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Abstract

Human Bio-Behavioral Rhythms (HBRs) such as sleep-wake cycles and their regularity have important health ramifications.
Smartphones can sense HBRs by gathering and analyzing data from built-in sensors, which provide behavioral clues. The multi-
channel nature (multiple sensor streams) of such data makes it challenging to pin-point the causes of disruptions in HBRs. Prior
work has utilized machine learning for HBR classification but has not facilitated deeper understanding or reasoning about
the potential disruption causes. In this paper, we propose ARGUS, an interactive visual analytics framework to discover and
understand HBR disruptions and causes. The foundation of ARGUS is a Rhythm Deviation Score (RDS) that extracts a user’s
underlying 24-hour rhythm from their smartphone sensor data and quantifies its irregularity. ARGUS then visualizes the RDS
using a glyph to easily recognize disruptions in HBRs, along with multiple linked panes that overlay sensor information and
user-provided or smartphone-inferred ground truth as supporting context. This framework visually captures a comprehensive
picture of HBRs and their disruptions. ARGUS was designed by an expert lead goal-and-task analysis. To demonstrate its
generalizability, two different smartphone-sensed datasets were visualized using ARGUS in conjunction with expert feedback.

CCS Concepts
• Visualization → Visualization systems and tools; • Visualization application domains → Visual analytics;

1. Introduction

Disruptions in behavioral patterns can have significant health ram-
ifications such as mental illness, obesity, and heart disease [Vet20].
The regularity of HBRs such as Circadian Rhythms [Vet20] (sleep-
wake cycles) are important measures of health. Consequently, mon-
itoring HBRs to detect disruptions can inform timely interven-
tions [FPL∗14]. However, capturing human behavior data is chal-
lenging. Smartphones are uniquely suited for capturing such data
because they are ubiquitous and are also equipped with sensors
such as accelerometers, gyroscopes and GPS that can record data
containing important clues about HBRs. For instance, a lack of
phone usage during the night may indicate sleeping [AMM∗14].
Such data makes the smartphone a proxy for human behaviors.
Prior work has used smartphone sensing data to reliably detect cer-
tain behavioral changes [WHW∗18], as well as to monitor mental
health [RACB11] and academic performance [WCC∗14].

Prior work leveraged machine learning [AMMC17] to classify
smartphone-sensed HBRs but they have limited interpretability and
offer few insights into the causes of HBR disruptions. Interactive
Visual Analysis (IVA) is a powerful approach to make sense of
multivariate data. We leveraged IVA to discover and analyze dis-
ruptions in HBRs using smartphone-sensed data. We are interested
in not only identifying HBR disruptions but more importantly to

explain them. We propose ARGUS, an IVA framework to represent
smartphone-sensed data using intuitive visual metaphors for analy-
sis. ARGUS leverages an intuitive Rhythm Deviation Score (RDS)
that captures the notion of smartphone-sensed "rhythm" as well as
its disruptions for an individual. We visualize this score using a
state-of-the-art metaphor called the z-glyph [CLGD18], alongside
linked panes. Overall, our contributions include:

1. A novel Rhythm Deviation Score (RDS) to capture underlying
24-hour patterns in smartphone sensed data.

2. ARGUS, an IVA framework, designed using expert-guided task-
and-goal analysis, which visualizes the RDS and uses multiple
linked panes to contextualize and explain rhythm breaks.

3. A comprehensive evaluation of ARGUS using an insightful
walk-through of use cases along with expert feedback.

2. Related Work

The proliferation of smartphones has created opportunities to
gather rich datasets about human behaviors such as mobility and
social patterns [CFB14]. Smartphone sensing studies, in which an
application runs in the background and collects sensor data that are
analyzed using machine or deep learning, have been able to monitor
human behaviors [VELW18] and HBRs [AMM∗14, SLS∗16].
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Data visualization is an effective method of making sense of
large, multivariate data including identifying deviations in human
behaviors. Examples include the detection of mal-intents such as
spreading fake news [RCP∗14, SCFM16, SCV∗18] or financial
fraud [vHBv13, KFS∗19]. IVA systems can utilize intuitive visual
metaphors [SM08] and techniques [PXQ∗11] to highlight anoma-
lous behaviors. Cao et al [CSL∗16] created TargetVue, a tool to
detect bots. They introduced the z-glyph [CLGD18], an intuitive
visual metaphor to highlight deviations. These works illustrate that
IVA can advance the understanding of digital human data problems.
Our work expands this field by leveraging IVA and glyph designs
for visualizing HBR disruptions with potential health implications.

