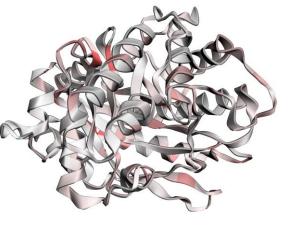


PTMVision: An Interactive Visualization Platform for Post-Translational Modifications of Proteins Hackl, S.⁺, Jachmann, C.⁺, Harbig, T.A.⁺, Witte Paz, M.⁺, Nieselt, K.⁺

Motivation

Post-translational modifications (PTMs) (chemical modifications after protein translation) play a key role in biological processes^{1,2,3}. Analysis of PTMs in large protein datasets revealed that **proteins are modified** more frequently than previously thought^{4,5,6}. Visual analysis of these data using traditional visualization methods^{7,8} suffers several issues, especially when spatial information is important.


Visualization

Single axis chart:s Presence/absence map 2 Contact map PTMs (x-axis) along the Projection of protein 3D structure Linked to the x- and y axis of contact map. primary protein sequence to 2D. Filled cells indicate positions Highlight and identify (user defined) sites of interest. Identify sites in close proximity. 4 Line charts (y-axis). specific PTMs Upper triangle: Filtered based on Linked to the x- and y axis of contact map. where occur and compare PTM PTM related properties, e.g. shared Summarize no. PTMs per site. patterns along the primary modifications (red \rightarrow higher **5** Sunburst charts sequence. Zooming the x- share). Linked x- any y-axis Compare sites. Circles show classification of (inner) and shared PTMs (outer, red). axis allows a detailed view. zooming to view sites in detail.

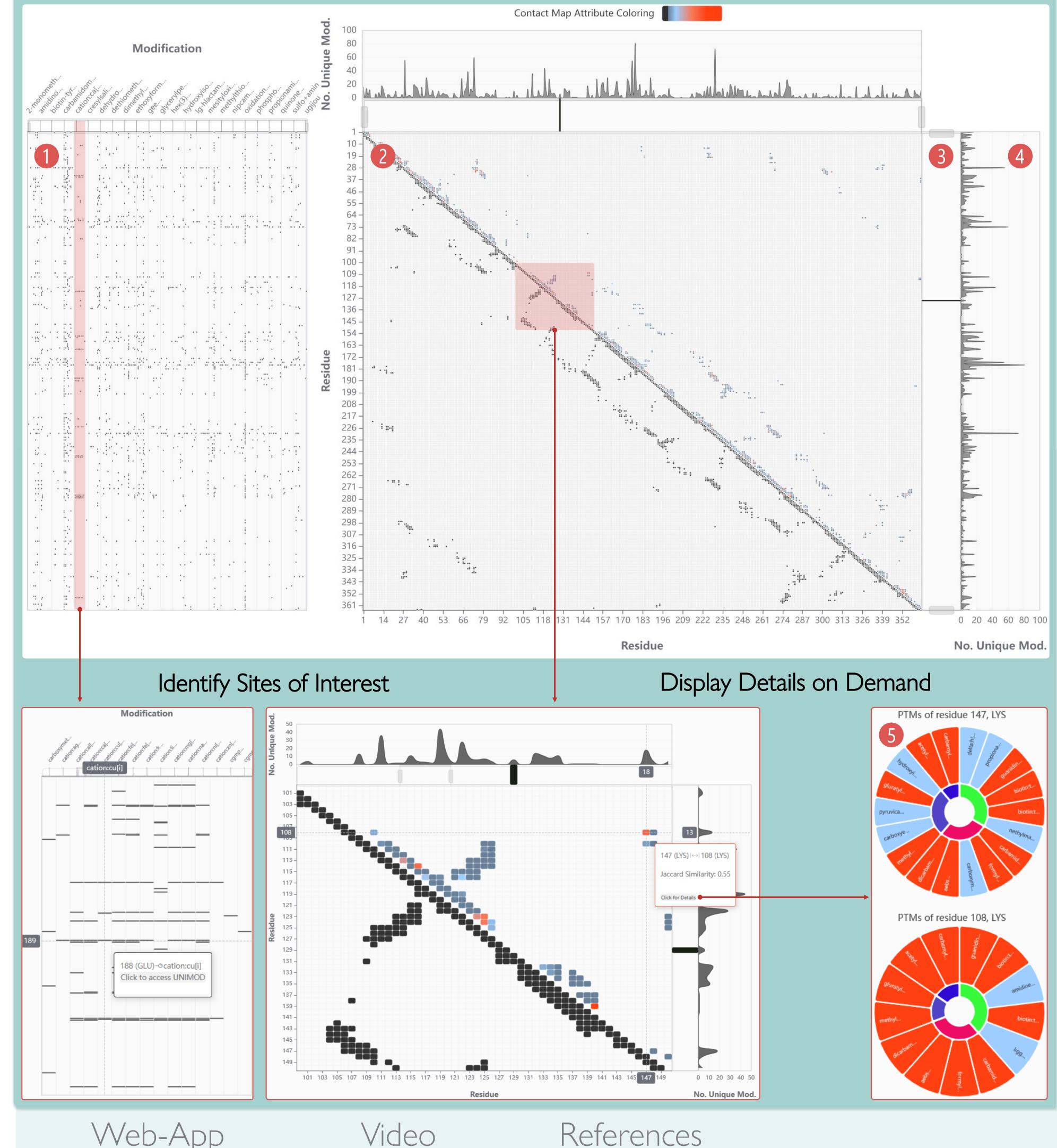
Lollipop Plot PTMs along primary sequence

