel to a
proper marker with a particular size and shape. This yields the
marker density matrix, whose resolution is equal to the final im-
age resolution (wI ,hI).

We compute this by repeatedly adding the entire downscaled
point density matrix to itself, but at offsets according to the marker

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

116



Simo Santala & Antti Oulasvirta & Tino Weinkauf / Fast Design Space Rendering of Scatterplots

Figure 2: The output of our algorithm matches that of traditional scatterplot renderers, but is able to update the design quickly, regardless
of data set size.

shape and size. The offsets correspond to the pixel coordinates of
the opaque pixels in a marker. The result is a density matrix where
each pixel value corresponds to the number of markers overlapping
at that point (Figure 1). Rows 3–5 in Algorithm 3 represent ma-
trix addition, which is highly parallelizable. In this approach, every
marker is painted “simultaneously” pixel by pixel.

Algorithm 3 Marker Density Matrix
Input: PDS[[]],hS,wS,∆Y,∆X

1: MD[[]] = zeros(hS +max(∆Y),wS +max(∆X))
2: for all ∆y,∆x ∈ [∆Y,∆X ]> do
3: for all rS ∈ [0,hS) do
4: for all cS ∈ [0,wS) do
5: MD[∆y+ rS][∆x+ cS] += PDS[rS][cS]
6: return MD

Output: Marker Density Matrix

2.4. Updating Marker Opacity
Finally, we need to account for the marker opacity. We assume that
all markers have the same opacity α, which allows us to compute
the result of the alpha blending directly as a function of the number
ni of overlapping markers at pixel i as:

αi = 1− (1−α)ni (1)

Our implementation uses lookup tables for this step, since this is
faster than computing the exponential expression for each pixel,
see Algorithm 4.

In essence, our method yields the same result as if we were to
draw in a “classic” manner by painting a marker for each data point
iteratively. See Figure 2 for an example. The only possible differ-
ence stems from potential aliasing artifacts introduced by the down-
scaling of the point density matrix. We address this in Section 3.3.

3. Evaluation
3.1. Time-Complexity and Measured Computation Times
Time-complexities for the described algorithms are as follows:

Algorithm 4 Opacity from a Lookup Table
Input: MD[[]],LUT[],hI ,wI

1: I[[]] = zeros(hI ,wI)
2: for all r ∈ [0,hI) do
3: for all c ∈ [0,wI) do
4: I[r][c] = LUT[MD[r][c]]
5: return I

Output: Alpha Channel

• Algorithm 1: O(n), where n equals the data set size.
• Algorithm 2: O(hHDwHD), as each cell in PDHD is visited only

once.
• Algorithm 3: O(δhSwS), where δ equals the number of opaque

pixels in a marker.
• Algorithm 4: O(hIwI)

Therefore, after the algorithm 1 has been run once, the time com-
plexity of rendering a new design is O(hHDwHD + δhSwS) if no
other intermediate results have been cached. As we can see, this is
independent of the data set size n, leading our algorithm to excel in
rendering scatterplot design spaces of large data sets.

We implemented our algorithm with Python 3, using OpenCV
Python bindings for matrix operations. All measurements of com-
putation time were performed on the same computer: a 2019 16-
inch MacBook Pro with a 2.3 GHz 8-core Intel Core i9 and 32 GB
of RAM. All measurements of computation time were performed
on a single thread. As seen in Table 1, the data set size has no prac-
tical effect on the computation time. This is in contrast to Micallef
et al. [MPOW17] where each design is rendered from scratch.

3.2. Memory Requirements

Similarly to Abstract Rendering [CLW13], the original data set can
be discarded from memory after the initial binning phase, or if the
data set limits are known, the initial binning can be done in an
out-of-core streaming fashion. The memory efficiency of the high-
definition density matrix depends on its resolution (hHD,wHD), its
bit depth bHD, and the size n and bit depth bdata of the original

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

117



Simo Santala & Antti Oulasvirta & Tino Weinkauf / Fast Design Space Rendering of Scatterplots

n Our Method Micallef et al. [MPOW17]

time (s) designs/s time (s) designs/s

1024 39.2 123.8 613.0 1.7
3969 38.3 126.8 903.4 4.4

15625 38.1 127.3 1998.6 7.8
62500 39.0 124.5

250000 38.1 127.2

Table 1: We rendered 4851 different scatterplot designs as defined
by the design space given in Micallef et al. [MPOW17]. Our high-
definition point density matrix has a resolution of hHD = 4000 and
wHD = 6000. Our method maintains a high rendering speed inde-
pendent of the data set size n, whereas the method of Micallef et
al. [MPOW17] becomes much slower for larger data sets.

Figure 3: Downscaling the high-definition point density matrix can
introduce a grid-like aliasing effect. The number of line artifacts
is equal to the remainder of the division hHD

hS
. The effect may be

mitigated by increasing the downscaling factor.

data set. The density matrix will improve memory efficiency when
2nbdata > hHDwHDbHD. For example, a 4000× 4000 pixel 16-bit
density matrix would be equal in memory footprint to 32-bit data
set with 4 million points: 2 ·4000000 ·32 = 40002 ·16.

In order to reduce the computational cost of updating a design,
we cache the last used downscaled point density and marker den-
sity matrices, as well as the opacity lookup tables. To minimize the
cache memory footprint, the design space is traversed in such an or-
der that all designs with the same image dimensions and marker are
evaluated consecutively. This ensures that when image dimensions
or marker change, we can discard the previous scaled point density
or marker density matrix. The memory footprint of the scaled point
density and marker density matrices is similar to images with the
same dimensions, meaning that keeping the latest intermediate re-
sults in memory is typically not too costly. An individual opacity
lookup table requires 8 · 2bI bits of memory, where bI denotes the
bit depth of the marker density matrix. If the number of different
opacities is limited to a few hundred, keeping all lookup tables in
memory should be feasible in most cases.