3. Goal and Task Analysis

We performed a goal and task analysis with a professor of health
psychology at our university with expertise in health behaviors.
She was particularly interested in rhythms related to sleep. For in-
stance, stress due to external factors may cause lost sleep, which
has health ramifications. Existing work shows that smartphone
state measurements such as a locked screen [AMM∗14] or am-
bient light [MDW∗14, CLC∗13] can detect sleeping. The expert
suggested conceptualizing smartphone data as channels of contex-
tual information. Examples of channels are inferred activities, bat-
tery charging, GPS location, etc. Breaks in patterns within these
channels may indicate HBR breaks. The expert said that channel
correlation may be meaningful, such as darkness with the screen
being locked is useful to detect sleep. She suggested using visual
clues for correlations. She summarized her goals of investigating
smartphone-sensed HBR disruptions as follows:

• G1: Discover overall levels of HBRs: Design a metric to quan-
tify the level HBR rhythms and breaks therein.
• G2: Explain and contextualize causation: Linked views of

data may explain the reasons for HBR breakages to facilitate
disambiguation of harmful (e.g. sleep loss due to underlying de-
pression) vs. benign disruptions (e.g. staying up due to travel).

We devised specific tasks to achieve the goals described above:

• T1, Cohort analysis: View the rhythmicity of all study partici-
pants to find those with the strongest and weakest HBRs.
• T2, HBR break identification: Identify specific time periods

with significant disruptions in HBRs.
• T3, Cross-channel HBR exploration: View participants’ rhyth-

micity across multiple “channels". For instance, contextualize
disruption across physical activity vs geo-location channels.
• T4, HBR contextualization: Highlight contextual factors that

have semantic meaning such as weekday vs weekend.
• T5, Raw sensor value drill-down: Visualize sensor readings

such as screen interaction at the time of HBR disruptions.

4. The Design of the ARGUS Visual Model

We designed ARGUS, an IVA framework that follows the “Visual
Analytics Mantra" [KMS∗08]: “Analyse First - Show the Impor-
tant - Zoom, Filter and Analyse Further - Details on Demand”.
As users may have different body rhythms or body clocks (E.g.,
night owls or people who sleep later at night vs early birds or peo-
ple who wake up early) [AMM∗14], ARGUS does not compare

the inferred HBRs of different users. Instead, ARGUS adopts a
within-participant approach and visualizes each individual’s devia-
tion from their own normal rhythms computed using their data.

Rhythmicity Deviation Score (RDS): This score is based on
the Lomb-Scargle periodogram [Lom76,Sca82], a method for com-
puting the periodicity of irregularly-sampled data. We apply this
method on each channel of the data to calculate Circadian Rhythm
(CR) similar to [WHW∗18]. Channels are sequences of (binary) in-
dicator variables such as physical activity (still vs. walking) or sen-
sor readings (smartphone locked vs unlocked). A channel Ci cor-
responds to a time series:

(
(ci,0, ti,0),(ci,1, ti,1), ...,(ci,k, ti,k)

)
, such

that each ci, j ∈ {0,1}. The average occurrence ratio Or of channel
Ci corresponds to the average ratio of positive instances of channel
Ci over all days in the set of daysD. The channel rhythm disruption
CD of Ci for day D j measures the difference in occurrence ratio of
Ci for D j and the average occurrence ratio of Ci, weighted by the
CR of Ci. A channel category Gk corresponds to a set of channels.
Our three categories are: Sensors, Geo-location, and Activity. The
channels are mutually exclusive such that no pair of channel cate-
gories have any elements in common. CD denotes the change in
behavior of a particular channel (i.e., changes in duration of posi-
tive instances) weighted by the CR of this channel. The change in
behavior is weighed by the CR to identify meaningful disruptions
in behavior. The Rhythm Deviation Score RDS of category Gi for
day D j measures the average CD for each channel in Gi on day D j:

RDS(Gi,D j) =
∑Ck∈Gi

CD(Ck,D j)

‖Gi‖

Eyes of ARGUS (EA): Every glyph plots a person’s average
RDS as a black circle (larger represents more rhythm) against the
daily RDS - ordered clockwise (Fig. 1 A). The closer the purple
line is to the center, the higher the disruption (T2). The user ID
and the number of days in the study are shown at the top left. EA
shows the RDS for all days. This visual metaphor is based on the
z-glyph by Cao et al [CLGD18], shown to be more effective over
both traditional line and radial views, for highlighting deviations
(or outliers), which is a main goal of ARGUS. The z-glyph fam-
ily includes both line and star (radial) glyphs. We chose the radial
glyph because a user study by Cao et al established that users pre-
ferred the radial glyph over the line glyph in terms of efficiency and
user comfort which is important as ARGUS targets health experts
who will likely not be experts in data visualizations.

