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Highlight Insert Colormaps: Luminance for Focused Data Analysis
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Figure 1: Comparison of highlight insert colormaps to common colormaps: the colormaps rainbow, cool-warm, viridis and ther—
mal applied to a turbulence region from the LANL MPAS-Ocean model [WR17b]. Highlight insert colormaps (HICs), such as the set of ten
colormaps that highlight successive 10% subsets of the data range (center), emphasize a fine band of features while still providing muted
context in the remaining regions. Applying a sequence of HICs reveal structures not easily seen in the full-range maps (right), such as the
filament structure circled in panel 6. HICs maintain clear expression of the turbulence in the gray regions at top and bottom.

Abstract

Color provides the primary conduit through which we extract insight from data visualizations. As the dynamic range of data
grows, extracting salient features from surrounding context becomes increasingly challenging. Default colormaps provided by
visualization software are poorly suited to perform such reductions of visual data. Here we present sets of highlight insert
colormaps (HICs) that provide scientists with the means to quickly and easily render a detailed overview of their data, create
detailed scans of their data, and examine the outer ranges of data in detail. This method builds on the long understood discrim-
inatory power of luminance and in the highlight region provides 3 x to 10X the discriminative power of common colormaps.

1. Introduction

As the types and dimensions of scientific data continue to grow,
new methods of locating and examining data detail within areas
of interest are needed. Colormaps are the primary means for visu-
ally translating discrete and scalar data into a cognitively digestible
form. Extensive research has been conducted into understanding
the perceptual properties of colormaps for general data represen-
tation. Traditionally, colormaps are designed to render all areas of
the data in equal focus. As data grows in size, the cost of equal
allocation of contrast increases. Large-scale data analysis presents
challenges that strain the capabilities of general colormaps: wide
dynamic range (blurring features over a general colormap range),
small feature size relative to global data extent (losing features in
a map with insufficient discriminatory power), and dense feature
arrangement (obscuring features due to color simultaneity). Such
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data can benefit from colormaps that visually reduce data to focus
analysis and to highlight data sections for further processing (e.g.
highlight data for extraction or decimation).

Our research examines the specific challenges facing scientists
with extremely large data who need to comprehensively examine
their data. Similar to how an adaptive mesh refinement (AMR) sim-
ulation increases data resolution in regions of greatest interest, we
examine colormaps with focused discriminatory power allocated
in a narrow band overlaid on a linear grayscale map that provides
complimentary discrimination outside the highlight region. Our
HIC maps enable a scientist to focus the colormap on a precise data
region (highlight insert) while preserving context for global analy-
sis (grayscale). Just as AMR allocates computational resources to
simulation regions most likely to generate insight, our insert col-
ormap system concentrates the highest discriminatory power to re-
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gions of most interest. Our HIC maps provide a means and work-
flow for exploiting the power of luminance, the strongest, most in-
tuitive channel for conveying scalar data [WWP13,ZH16]. These
colormaps act as a "scanning microscope” enabling scientists to
quickly identify critical features for further analysis. Using both a
statistical analysis of colormap perceptual power and domain sci-
entist interviews, we demonstrate how our HICs provide signifi-
cantly more discriminative power than commonly-used colormaps
available in visualization software. Note that we are not evaluat-
ing colormaps either by task or perceptual properties, nor are we
advocating our highlight insert colormaps as general defaults. The
work presented here is designed for scientists with high dynamic
range data who need to visually reduce data in order to see feature
detail. Figure 1 illustrates this principle, including the “scanning
microscope” capability enabled by a set of our maps: a scientist
can easily iterate through the colormap set to explore their data and
identify regions of interest. The contributions of this paper are (1) to
demonstrate the power of condensing luminance within colormaps
for large data scientific visualization and (2) to provide scientists
means to incorporate such methods into their existing workflows to
facilitate exploration and knowledge extraction.

2. Prior Work

Much effort has been invested in creating effective colormapping
solutions for scientific visualization. Areas of exploration include
evaluating discriminatory power, uniformity and speed [RT96,
BTS*18, WTS*17, WTB*18,Mor09,Rhe00]. Solutions such as iso-
luminant colormaps (colormaps that advance at regular hue inter-
vals keeping luminance constant) such as viridis and plasma
are popular [LH18,ZH16] but there has been little previous work
into how to the power of luminance itself might be exploited as in
HICs [ZH16]. Segmentation colormaps, used to classify structures
in biomedical imaging, use isoluminant color blocks to distinguish
structure (e.g. components of a cell), and to our knowledge do not
consider luminance in color selection. In contrast, our HICs are
constructed with a focused high-contrast color region with rapid lu-
minance ramp combined with a linear grayscale to provide muted
but distinguishable data context to the focus region (see Figure 2).