Visual Overload (ol) Per Site Restriction (sr) No Spatial Info (si)

3D Structure Color coded number of PTMs.

Poor Overview (ov) Hard to Interact (in)

Issues


The challenge in visualization is to find a clear representation of PTMs along the primary sequence of a single protein, taking into account its 3D structure.

Design

Together with experts we defined user tasks^{9,10} to find a new way to visualize PTMs and tackle above issues:

Identify sites with PTMs (IS) or of specific PTMs (IM).

Summarize and Overview along Primary Sequence, Account for 3D Neighborhood

- Highlight sites along the protein sequence (HS) and filter PTMs according to specified properties (FM).
- Summarize PTM compositions of a protein site (SS).
- **Compare** occurrence of modifications across the entire protein sequence (CM) or PTM composition of (contacting) protein sites (CS).

Design Choice	Tasks	Solves
Interactive 2D representations	-	in
Contact map (structure encoding)	FM, CS	sr, si
Presence/absence heat map	IM, CM	OV
Line charts	IS, SS	ol
Single axis charts	IS, HS	ol
Sunburst charts	CS	ol

We showcased an initial prototype at the IEEE Vis 2022 Bio+MedVis Challenge. Our current visualization is available as an interactive dashboard in the form of a **web** app.

Prospects

Based on the feedback received during the Bio+MedVis Challenge and a second evaluation panel of domain experts, we identified the remaining challenges:

- In terms of Shneiderman's details-on-demand paradigm, the visualization of
 - the full structural context (i.e., one row/column of the contact map) of neighboring amino acids in relation to PTMs
 - non-successive sites in a comparative manner. \bullet
- Third evaluation by domain experts.

Funding and Acknowledgement

Infrastructural funding for this project was provided by the following projects of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): TRR261 [project ID 398967434] for TH, the Cluster of Excellence EXC 2124 'Controlling Microbes to Fight Infections' [project ID 390838134] for MWP and KN, and the Cluster of Excellence EXC 2064 'Machine Learning: New Perspectives for Science' [project ID 390727645] for CJ. We thank the CompOmics group at Ghent University, Belgium, for their close cooperation and valuable feedback during the development of PTMVision.

¹GRAVES J. D., KREBS E. G.: Protein phosphorylation and signal transduction. Pharmacology & therapeutics 82, 2-3 (1999), 111–121.

²HOCHSTRASSER M.: Ubiquitin-dependent protein degradation. Annual review of genetics 30, 1 (1996), 405–439.

³DRAZIC A., MYKLEBUST L. M., et al.: The world of protein acetylation. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1864, 10 (2016), 1372–1401. ⁴BOUWMEESTER R., GABRIELS R., et al.: Deeplc can predict retention times for peptides that carry as-yet unseen modifications. Nature Methods 18, 11 (2021), 1363-1369.

⁵DEGROEVE S., GABRIELS R., et al.: ionbot: a novel, innovative and sensitive machine learning approach to Ic-ms/ms peptide identification. bioRxiv (2021). ⁶GABRIELS R., MARTENS L., et al.: Updated ms2pip web server delivers fast and accurate ms2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic acids research 47, W1 (2019), W295– W299.

⁷BLUDAU I., WILLEMS S., et al. : The structural context of posttranslational modifications at a proteome-wide scale. PLOS Biology 20, 5 (2022), 1–23. ⁸CRUZ E. R., NGUYEN H., et al.: Functional analysis tools for post-translational modification: a post-translational modification database for analysis of proteins and metabolic pathways. The Plant Journal 99, 5 (2019), 1003–1013. ⁹NUSRAT S., HARBIG T., et al.: Tasks, techniques, and tools for genomic data visualization. In Computer Graphics Forum (2019), vol. 38, Wiley Online Library, 781-805.

¹⁰BREHMER M., MUNZNER T.: A multi-level typology of abstract visualization tasks. IEEE transactions on visualization and computer graphics 19, 12 (2013), 2376–2385.

[†]University of Tübingen, Institute for Bioinformatics and Medical Informatics, Integrative Transcriptomics, Tübingen, Germany