Fig. 1 A provides an overview of all users (G1,T1) to filter in-
teresting users to explore (T2). Clicking on an eye will show it in
the Magnified Eye of ARGUS (MEA) (Fig. 1B). The underlying
circle has the maximum circumference, indicating perfect rhyth-
micity. Each slice corresponds to a day and the beige slices denote
weekends (G2,T4). Days can be selected by clicking on them for
details in (Fig. 1D) and (Fig. 1E) (explained later). This is useful
as events on concurrent days may be linked (G2). The channel cat-
egory to visualize in the EA and MEA is selected by clicking on
“Selected Channel Category" (Fig. 1A) (G2,T3).

Duration View (DV): (Fig. 1 D) shows the “duration" for chan-
nels for every day by participant, i.e., when the channel was “on",
such as how long the phone was charging. Every vertical bar rep-
resents a day and the height represents the duration per day. The
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Figure 1: ARGUS: A tool to discover and explain disruptions in HBRs. A: Eyes of ARGUS (EA). Overview of breaks in HBRs across
all participants. B: Magnified Eye of Argus (MEA). User selected from EA. Beige color slices represent weekends. The tool-tip shows
day-related information. For example, reduction in sleep leading up to a day with two deadlines. C: Co-occurrence View (CV). Overview of
the frequency of channel co-occurrence. D: Duration View (DV). Total duration of channel positive values per day. E: Explainability View
(EV). Visualizing multiple channels to contextualize HBR breaks.

horizontal line represents the mean duration. In Fig. 1 D, the phone
appears to be generally more locked than charging (G2, T2, T5).

Co-occurrence View (CV): The co-occurrence between certain
channels is interesting as a lack thereof may explain a break in
HBRs. Clicking on an EA shows the CV (Fig. 1 C) which has a
list of available channels. Clicking on one bar shows the most com-
monly co-occurring channels (ordered left to right, top to bottom),
i.e., channels that were “on" at the same time. The gray vertical
fill is proportional to the co-occurrence frequency. For instance,
“phone-lock" coincided often with "still", “dark" and "silence". To
link the co-occurrence, hovering over a commonly co-occurring bar
highlights the duration of the channel selected and hovered over in
the EV (blue for selected and yellow for hovered over channel).

Explainability View (EV): (Fig. 1 E) provides a day-level view
for causes of HBR disruptions (G2,T5). The lines show changes in
the channel data with their height representing average channel val-
ues per hour. The first plot shows the average channel values across
the entire period. Every plot after that is a day chosen in MEA. The
bars over the lines represent durations for which the user was in the
same geo-cluster as determined by DBSCAN [EKSX96]. We show
the top 6 clusters (Fig. 1E). The colors are from a 10-color palette
from ColorBrewer [BH09]. The cluster categories (i.e. “Residence
Hall" vs. “Library") were gathered using the Foursquare API [Fou].

5. Illustrative Use Cases

ARGUS targets users with background knowledge and training in
interpreting behavioral rhythms including psychologists and coun-
selors. We next introduce Emma, a psychology graduate student
who specializes in the study of behavioral rhythms. Emma will in-
teractively explore two real world datasets using ARGUS.

A

B

C

Figure 2: Channels deviate from mean and the user is in lab early.

Figure 3: Geo-location indicates being at a hotel during weekend.

Dataset 1: The StudentLife study [WCC∗14] gathered smart-
phone sensor data for 49 college students over an academic term of
over two months. This data has activity inferences (still vs walk-
ing), noise inferences (silent vs. conversation) and geo-location
(whenever available). Values are recorded for when the phone was
in Dark, Charging, near a Conversation and had the Screen
Locked (bold indicates being shown as lines in EV), along with
answers to daily questionnaires with wellness information such as
sleep duration, quality, and stress levels.

Contextualizing HBRs and Deadlines: Emma explores HBRs
around stressful times such as student-provided deadlines (G1).
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Figure 4: Hovering over “battery" shows its occurrence of that
channel but also no coincidence with “Lying down". The screen is
locked throughout indicating a high probability of “Sleeping".

Emma looks for users with large breaks in EA (T1) and notices
u57 (T2). She views it in the MEA (Fig. 1 B). She sees low sleep
duration and quality for three days leading up to April 8th, with two
deadlines (G2, T4) after which sleep duration and quality improve.
Emma believes that deadline induced stress caused this disruption
of u57’s HBR (G2). Visual overlay of human understandable data
along with objective rhythmicity made this insight easy for Emma.