Figure 2: Luminance distributions of commonly used colormaps,
top to bottom: grayscale, cool-warm, rainbow,viridis,
blue-orange divergent, blot from ParaView, thermal;
and an example of our ten-percent HIC. The HIC provides a high
contrast at the insert region while still providing contextual distri-
bution equivalent to grayscale outside of the highlight region.

-

Harnessing Luminance — While the rainbow colormap car-
ries metric information well (quantitative tasks), Ware [War8§]
demonstrates how it fails at conveying form (qualitative tasks).
Testing by Ware and Turton confirmed the shortcomings not

only of rainbow but also of cool-warm and viridis col-
ormaps, specifically in middle ranges. Samsel’s blue-orange di-
vergent, shown in Figure 2, slowed narrowly in the mid-range
but provided statistically significant higher speed in all areas
[TWSR17, WTB*18]. Lui and Heer recently found that viridis
and linear blue colormaps are superior in speed and accuracy
over jet and blue-orange divergent colormaps [LH18],
however their study focused on quantitative comparisons more typ-
ically found in information visualization (e.g. comparing the color
of two nodes in a shaded connected graph) rather than qualitative
feature determination common in scientific visualization.

Rogowitz, Ware and others [WTS*17,RK01,ZH16] have estab-
lished that luminance is the most powerful color channel able to
differentiate detailed information, and data that is small in size
[Warl2]. Recently, Ware has confirmed the primary role of lumi-
nance in feature detection, specifically in large datasets with high
dynamic range [WTB™ 18]. All scientists we interviewed confirmed
that the availability of extra luminance distribution would signifi-
cantly benefit their science, which motivates this work.

Workflows — Colormap generation tools [HB03, NAS,
MJSK15, RO86, SKR18] all require significant breaks from data
analysis to tune the colormap. The scientist must: (1) interrupt their
workflow within visualization software; (2) move to the colormap
generating software; (3) design the map; (4) export it in an accept-
able format; and then (5) import back into the visualization soft-
ware, hoping that it will meet their needs. Since most scientists
lack formal training in color theory, this process will likely be re-
peated multiple times and will ultimately yield suboptimal results.
While some colormapping tools enable scientists to test the new
colormaps directly on their data, the interruption in the workflow
makes it impractical. In contrast, our highlight insert colormaps
can be directly incorporated into workflows and provide immedi-
ate value without modification (e.g., data scanning, data narrowing,
visual emphasis) within existing visualization platforms.

3. Highlight Insert Colormaps

Using the principles of artistic and perceptual color theory, particu-
larly the discriminative power of luminance, we have designed sets
of highlight insert colormaps (HIC) that contain precisely what the
name implies: within a neutral linear color scale, we embed another
color scale within a narrow data range (e.g. 10% or 20%) that both
provides a hue-spanning saturated color scale to highlight data and
contrasts with the muted color scale of the underlying map to ex-
tend discriminative power. The center of Figure 1 shows a set of ten
HICs that span the data range in 10% increments. Such a set can be
used to quickly scan data for interesting features (Figure 1, right).

The left column of Figure 3 shows luminance distributions of
common colormaps and an example of our highlight insert maps
with this contrasting luminance clearly visible. None of the com-
mon colormaps pack as much luminance variance over as narrow a
band. Note that our colormaps are for scientists who need to see
detail and nuance within narrow ranges of their data. They are
not suitable for use as default colormaps where analysis priority
is speed and uniformity [BTS* 18, WTS*17, WTB* 18, War12]. The
comparison shown in Figure 1 illustrates the application of HIC to
reveal greater detail within specific data regions.

HICs serve to narrow the expressed range of a data variable.
Once loaded into a visualization framework, scientists can explore
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detailed regions of their data by sequentially moving through an
HIC set to highlight particular ranges of interest. The righ side of
Figure 1, shows the application of a focus colormap set in 10% of
the data. We have generated HIC sets where the focal points cover
10%, 20%, and 33.3% of the data, which enables a scientist to se-
lect a set with the level of detail appropriate to their exploration
needs. These maps are avaialble at ScivVisColor.org.

4. Evaluation

To evaluate our colormaps, we employed a mathematical analy-
sis [WTB*18]to quantify the information conveyance power of
HICs compared to commonly used colormaps; and we conducted a
set of informal scientist interviews to qualify our colormap perfor-
mance over the status quo.

