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Abstract
Branches within clusters can represent meaningful subgroups that should be explored. In general, automatically detecting
branching structures within clusters requires analysing the distances between data points and a centrality metric, resulting
in a complex two-dimensional hierarchy. This poster describes abstractions for this data and formulates requirements for a
visualisation, building towards a comprehensive branch-aware cluster exploration interface.

CCS Concepts
• Computing methodologies → Cluster analysis; Dimensionality reduction and manifold learning;

1. Introduction

Detecting subgroups in unfamiliar data is an essential data explo-
ration step. Commonly, clustering algorithms detect groups of sim-
ilar data points based on distance. While branches in the data’s
manifold can represent meaningful subgroups (see, f.i. [RM79,
PZH∗19]), clustering algorithms generally cannot detect them. In-
tuitively, this can be explained by the observation that within clus-
ters, there is a path between all points that travels only through other
data points that ‘lie close together’. Instead, detecting branches
within clusters requires using a centrality metric. The main idea
is to filter out a cluster’s central core, breaking the path between
branches and allowing them to be detected as clusters. We refer
to [Car14] for a detailed formal discussion.

Several approaches for combining distance and centrality infor-
mation exist. For this poster, we focus on a method (under develop-
ment) that decouples both dimensions by detecting clusters using
data point distances, describing the connectivity within the clusters
as networks, and performing a filtration over the centrality to detect
branches within clusters.

In this poster, we describe a data abstraction for the resulting
hierarchies; formulate the questions that should be answered by a
visualisation summarising data this way; and discuss the benefits
and shortcomings of our preliminary designs, building towards a
unified exploration interface.

2. Data Abstraction

The primary data structure to describe is a condensed tree as used
in the HDBSCAN* clustering algorithm [MH17, CMZS15]. HDB-
SCAN* clusters points by their approximate local density using a
single linkage dendrogram as the basis of the algorithm. The con-
densed tree simplifies this dendrogram by pruning it with a mini-
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Figure 1: Schematic condensed trees. Coloured circles indicate
segments, and black points represent data points. Points in the sub-
tree of selected segments (A, B) also occur in the branch condensed
tree; dotted arrows indicate possible data point matches.

mum cluster size n. Conceptually, the condensed tree can be seen
as a directed tree structure with two types of nodes: segments (i.e.
internal nodes) and points (i.e. leaf nodes). Edges occur either be-
tween segments, indicating at which distance they merge, or be-
tween a point and a segment, specifying at which distance the point
joins the segment. The tree has two more interesting properties: (1)
each segment is an ancestor of at least n points, and (2) the edges
between segments form a binary tree.

HDBSCAN* selects segments from the condensed tree based on
their stability to be the final detected clusters. The entire sub-tree
below the chosen segments is considered to belong to a single clus-
ter. Our branch detection approach then constructs another con-
densed tree describing the branching hierarchy for each selected
cluster. In these trees, the edges provide the eccentricity value (i.e.,
1 / centrality) at which points and segments merge (see Figure 1).

3. Task Requirements

A visualisation of the condensed trees should be able to answer
several questions and considerations.
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Figure 2: A branch condensed tree design. Selected segments are
labelled and given a hue. Relative lightness encodes the average
density along the branches. 2D projections (bottom-left) can be
coloured similarly to provide additional context.

Firstly, a visualisation should show which segments were se-
lected and communicate why they were chosen by showing their
stability. A segment’s stability is defined as the sum of distance (or
centrality) ranges for which points are part of the segment. This
metric combines three values: (1) the distance (or centrality) range
for which the segment exists, i.e. the segment’s persistence, (2) the
number of children in the segment, and (3) how long each child is
part of the segment.

Secondly, designs should communicate the shape of the detected
clusters. The branch-condensed trees encode this information. They
often contain three segments for clusters without branches: one root
and two leaves. These leaves represent the outsides of the clus-
ter growing inward, and their stability corresponds to the cluster
elongation. Clusters with branches will have more leaves in their
branch-condensed trees. The order in which the leaves merge rep-
resents the cluster’s shape. For example, an X-shaped cluster will
have four leaves connecting close to the maximum centrality. In
contrast, for an H-shaped cluster, the four leaves first join into two
separate segments before those merge close to the maximum cen-
trality. See Figure 3 for an illustration of these examples.

Finally, a visualisation should communicate the density pro-
file over the cluster shapes. The existence and position of density
maxima are important for interpreting the detected clusters and
branches, as they express the variability and likelihood of similar
observations.