Explanations of disruptions in EV: Emma wants to analyze days
with no sleep responses. She notices a disruption for 2 days (both
with deadlines - Fig. 2A) for u31 (T2). Emma views them in EV
and DV. She notices lower levels of the “Still" state on May 13th
(Fig. 2C). The participant had much lower levels of screen locked
and being in a dark environment in EV (Fig. 2B) (T5). For both
days, this student was in a “Lab" during very early hours of the day
(T4). The intuitive overlay of channels enabled Emma to contextu-
alize a potentially concerning (sleep loss) HBR disruption.

Geo-location based HBR: Small disruptions may not be concern-
ing [Vet20]. Emma selects “Geo-location" (T3) (top of Fig. 1A) and
notices u46 had a large deviation, which occurred on the weekend
(T4). She clicks on the days (Friday, Saturday and Sunday) and
notices in the EV that the participant had a geo-location recording
showing that they were at a hotel and more readings for the 2 week-
end days (Fig. 3). Emma sees this as no cause for concern as travel
tends to be disruptive. The overlay of channels allowed Emma to
disambiguate this disruption in HBR as non-concerning.

Dataset 2: Study 1b is a smartphone sensor dataset gathered
by our team for 103 people who were more demographically
diverse and had a shorter participation (two weeks) than Stu-
dentLife. We used a modified version of the ExtraSensory appli-
cation [VELW18], which gathered sensor data for 20 seconds after
every minute. Users provided 18 different labels for activities such
as “Walking", “Sitting" and “Phone in Pocket" which were used as
ground truth for machine learning. The application collects chan-
nels such as geo-location, Screen Locked, Battery Charging and
Wifi (bold indicates being shown as lines in EV).

Absence of labels: Emma notices in the DV that the participant
47450B has provided inconsistent labels. She has to rely on ob-
jective sensor values and selects “Sensors" as the channel category
(T3). She visualizes an off-rhythm day (Fig. 4) in the EV. She no-
tices that the user was in the “Frat House" cluster (on campus resi-
dence). The DV showed that the participant provided no labels for
“Lying down" or “Sleeping". She clicks on the “Lying down" bar
in the CV and notices that the top co-occurring values for “Lying
down" are “Sleeping", “Phone on table" and “battery" (Fig. 4B).

Figure 5: “Phone on table" and “Sleeping" are usually co-
labelled but not for this day.

She hovers over the co-occurring bars for “Sleeping" and “Phone
on table" and notices they were not provided. She hovers over “bat-
tery" and sees its yellow overlay (Fig. 4 C) but no blue overlay for
“Lying down". The screen was also locked and the disruption in this
day was probably caused by other factors later in the day, which is
uninteresting for Emma (T4, T5, G2). Linking such information al-
lowed her to dismiss this day as non-concerning, which may not
have been possible using traditional statistical analyses.

Detecting erroneous labels: Emma chooses the “Sensors" chan-
nel category (T3) and analyzes user 1AACA1. She notices in the
EV that the screen was unlocked after midnight on Sept 8th. The
“Sleeping" bar in the CV shows the most commonly co-occurring
channels (“Phone on table", “WiFi" and “battery" (Fig. 5)). Hover-
ing over “Phone on table" shows no co-occurrence. Also, the screen
was unlocked after midnight and sleeping and phone usage are un-
likely to co-occur. Emma concludes that this is mislabelled data and
that there was in fact a disruption (T4, T5, G2).

Expert Feedback: After implementing ARGUS, we asked the
expert from the goal and task analysis to go through the same use
cases as Emma. The expert came to similar conclusions. She was
easily able to discern HBR breaks from EA and MEA. She liked
the ability to discern “predictable" i.e., around deadlines vs “unpre-
dictable" breaks. She said how “everyone has their weird behavior
at times, especially students which is not necessarily concerning
overall" and how this multi-channel view helped her understand
those breaks. Overall, she found the ARGUS approach useful.

6. Conclusion and Future Work

ARGUS is a novel IVA framework that facilitates the identification
and explainability of HBR disruptions. We presented illustrative
use cases and evaluated ARGUS in a study with an expert. In fu-
ture, we will explore its scalability with regards to the number of
participants (thousands vs dozens) and the length of time they are
monitored (years vs. weeks). As the number of participants visual-
ized using ARGUS increases, it might be useful to categorize them
into groups with similar bio-rhythms to facilitate larger scale anal-
ysis. The display of users’ levels of activity and sleep may also be
useful for personalized health informatics.
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