Color Speed Formula — We evaluate the discriminatory power
of our structured colormaps against a sampling of common col-
ormaps using Ware et al.’s weighted CIELAB formula for measured
contrast sensitivity [WTB* 18], which has been shown to provide
a good approximation for human perception. This formula was de-
rived from perceptual studies Ware performed to measure colormap
discriminatory power [WTS*17]. To apply the formula, first trans-
late each colormap from RGB space to CIELAB space and then
sample 30 color values uniformly distributed across the map (the
same sapling rate used by Ware). Then calculate the color differ-
ence AE for each sample interval As by computing the Euclidean
distance between sample points in weighted CIELAB space:

AE = [ (AL*)2 + (waa* 2 + (w072 1)

where AL™ expresses luminance change between samples, and Aa™
and Ab™* express change in the red-green and blue-yellow CIELAB
channels, respectively. We set wq, = wj, = 0.1, which provides the
best fit to observed user data [WTB*18]. Use the color difference
to compute Ware’s contrast sensitivity over each interval:

¢ = 3.4(AE /As)*87 )

then plot the resulting discriminative for each colormap.

Results from Ware’s original study [WTB™* 18] are shown in the
left-hand graph of Figure 3. The colormaps represented are: blue
orange divergent (BOD), cool-warm (CW), rainbow
(R) thermal (TH), viridis (VI) and grayscale (Gray). We
separate VI and Gray for clarity and to emphasize comparison to
HICs. This graph clearly shows the significantly lower resolving
power of the most commonly used colormaps (cool-warm and
rainbow) especially in the middle ranges. Our highlight insert
colormaps have 3x to 10x the resolving power in the highlight re-
gions, and they maintain consistent resolving power across the neu-
tral linear underlay region without the central drop of cool-warm
and rainbow. While thermal has high discriminatory power,
it creates objectionable color artifacts in high-frequency data (see
Figure 1). We note that viridis and grayscale exhibit rela-
tively uniform dicriminatory power across their range, comparable
to the non-highlight region of HICs.

Observed and Simulated vs. Synthetic Data — Most col-
ormap validation experiments use synthetic data as this provides
an equal distribution able to be analytically assessed. However,
this approach masks the complexities present in simulated and ob-
served data. Our discussions with scientists has brought to light
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several needs which are not covered by the current types of col-
ormaps assessment, mainly how effective is a colormap on large
data with narrow areas of interest. Figure 1 illustrates the issue by
demonstrating the application of common colormaps to real data.
Even the thermal colormap, which demonstrates high discrimina-
tory power on synthetic data [WTB* 18], can obscure features in
high-frequency data; such features are revealed by our system due
to the focused highlight region.

Scientist Interviews — In order to understand the benefits and
drawbacks of structured colormaps in scientific visualization, we
interviewed domain scientists and visualization experts from Los
Alamos National Laboratory (LANL). For each scientist, we ren-
dered their data using ParaView [AGLOS5] in a range of static
HIC colormaps downloaded from SciVisColor.org. We report
on feedback from these conversations, which centered around col-
ormaps as facets of their workflows and the ways in which these
new luminance structures are generative tools for data insight
in a range of domains and tasks. The information distilled here
comes from senior LANL personnel, including: Dr. Phillip Wol-
fram, Research Scientist in the Climate Ocean-Sea Ice Modeling
team [WR17a, WRM™* 15, WR17b]; Dr. Nicole Jeffrey, Research
Scientists in the Climate Ocean-Sea Ice Modeling team [EJH*17,
JEHL16]; Dr. Joseph Schmidt, Senior Scientist at LANL; Li-Ta Lo,
Software Engineer in the Computer, Computational and Statistical
Sciences group specializing in data visualization; Dr. Boonthanome
Nouanesengsy, Staff Scientist in the Data Science at Scale team;
and Dr. Erica Fogerty, Computational Physicist in the Center for
Theoretical Astrophysics. Overall, conversations revealed that the
luminance structures were elegant solutions to complex problems
scientists had failed to solve using more time-consuming ways.
Once scientists were able to see the structured colormaps overlaid
on data, the solution seemed to be an obvious one that had previ-
ously been overlooked. According to these interviews, the struc-
tured colormaps provided three primary benefits: they offer an al-
ternative to visualizing data with a logarithmic scale, they provide a
highly detailed view of boundaries and outliers, and they were use-
ful for both early exploratory phases of research and later phases
when data structures have already been identified.

Benefits — An alternative to logarithmic scale: While most sci-
entists often turn to a log scale to look at highly concentrated areas,
Jeffrey found the colormap with contrast concentrated on one end
useful for seeing both the difference and the minimum and max-
imum edges of her data. “The benefits of this color structure are
that you could look at the data in a regular scale, and not have to
scale it logarithmically, and it will give you more resolution in the
regions of interest. This structure helps me scale things out and it
offers the resolution needed to explore more. I don’t currently have
any tools like that”” The luminance structures, being concentrated
and aligned with dense data ranges, helps scientists see more detail
without visualizing it on a logarithmic scale. Schmidt, whose team
studies pressure distributions and density movement during shock
charges, was able to see structures using these luminance distribu-
tions that he had not been able to differentiate previously.