4. Preliminary Design and Example

Figure 2 shows a preliminary branch condensed tree design sum-
marising C. elegans’ cell development data through gene expres-
sions [PZH∗19]. The design adapts [MHA17]’s condensed tree
plot. Segments are visualised as a hierarchically laid-out binary
tree. The (logarithmic) vertical axis encodes the centrality, so the
heights represent persistence. Segment widths encode the number
of data points in the segment at each distance value. In contrast
to [MHA17]’s design, only the direct children of a segment are
counted, rather than all children in a segment’s sub-tree. The area,
therefore, no longer encodes stability, and the tree resembles a Reeb
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Figure 3: Branch condensed tree captures the shape of clusters. 2D
point clouds coloured by the detected branch subgroups (top row)
with their corresponding branch-condensed trees (bottom row).

graph. A benefit of this approach is that one does not have to look
at the change in width to see where the points lie within the shape,
effectively prioritising shape interpretation over stability compari-
son. Interestingly, the figure reveals that the density appears highest
within the branches. This could support the interpretation that the
branches represent distinct developmental end-states, which could
be expected to occur more often than in-between states.

For data with a single cluster, simply showing the branch con-
densed tree effectively summarises the data’s shape. Unlike dimen-
sionality reduction plots, the tree does not rely on 2D coordinates
that tend to (over)emphasise longer distances. However, the tree
requires more interpretation to understand the shape it represents.

How to scale this design to multiple clusters still needs to be
determined. Simply showing numerous branch-condensed trees
would not communicate why clusters were selected. In addition,
the colour coding is limited in number by distinct hues. Further-
more, the current design must still be adapted to show how many
local density maxima occur at a particular centrality along a branch.

One potential alternative design that remains to be explored is
based on [GSWD18]’s Bubble Tree Map. Their visualisation uses
the area of circles to encode a quantity of interest and the borders to
encode the uncertainty of that quantity. A direct application to our
problem is challenging, as two intersecting hierarchies have to be
encoded. However, visualising the selected clusters, branches, and
density maxima should be feasible while communicating their sta-
bility. Another alternative could be a Mapper-like [SMC07] sum-
mary graph, encoding the selected branches as nodes. However,
encoding the hierarchies to communicate why segments were se-
lected would be non-trivial.

5. Conclusions

This poster presented the challenge of visualising nested hierar-
chies for a branch-based data exploration method. One preliminary
design was shown, and its benefits and limitations were briefly dis-
cussed.

6. Acknowledgements

This work was supported in part by Hasselt University BOF grants
ADMIRE [BOF21GP17] and [BOF21DOC19].

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

74



D.M. Bot et al. / The Challenge of Branch-Aware Data Manifold Exploration

References
[Car14] CARLSSON G.: Topological pattern recognition for point cloud

data. Acta Numer. 23, 2014 (may 2014), 289–368. doi:10.1017/
S0962492914000051. 1

[CMZS15] CAMPELLO R. J. G. B., MOULAVI D., ZIMEK A., SANDER
J.: Hierarchical Density Estimates for Data Clustering, Visualization,
and Outlier Detection. ACM Trans. Knowl. Discov. Data 10, 1 (jul 2015),
1–51. doi:10.1145/2733381. 1

[GSWD18] GORTLER J., SCHULZ C., WEISKOPF D., DEUSSEN O.:
Bubble Treemaps for Uncertainty Visualization. IEEE Trans. Vis. Com-
put. Graph. 24, 1 (jan 2018), 719–728. doi:10.1109/TVCG.2017.
2743959. 2

[MH17] MCINNES L., HEALY J.: Accelerated hierarchical density based
clustering. In 2017 IEEE International Conference on Data Mining
Workshops (ICDMW) (2017), pp. 33–42. doi:10.1109/ICDMW.
2017.12. 1

[MHA17] MCINNES L., HEALY J., ASTELS S.: hdbscan: Hierarchical
density based clustering. The Journal of Open Source Software 2, 11
(2017), 205. doi:10.21105/JOSS.00205. 2

[PZH∗19] PACKER J. S., ZHU Q., HUYNH C., SIVARAMAKRISHNAN
P., PRESTON E., DUECK H., STEFANIK D., TAN K., TRAPNELL C.,
KIM J., WATERSTON R. H., MURRAY J. I.: A lineage-resolved molec-
ular atlas of C. Elegans embryogenesis at single-cell resolution. Science
(80-. ). 365, 6459 (2019). doi:10.1126/science.aax1971. 1, 2

[RM79] REAVEN G. M., MILLER R. G.: An attempt to define the nature
of chemical diabetes using a multidimensional analysis. Diabetologia
16, 1 (jan 1979), 17–24. doi:10.1007/BF00423145. 1

[SMC07] SINGH G., MÉMOLI F., CARLSSON G.: Topological Methods
for the Analysis of High Dimensional Data Sets and 3D Object Recog-
nition. PGB@ Eurographics 2 (sep 2007). 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

75

https://doi.org/10.1017/S0962492914000051
https://doi.org/10.1017/S0962492914000051
https://doi.org/10.1145/2733381
https://doi.org/10.1109/TVCG.2017.2743959
https://doi.org/10.1109/TVCG.2017.2743959
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.21105/JOSS.00205
https://doi.org/10.1126/science.aax1971
https://doi.org/10.1007/BF00423145