3.3. Accuracy

The main limitation of our approach is due to potential aliasing ar-
tifacts when downscaling the high-density matrix (Algorithm 2). If
the size of the downscaled density matrix is not a factor of the size

n Eα Er Iµ Iσ Iµ̄ Iσ̄ I` Ip

1024 0.6 0.5 0.0 0.0 0.0 0.1 0.1 0.0
3969 0.4 0.3 0.0 0.0 0.0 0.1 0.0 0.0

15625 0.2 0.2 0.0 0.0 0.0 0.1 0.0 0.0
62500 0.3 0.7 0.0 0.1 0.0 0.1 0.0 0.0

250000 0.3 0.6 0.0 0.1 0.0 0.1 0.0 0.0

Table 2: Mean Relative Error (%) Using the quality metrics and
design space defined in [MPOW17] for single-class scatterplots,
we measured the error introduced by downscaling the point den-
sity matrix when hHD = 4000 and wHD = 6000. For each metric,
the mean error was <1% of the difference between minimum and
maximum values for that metric.

n Eα Er Iµ Iσ Iµ̄ Iσ̄ I` Ip

1024 4.3 2.3 0.0 0.1 0.0 0.1 0.1 0.0
3969 2.4 1.9 0.0 0.0 0.0 0.1 0.0 0.0

15625 1.4 1.1 0.0 0.1 0.0 0.1 0.0 0.0
62500 0.5 0.9 0.0 0.1 0.0 0.1 0.0 0.0

250000 0.4 0.7 0.0 0.1 0.0 0.2 0.0 0.0

Table 3: Standard Deviation of Relative Error (%) In most cases,
the error introduced by downscaling the point density matrix by a
factor of 4 does not fluctuate. For small data sets, metrics that rely
on point locations (denoted by E) are more sensitive to aliasing.

of the high-density matrix, Moiré lines will appear. Their appear-
ance is due to the underlying integer division during the scaling.
The visibility of the Moiré lines depends on the ratio between the
remainder and the quotient of that integer division: a smaller re-
mainder and a larger quotient lead to less visible aliasing. In other
words, the visibility of the Moiré lines is affected by the scaling
factor: the larger the scaling factor, the less visible they are. See
Figure 3 for an illustration.

As the primary purpose of our algorithm is rendering design
spaces for perceptual optimization, it is important that these in-
accuracies have minimal effect on the quality metrics used. Ta-
bles 2 and 3 show how the error is in most cases below 0.1%. If
more accuracy is required, a larger high-definition point density
matrix can be used.

4. Conclusion
We presented an image-based rendering method for scatterplots,
which excels in rendering the same data many times with varying
design parameters. Optimization algorithms for scatterplots such
as Micallef et al. [MPOW17] benefit from this tremendously, since
they have to generate and evaluate thousands of different designs.

We combined our rendering method with the perceptual opti-
mization tool of Micallef et al. [MPOW17] and created an online
tool for fast scatterplot optimization which showcases interactive
ways to adjust scatterplot design parameters. For example, rather
than adjusting design parameters directly, the user can select a
meaningful analysis task, such as correlation estimation or outlier
separation, and the design parameters are automatically adjusted
for that task.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

118

http://graphmetrics.research.comnet.aalto.fi/
http://graphmetrics.research.comnet.aalto.fi/


Simo Santala & Antti Oulasvirta & Tino Weinkauf / Fast Design Space Rendering of Scatterplots

References
[CDM82] CLEVELAND W. S., DIACONIS P., MCGILL R.: Variables on

scatterplots look more highly correlated when the scales are increased.
Science 216, 4550 (1982), 1138–1141. 1

[CLW13] COTTAM J., LUMSDAINE A., WANG P.: Overplotting: Unified
solutions under abstract rendering. In 2013 IEEE International Confer-
ence on Big Data (Oct 2013), pp. 9–16. 3

[FSW09] FRAEDRICH R., SCHNEIDER J., WESTERMANN R.: Explor-
ing the millennium run-scalable rendering of large-scale cosmological
datasets. IEEE Transactions on Visualization and Computer Graphics
15, 6 (2009), 1251–1258. 1

[JLJC05] JOHANSSON J., LJUNG P., JERN M., COOPER M.: Revealing
structure within clustered parallel coordinates displays. In IEEE Sympo-
sium on Information Visualization, 2005. INFOVIS 2005. (2005), IEEE,
pp. 125–132. 1

[MPOW17] MICALLEF L., PALMAS G., OULASVIRTA A., WEINKAUF
T.: Towards perceptual optimization of the visual design of scatter-
plots. IEEE Transactions on Visualization and Computer Graphics
(Proc. IEEE PacificVis) 23, 6 (June 2017), 1588–1599. Received a Best
Paper Honorable Mention. 1, 2, 3, 4

[Mun14] MUNZNER T.: Visualization Analysis and Design. CRC Press,
Boca Raton, FL, USA, 2014. 1

[SMT13] SEDLMAIR M., MUNZNER T., TORY M.: Empirical guidance
on scatterplot and dimension reduction technique choices. IEEE TVCG
19, 12 (2013), 2634–2643. 1

[STMT12] SEDLMAIR M., TATU A., MUNZNER T., TORY M.: A tax-
onomy of visual cluster separation factors. Computer Graphics Forum
31, 3pt4 (2012). 1

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

119