Enhanced visual detail: The structures offer a level of visual de-
tail that scientists have not been able to see with default color maps.
For Dr. Phillip Wolfram, the maps illuminated critical structures,
not seen in the four years of exploring this specific data (see Fig-
ure 4). “These are actually interesting because they are showing
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Figure 3: Ware’s weighted CIELAB formula for measured contrast sensitivity [WTB* 18] (log scale). The graphs at left plot the discriminatory
power of: R - rainbow; CW - cool-warm; BOD - blue orange divergent; TH - thermal; VI - viridis, and grayscale.
While t hermal has high discrimination power, it creates objectionable color artifacts in high-frequency data (see Figure 1); cool-warm
and rainbow suffer a distinct power drop through their middle ranges. Our linear green inset colormaps with insets covering 10, 20 and
30 percent of the colormaps contain 3x to 10X peak resolving power than the standards while maintaining discriminatory power similar to
viridis and grayscale outside the highlight regions. See Figure 2 for the comparison colormaps and their respective luminance.

filament structures of the mixing at different times. I have never
been able to see this filament structure before. I didn’t even know
the question concerning the filaments was here until I saw this vi-
sualization. But now that I see it, I know the colormap is useful.”
Some of the challenges of visualizing his data have been in find-
ing appropriate colors where the eddies mix. In previous visual-
izations, the team used white lines on a blue colormap to denote
mixing patters, but solid lines denote more structured and definite
boundaries than actually exist. However, the colormap set shown in
Figure 4 allowed him to zoom in on these areas and look at the var-
ious boundaries and mixing levels, rather than a single, solid line.
According to his work with research groups at the lab, Dr. Nouane-
sengsy reported that, like Dr. Wolfram, the majority of users want
to look at boundaries between parameters or the differences that
occur when various values change, and yet they primarily begin
with the ParaView default colormap (cool-warm, Figure 2 map
2) which “muddies” the intermediate data ranges, so the bound-
aries can be difficult to differentiate. While linear structures are
useful for smaller datasets, they do not have the resolving power
needed for large data, particularly in the central ranges of the col-
ormap. Often when users find that cool-warm does not work,
Nouanesengsy noted, users get frustrated and return to the rain—
bow map (e.g., Figure 2 map 3), even when they are aware of its
biases. Our map sets provide an easily-used alternative to both the
cool-warmand rainbow maps.

Useful at multiple research phases: Researchers identified two
situations when the luminance distributions would be particularly
fruitful. First, Jeffrey mentioned that in the early phases of research,
the structures would help her identify areas of importance, because
they allow her to navigate through targeted areas in more detail. It
is often in these early phases when scientists need tools that make
exploration more efficient and generative. Alternatively, Wolfram
was most interested in how the luminance structures perform in the
later phases of research, after he is already familiar with the data
structures: “If you know there’s some sort of physical threshold in
your data, you can use luminance structures to show the differences
in behavior. That’s where this becomes really useful—when you
are trying to see something in detail that you already know is there.
The system shown in Figure 4 lets you continuously scan the data,
to see features in detail, in every time step and isolate it purpose-
fully. When you are trying to pick something specific out, then the

structure is great.” He also noted their value to illustrate data nar-
ratives, as the luminance structures emphasize specific parameters
and interactions in the data for outside audiences.

5. Conclusion and Future Work

Our highlight insert colormaps provide scientists with a simple,
easily applied, and powerful tool to visually reduce and empha-
size data for initial exploration, for comparative analysis, and for
communication of findings to broader audiences. Our maps provide
both exceptional discriminative power (3x to 10x that of com-
monly used maps) in the highlight region while preserving global
context and avoiding regions of significant power loss (present in
the middle region of common maps). Our maps are available for
download today and can be easily loaded into common visualiza-
tion tools. Many of the scientists interviewed commented that they
would like to be able to slide the points at which the luminance
scale changes to align with changes in their data. This feature is the
foundation of colormap construction tools [MJSK15, SKR18], but
it is only achievable in outside of visualization software, thus inter-
rupting workflow and requiring effort far beyond practical usage.

HICs are not designed to be application defaults. They are de-
signed for scientists with large, highly-dynamic data sets needing
detailed views within their data. Other situations where we recom-
mend caution using HICs: when the colormap legend cannot be
displayed clearly; if an equally weighted representation of the data
across the entire dataset is required; if the changes in luminance
scales fall in locations that cause distortion or misdirection of at-
tention. There are other issues to be addressed which are beyond
the scope of this paper, such as: the role and placement of satura-
tion within the structured colormaps; the impact of attention hier-
archies; the effects of feature size on structured map selection; the
perceptual interactions between hues; and automatic selection and
tuning of an HIC to match a certain feature range. We will address
these aspects in future work.
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